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Abstract: Background: Improper disposal of urban medical waste is likely to cause a series of
neglective impacts. Therefore, we have to consider how to improve the efficiency of urban medical
waste recycling and lowering carbon emissions when facing disposal. Methods: This paper considers
the multi-cycle medical waste recycling vehicle routing problem with time windows for preventing
and reducing the risk of medical waste transportation. First, a mixed-integer linear programming
model is formulated to minimize the total cost consisting of the vehicle dispatch cost and the
transportation costs. In addition, an improved neighborhood search algorithm is designed for
handling large-sized problems. In the algorithm, the initial solution is constructed using the Clarke–
Wright algorithm in the first stage, and the variable neighborhood search algorithm with a simulated
annealing strategy is introduced for exploring a better solution in the second stage. Results: The
computational results demonstrate the performance of the suggested algorithm. In addition, the total
cost of recycling in the periodic strategy is lower than with the single-cycle strategy. Conclusions:
The proposed model and algorithm have the management improvement value of the studied medical
waste recycling vehicle routing problem.

Keywords: variable neighborhood search; medical waste recycling; vehicle routing problem;
multi-cycle; time windows

1. Introduction

With the rapid growth of the population and the rapid development of medical
technology, the volume and composition of medical waste have grown rapidly over the past
30 years [1]. Especially since the outbreak of COVID-19 in early 2020, the amount of medical
waste generated has increased dramatically [2]. For example, the amount of medical
waste generated in Wuhan, China has increased from 40 tons/day before the epidemic
to 110–150 tons/day [3], and the peak value was as high as 240 tons/day [4]. However,
the gap between the production and disposal of medical waste is widening. Hence, the
urgency of developing urban medical waste recycling is heightened [5]. Effective recycling
of medical waste can prevent the spread of disease, reduce environmental pollution, and
promote resource recycling [6]. Therefore, how to effectively recycle medical waste has
become a hot issue for the people as well as the government [7]. The majority of medical
waste is collected and disposed of centrally, and the transportation procedure is subject to
stringent rules, including restrictions on the vehicle’s weight, the operating window, and
other factors [8]. In addition, how to develop an environmentally conscious transportation
network and reduce the carbon tax generated during the transportation of goods has also
become one of the key issues [9]. Therefore, it is necessary for medical waste recycling to
set up a rational and scientific path for recycling given these constraints.

The medical waste recycling problem can be regarded as a general situation of the
vehicle routing problem with time windows (VRPTW), which is proved to be NP-hard [10].
Therefore, most of the current literature explores some efficient heuristic algorithms for the
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solution of VRPTW. Aylin et al. [11] investigated the medical waste recycling vehicle rout-
ing problem of Istanbul and comprehensively considered the factors of the recycling points,
treatment points, transport vehicles, etc., so as to improve and optimize the recycling route
of the medical waste and eventually determine the most feasible routes from the perspective
of efficiency and economy. RFID technology was used by Nolz et al. [12] to optimize the
planning process of predefined time horizons. Meanwhile, for the purpose of handling the
randomness of the problem, adaptive large neighborhood search-based algorithms were
also used to obtain the final vehicle route. Hachicha et al. [13] investigated the transport
problem of medical waste from 12 hospitals in Tunisia. They considered it a route optimiza-
tion problem and integrated the contagiousness of medical waste into load constraints. The
real cases were then solved by interactive optimizer tool CPLEX. Mete et al. [14] proposed a
geographic information system (GIS) solution approach to determine the optimal location
of disposal centers, and the proposed approach was applied to minimize the total distance
as well as the total risk during the transport of medical waste between 167 health facilities
(collection centers) and five scheduled disposal centers through the TRB1 region of Turkey.
Nikzamir et al. [15] proposed a bi-objective mixed-integer mathematical model for the
transport of infectious and non-infectious medical waste problems by considering the factor
of stochastic contamination emissions during the transport of infectious waste. Accordingly,
a multi-objective class water flow algorithm with novel operators was developed to solve
the problem, and the algorithm was thoroughly compared with the other algorithms. For
the household expired medicine recycling vehicle routing problem, a traditional genetic
algorithm was used by Wang [16] to improve the recycling rate. Vijayakumar et al. [17]
focused on the bio-medical waste collection problem in Coimbatore, and the particle swarm
optimization algorithm (PSO) was used to solve the mathematical model to minimize the
total collection time. The safety score was applied by Eren et al. [4] to establish a linear
programming model with two objective functions based on the safety score and the total
transport distance. The model was then solved, and a mediation solution was obtained to
determine the safest and shortest transport route for medical waste vehicles. Amirhossein
et al. [18] proposed a novel waste management approach in real time by utilizing modern
traceability devices of the Internet of Things (IoT), designed a two-stage system efficiently,
and innovated the collection route in order to maximize the recycling value and achieve
sustainable development. Due to home healthcare services and their associated demand
rates increasing dramatically, Amin et al. [19] designed a home health care system based
on the Internet of Things (IoT) and developed a two-step modeling approach to select a
number of employed vehicles. Moreover, the green split pick-up vehicle routing problem
(GSPVRP) and IoT concept are employed to address the patients in both sub-models. For
the sake of solving the optimization problem of urban waste collection and transportation
in China, Wu et al. [20] considered a green vehicle routing problem (PCGVRP) model in a
waste management system, and the optimal solution is obtained by a local search hybrid
algorithm (LSHA), and several instances are selected from the capacitated vehicle routing
problem (CVRP) database so as to test and verify the effectiveness of the proposed LSHA
algorithm. The literature survey has shown that a limited number of studies use vehicle
routing models for solving the medical waste recycling problem, and there is also a lack of
policy consideration regarding that medical waste must be fully recycled within 48 h [21].
There is no difference between the model of the existing research and the general network
optimization model, so it is far away from the realistic background of medical waste recy-
cling and does not reflect the characteristics of the medical waste recycling problem. How
to serve specific medical institutions during specific time periods is the first question that
needs to be addressed [22].

The periodic vehicle routing problem (PVRP) is a temporal extension of the VRP, first
proposed by Beltrami and Bodin [23]. In PVRP, the optimal route is composed of different
lines in multiple cycles, and customers need to visit multiple times during the cycle or have
different requirements for the frequency of return visits [24], such as supermarket delivery,
elevator maintenance, garbage collection, and letter delivery services [25]. Scholars have
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been looking for efficient methods to find the optimal solution or approximate optimal
solution in the cycle, mainly including exact algorithm [26,27], heuristic algorithm [28,29],
meta-heuristic algorithm, machine learning algorithm [30–32], and some more mature com-
mercial software [33]. Compared with other algorithms, the meta-heuristic algorithm has a
more comprehensive and thorough search process, which greatly improves the goodness of
the solution and approximately solves a wide range of hard optimization problems without
having to deeply adapt to each problem [34,35]. With these advantages, metaheuristic
algorithms can be used to solve nonlinear, large-scale combinatorial optimization problems,
covering engineering fields such as computers, automation, electronics, and intelligent
robotics [36]. Therefore, scholars have generated rich research results in this neighbor-
hood. For example, Hemmelmayr et al. [37] studied the problem of waste collection by
considering the periodic vehicle routing problem with intermediate facilities (PVRP-IF). An
exact dynamic programming formulation and an efficient hybrid solution based on varied
neighborhoods were proposed. A set of benchmark examples were developed and searched.
Cantu-Funes et al. [38] considered the periodic vehicle routing problem with additional
factors, such as multiple models, multiple stations, and lead times. A stochastic adap-
tive greedy algorithm was then proposed for solving this problem. Alinaghian et al. [39]
presented a new variant of the periodic vehicle routing problem in which reaching the
customers affects the market share and where the objective function is to minimize the total
transit time and maximize the market share. In order to solve this model, multi-objective
particle swarm (MOPSO) and local MOPSO algorithms are applied, and the results of the
algorithms are compared based on some comparison metrics. Racha et al. [40] proposed
a meta-heuristic based on the particle swarm optimization (PSO) algorithm for the multi-
period vehicle routing problem with profit (mVRPP) to maximize the total profit collected,
where the planning horizon of each vehicle was divided into several cycles. Dong et al. [41]
introduced a new model of PVRP, the periodic vehicle routing problem with flexible deliv-
ery dates, which covers a wider range of applications and is able to answer most diverse
customer requirements. Additionally, they proposed an algorithm based on iterated local
search (ILS). This metaheuristic approach involves an iterative application of a local search
algorithm and the use of perturbation as a diversification mechanism. Chen et al. [42]
studied a real-life container transportation problem with a wide planning horizon divided
into multiple shifts; a variable neighborhood search algorithm with reinforcement learning
(VNS-RLS) was thus developed. The study shows that algorithms can greatly reduce
the rate of infeasible solutions explored during the search. Despite the achievements of
meta-heuristics to obtain optimal solutions even for large-scale problems in a short period
of time, novel and attractive improvements are emerging, improving the adaptability to
the solution and stagnation prevention techniques [43]. The traditional algorithms, such as
genetic algorithm, particle swarm optimization algorithm, variable neighborhood search
algorithm, etc., have problems of slow solution speed and falling into a local optimum
easily. Thus, this is another starting point of this research.

To answer these research questions, this study first explains the approaches to model
and solve the problem we are concerned with. A mixed-integer linear programming model
is designed for the multi-cycle medical waste recycling vehicle routing problem with time
windows to reduce the number of vehicles dispatched and the transportation cost. Next,
we propose an improved variable neighborhood search (IVNS) algorithm, which addresses
the drawbacks of the conventional variable neighborhood search algorithm. The case study
section presents the detailed results of the proposed decision optimization framework. We
then examine the validity and superiority of the proposed metaheuristic-based approach
for the multi-cycle medical waste recycling vehicle routing problem with time windows.
The last section contains the conclusions and comments on limitations. To sum up, this
study develops a decision-making framework to economically and efficiently determine
the optimal routing of the medical waste recycling vehicle.

The contributions of this study are as follows:



Int. J. Environ. Res. Public Health 2022, 19, 12887 4 of 25

(1) This is a pioneering study to establish a multi-cycle medical waste recycling vehicle
routing decision-making framework with time windows.

(2) The decision-making framework developed takes into account the periodic strategy
that can meet the demands for multi-frequency recycling services from medical
institutions and improve the recycling efficiency of medical waste.

(3) An effective metaheuristic-based IVNS algorithm is proposed to solve the multi-cycle
medical waste recycling vehicle routing optimization problem with time windows. A
variety of retention strategies and improved perturbation mechanisms are devised to
conquer the convergence rate and premature problem.

2. Problem Description and Formulation

The problem addressed in this paper can be summed up as follows: as depicted in
Figure 1, the problem is that the medical waste recycling vehicles are dispatched from the
recycling and processing center to the medical institutions on time to provide services for
one-by-one recycling in accordance with the daily waste volume generated by the medical
institutions and then return to the recycling and processing center to form a closed-loop
process in the condition of the recycling and processing center. Two different types of
decisions must be made in order to solve the medical waste recycling routing optimization
problem using the cyclical strategy: (1) determining the service times for medical facilities
based on the total number of services provided and the combination of available time
windows; and (2) assigning vehicles and optimizing recycling routing for medical facilities
within a given service time cycle. Medical facilities with a frequency of 2 are larger or
produce more trash each day and must recycle every day of the cycle; facilities with a
frequency of 1 can recycle any day of the cycle. There is typically only one medical waste
recycling and processing facility in a city since medical waste is dangerous. The amount of
medical waste generated each day fluctuates due to the different sizes and levels of medical
facilities and the sporadic nature of the patients admitted each day.
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Figure 1. Example of a medical waste recycling problem.

With each medical waste recycling vehicle leaving the medical waste recycling and
processing center (depot) via each recycling point, completing its recycling task for each
customer point, and then returning to the recycling and processing center, it is assumed that
the municipal medical waste recycling network consists of a medical waste recycling and
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processing center as well as several medical waste generation points (medical institutions).
In addition, the subsequent assumptions are made:

(1) Medical facilities, recycling facilities, and processing facilities are located and counted.
(2) How much waste is recycled at each institution is known.
(3) The separation between nodes is the shortest distance traveling directly between two

places.
(4) Only one truck per day is allowed to collect and transport the medical waste the

healthcare facilities produce back to the facility for processing and recycling.
(5) The recycling vehicles for medical waste are of the same model and have a defined

maximum vehicle capacity.
(6) For medical facilities, the recycling cycle lasts two days.
(7) Every vehicle and facility complies with the unique guidelines for moving and getting

rid of medical waste.

Table 1 summarizes the notation for the mathematical model depicted in Figure 1.

Table 1. Notations of the mathematical model.

Sets
T set of cycle length, T = {1, 2,3, . . . , t} days

N The set of medical institutions, N = {1, 2, 3 . . . n}, 0 and n + 1 are vehicle parking
points, N0 = N∪{0, n + 1}

V Set of vehicles, V = {1,2,3 . . . v}
Parameters
cij Distance from medical institution i to medical institution j, i, j∈N0
tij Transportation time from medical institution i to medical institution j, i, j∈N0
sei Service time for medical institution i, i ∈ N0, where se0 = sen+1 = 0
ei The lower bound of time window for medical institution i
li The upper bound of time window for medical institution i
ω1 Unit fixed usage costs of vehicle
ω2 Unit travel cost of vehicle
Ψ Maximum value
Q Maximum load capacity of medical waste recycling vehicles
qi Amount of medical waste generated by medical institution i in a cycle

Decision-making variables

fi
The required recycling frequency of medical institution i in a cycle (The amount of
waste that needs to be recycled each day within a cycle of medical institution i is qi/fi)

xt
ijv

Binary variables: 1 if vehicle v arrives directly at medical institution j from medical
institution i on day t; 0 otherwise

yt
iv Binary variables: 1 if vehicle v visits medical institution i on day t; 0 otherwise

sv
i Arrival time of vehicle v at medical institution i

According to the assumptions, a mixed-integer linear programming model is estab-
lished as follows. The optimization objective is to minimize the total costs under the
periodic recycling strategy, which includes the vehicles’ dispatch cost and transportation
costs.

Objective function : minZ = ω1 × ∑
t∈T

∑
j∈N

yt
0,j + ω2 × ∑

t∈T
∑
i∈N

∑
j∈N

∑
v∈V

cijxt
ijv (1)

subject to:
∑

i∈N0

yt
ivqi/ fi ≤ Q, ∀v ∈ V (2)

∑
t∈T

∑
v∈V

yt
iv =

{
2 ∑

v∈V
yt

iv, i = 0, n + 1

fi, i ∈ N
(3)

∑
v∈V

yt
iv ≤ 1, ∀i ∈ N0 (4)
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∑
i∈N

xt
ijv = yt

iv, ∀j ∈ N0, t ∈ T, v ∈ V (5)

∑
j∈N

xt
ijv = yt

iv, ∀i ∈ N0, t ∈ T, v ∈ V (6)

ei ≤ sv
i ≤ li, ∀i ∈ N0, v ∈ V (7)

sv
i + tij + sei − sv

j ≤ (1− xt
ijv)•ψ, ∀i, j ∈ N0, v ∈ V (8)

∑
j∈N

yt
0,j ≤ 1 (9)

∑
i∈N

yt
i,n+1 ≤ 1 (10)

∑
i∈N

xt
ijv − ∑

j∈N
xt

ijv = 0, ∀p ∈ N, v ∈ V (11)

xt
ijv ∈ {0, 1}, ∀i, j ∈ N0, v ∈ V, t ∈ t (12)

yt
iv ∈ {0, 1}, ∀i ∈ N0, v ∈ V, t ∈ t (13)

The objective function (1) minimizes the total medical waste recycling vehicle dis-
patching cost and the transportation cost. Constraint (2) ensures the actual load of the
medical waste recycling vehicle cannot exceed the maximum load. Constraint (3) expresses
the number of times a medical institution is visited in a cycle equal to its required recycling
frequency. Constraint (4) guarantees the medical institution i can be visited at most once a
day. Constraints (5) and (6) require that there is at most one and only one medical waste
recycling vehicle that carries out the recycling at each point on day t. Constraint (7) guar-
antees the medical waste recycling vehicle must visit the medical institution within the
specified time window. The vehicle must not arrive at the medical institution later than the
latest arrival time and must wait if it arrives earlier than the minimum value of the time
window. Constraint (8) calculates the sum of the vehicle arrival time at medical institution
i, the service time at medical institution i, and the traveling time from medical institution i
to medical institution j of the vehicle cannot be later than the maximum value of the time
window of medical institution j. Constraint (9) ensures the medical waste recycling vehicle
must depart from the vehicle parking point 0 at the recycling and processing center on
day t. Constraint (10) expresses the medical waste recycling vehicle must return to the
vehicle parking point n + 1 at the recycling and processing center on day t. Constraint (11)
is a traffic flow conservation constraint that ensures the vehicle v must leave the medical
institution i after visiting. Constraints (12) and (13) define the domains of the decision
variables.

3. Improved Variable Neighborhood Search Algorithm (IVNS)

A two-stage approach is designed to solve the multi-cycle medical waste recycling
vehicle routing problem with time windows in this section. In the first stage, the initial
solution is constructed by using the Clarke–Wright algorithm (C–W), while, in the second
stage, the problem is solved by an improved variable neighborhood search algorithm
combined with the idea of a simulated annealing algorithm. First proposed by Clarke and
Wright [44] in 1964, the C–W algorithm is a greedy algorithm, the basic idea of which is to
merge two loops of the transportation problem into one loop in turn so as to maximize the
reduction in the total transportation distance at each time until the load limit of one vehicle
is reached and then optimize the next vehicle. The variable neighborhood search algorithm
is an improved local search algorithm that Mladenović first put forward in 1997 [45]. This
algorithm can perform an alternative search through the neighborhood structures composed
of different operations and achieve a good balance between concentration and sparsity.
Meanwhile, the simulated annealing algorithm was proposed by N. Metropolis et al. [46]
in 1953, and then S. Kirkpatrick et al. [47] successfully introduced the idea of annealing
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into the field of combinatorial optimization in 1983 and developed a stochastic method for
solving a large-scale combinatorial optimization problem. The proposed stochastic method
is based on the similarity between the solution procedure of the optimization problem and
the annealing process of the physical system and appropriately controls the temperature
drop process to achieve simulated annealing by using the Metropolis algorithm so as to
achieve the goal of solving the global optimization problem.

Consequently, the fundamental principles and benefits of the aforementioned algo-
rithms are combined with this paper. The natural number coding method is transformed
into the route taken by the medical waste recycling vehicle, the C–W algorithm rules
construct the initial solution, two distinct fitness functions are set for iterative search, and
multiple retention strategies are defined by combining the simulated annealing algorithm,
further widening the search space. In addition, the disturbance mechanism is improved to
guarantee that the algorithm can jump out of the optimal local solution and enhance the
search capability of the solution space to obtain the final optimal route.

3.1. Solution Representation

The natural number coding method is introduced: ‘0’ represents the warehouse, and
‘1, 2, 3, . . . , i, . . . n ’ indicate the different medical institutions. Meanwhile, to facilitate
the design of the neighborhood search operator, the neighborhood solution consists of the
execution sequence of each medical waste recycling vehicle. For example, 9 points requiring
three medical waste recycling vehicles to provide the service are coded as 03720, 045190,
0680, which means the first medical waste recycling vehicle departs the recycling and
processing center and returns to the center after points 3, 7, 2, called sub-route 1; the second
vehicle also departs the recycling and processing center and returns to the center after
points 4, 5, 1, 9, called sub-route 2; the third vehicle departs the recycling and processing
center and returns to the center after points 6, 8, called sub-route 3. The corresponding
recycling routing is shown below.

Sub-route 1: 0-3-7-2-0
Sub-route 2: 0-4-5-1-9-0
Sub-route 3: 0-6-8-0

3.2. Initial Solution Construction

The initial solution is constructed through the C–W algorithm, and a hard time window
constraint is added to the traditional C–W algorithm, i.e., as many points as possible are
inserted into a vehicle under the condition that all the constraints are satisfied. Although
the solution accuracy is not as good as the ant colony algorithm or the genetic algorithm, a
near-optimal satisfactory solution can be obtained quickly. The specific steps are as follows:

Step 1: Estimate the frequency of points and construct the odograph. The vehicle
route needs to be arranged for a day if the cycle is A. Construct some empty sets of cycles,
and then all nodes are classified according to service frequency and randomly added to
different sets. The shortest distance from the depot to the customer node and between
nodes is listed.

Step 2: Generate feasible solutions. According to the shortest route calculated from
step 1, the medical waste recycling vehicle departs the vehicle parking point to each point
one by one, and only one medical waste recycling vehicle is assigned to a point of service
under the constraints, such as the rated load capacity of the medical waste recycling vehicle
and the time window. Eventually, it sums up the total number of vehicles used to complete
this recycling and the total mileage traveled for the recycling.

Step 3: Calculate the mileage savings between each point. According to the funda-
mental principle of the C–W algorithm:S(i, j) = Coi + Cio + Coj + Cjo − (Coi + Cij + Cjp) =
Coi + Coj − Cij; that is, to calculate the distance required for a vehicle to start from 0 point,
visit node i and j separately, and then return to 0 point; besides the mileage required for
the vehicle to start from 0 point, visit node i and j in turn, and then return to 0 point. The
mileage saved is expressed as the mileage between any two nodes i and j completed by
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the same delivery vehicle during the visit process minus the shortest distance between any
two nodes i and j. The aforementioned logic is shown in Figure 2.
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Step 4: Rank the mileage savings. The number of miles that can be saved from every
point is obtained according to the mileage savings calculated in step 3. Arrange the value
of the saved mileage corresponding to the route connected between each two nodes in
descending order considering nodes i and j corresponding to the element max S(i,j) with
the largest value in the mileage saving table.

Step 5: Merge the recycling routing loops. Rank the mileage saving values according
to the mileage saving ranking table; the point with the largest mileage saving is connected
in priority, and the loop is merged if two points can use the same medical waste recycling
vehicle under the constraints of load capacity and time window. That is, disconnect the
arcs between points i, j, and the vehicle parking point and link the arcs between i and j to
obtain a new loop (o, . . . , i, j, . . . , o). Repeat this process until there is no more loop that
can be merged.

Step 6: Determine the optimal solution. Keep repeating step 5 and comparing each
solution until no better solution emerges.

3.3. Neighborhood Search Operators

Eight novel operation operators are designed to extend the diversity of neighborhood
solutions: the shift operator, the cross operator, the relocate operator, the inter-exchange
operator, the intra-exchange operator, the λ-inter-exchange operator, the λ-intra- exchange
operator, and the k-opt operator. Besides, the combination of insertion and exchange is
utilized to enlarge the solution space. The specific meanings and operation processes of
these operators are as follows:

- Shift operator: removes a point from its current position and inserts another position
in the same route.

- Cross operator: given to points on the different routes, exchange the position of the
first point and its successor in the same route with the second point and its successor
in a different route.

- Relocate operator: removes a point from its current position and inserts it into another
position with a different route.

- Inter-exchange operator: takes two points on different routes and swaps them.
- Intra-exchange operator: takes two points from the same route and swaps them.
- The λ-inter-exchange operator: select a sub-chain with arbitrary length λ1 from one

route and select another sub-chain with random length λ2 from a different route, and
then swap the two selected sub-chains.

- The λ-intro-exchange operator: is similar to the previous operator, and the only differ-
ence is the operation carries out on the same route.

- The k-opt operator: generate a neighboring solution by using 2-opt at first. If no better
solution can be found by 2-opt, a new neighbor solution will be generated by 3-opt.
When 3-opt can produce a better solution, the operator returns to 2-opt. Otherwise, the
operator will seek 4-opt. Repeat the above process until achieving k-opt.

The operation processes of the above operators are shown in Figure 3.
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3.4. Structural Rules of the Solution

The traditional variable neighborhood search algorithm has the following characteris-
tics when solving combinatorial optimization problems, as shown in Figure 4: (1) the local
optimal solutions may be different when the alternate search is carried out by using the
neighborhood structures composed of different actions in the same search area. (2) The
optimal local solution obtained for one neighborhood structure is not necessarily the opti-
mal local solution for another neighborhood structure, and the algorithm is easy to fall into
the local optimum and stop. (3) The final global optimal solution must be an optimal local
solution of a neighborhood structure. Therefore, the basic idea of the simulated annealing
algorithm is further integrated into the improved variable neighborhood search algorithm
so as to increase the diversity of solutions and jump out of the local optimum. When the
fitness value of the left or right neighborhood is smaller than its own fitness, an attempt is
made to accept it for the initial value of the next iteration with a certain probability; i.e., the
existence of infeasible solutions is temporarily allowed. There are two types of infeasible
solutions in the neighborhood search: (1) the actual load of the medical waste recycling
vehicle in the solution sequence exceeds the maximum load capacity; (2) the arrival time
of a point in the solution sequence violates its time window range. In addition, we list
the case where the number of vehicles in the feasible solution is reduced as the first-level
indicator, and the case where the number of vehicles is not reduced but the total distance is
shortened is listed as the second-level indicator. Similarly, the reduction in the number of
vehicles in the infeasible solution is listed as the first-level index, and the situation where
the number of vehicles is not reduced but the total distance is shortened is listed as the
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second-level index [48]. Consequently, the corresponding penalty function is added to the
objective function during the search process to deal with the infeasible solution, and then a
new fitness function f is formed as the following equation:

f = ∑
v∈V

∑
i∈N

∑
j∈N

∑
t∈T

cij•xt
ijv + λ1 ∑

v∈V
∑

i∈N
max(0, sv

i − ei) + λ2 ∑
v∈V

∑
i∈N

∑
t∈T

max(0, qt
i −Q) (14)

The right-hand side of the above equation is the transportation cost of the route, the
penalty function for violating the time window, and the penalty function for violating the
load capacity, where λ1 and λ2 are the penalty coefficients of the time window constraint
and the load capacity constraint, respectively, with an initial value of 0.5. When the
constraint of time and cargo capacity constraint are satisfied, the penalty coefficient becomes
smaller, which is λ1/(1 + λ1),λ2/(1 + λ2), respectively, and True is returned. When the
constraint of the time window or the cargo capacity constraint is violated, the corresponding
penalty coefficient becomes larger, which is λ1 × (1 + λ1), λ2 × (1 + λ2), respectively, and
returns False.
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3.5. Perturbation Mechanisms

The main purpose of the perturbation process is to obtain a large number of random
solutions through some transformation. Each neighborhood structure needs to find a
balance between sufficiently perturbing the current solution and retaining the better-quality
part of the current solution, thus expanding the search space of the current solution and
avoiding falling into a local optimum. As shown in Figure 5, the perturbation frequency of
the traditional variable neighborhood search algorithm is too high, so the algorithm cannot
thoroughly search the current neighborhood solution and jump into another neighborhood
structure, and the objective function changes accordingly. Because the randomly generated
neighborhood solution deviates significantly from the original neighborhood solution
after perturbation, the search for the current neighborhood solution is not comprehensive
enough. Therefore, the target value of the currently generated neighborhood solution is
set to infinity by the improved variable neighborhood search algorithm when no optimal
solution is found after Y consecutive iterations of the current neighborhood structure, and
the newly generated neighborhood solution will replace the neighborhood solution with the
infinite target value and be passed down during the next traversal of the operation operator.
Eventually, an optimal local solution with good quality will be obtained again while
speeding up the algorithm by continuously seeking and replacing different neighborhood
structures.
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3.6. IVNS Procedure

The specific procedure of the proposed IVNS algorithm is shown in Figure 6. First,
a feasible initial solution is generated by the C–W algorithm, the set of neighborhood
structures is defined, the parameters are initialized, and then the main algorithm is passed
in. Second, each newly generated neighborhood solution is calculated and evaluated during
the neighborhood search: the target value is updated and passed to the global optimum if
the optimized solution is obtained; the target value is also updated if no optimized solution
is obtained and a better infeasible solution is searched; if neither of the above occurs, there
is no updated solution obtained in this iteration. Finally, the termination condition is
determined, and the algorithm is terminated if the number of iterations reaches a given
threshold.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 5. Illustration of the perturbation process. 

3.6. IVNS Procedure 
The specific procedure of the proposed IVNS algorithm is shown in Figure 6. First, a 

feasible initial solution is generated by the C–W algorithm, the set of neighborhood struc-
tures is defined, the parameters are initialized, and then the main algorithm is passed in. 
Second, each newly generated neighborhood solution is calculated and evaluated during 
the neighborhood search: the target value is updated and passed to the global optimum if 
the optimized solution is obtained; the target value is also updated if no optimized solu-
tion is obtained and a better infeasible solution is searched; if neither of the above occurs, 
there is no updated solution obtained in this iteration. Finally, the termination condition 
is determined, and the algorithm is terminated if the number of iterations reaches a given 
threshold. 

START

Define m neighborhood structure sets, denoted as 
NK, k=(1,2,3...m), generate initial solution s, 

initialization parameters, i=1

Search using domain structure Ni to get 
neighborhood solution

Whether to obtain the optimal solution s'

Whether to obtain a better infeasible solution s"
No

No

Yes

Yes

No

Evaluate neighborhood solutions

Do not update the neighborhood 
solution target value，i++

get the best route

END

i≥m, update algorithm parameters

Termination condition judgment

Yes

Yes

update the neighborhood 
solution target value,

Let s'=s, i++,

update the neighborhood 
solution target value,

Let s'=s, i++,

 

Figure 6. Algorithm flow chart. 

Figure 6. Algorithm flow chart.



Int. J. Environ. Res. Public Health 2022, 19, 12887 12 of 25

4. Computational Experiment and Case Study

In this section, 20 PVRPTW are the benchmarks published by Cordeau et al. [47], and
actual cases of medical waste recycling in some tertiary medical institutions in Beijing were
adopted to evaluate the performance of the IVNS. Meanwhile, the commercial optimization
software Gurobi 9.5.0 was used for comparative experiments. For the small-scale case, the
maximum solution time of Gurobi was set to be 1800 s to output the current optimal feasible
solution, while, with regard to the large-scale case, the maximum iteration time was set to
be 3600 s because a feasible solution cannot be obtained in a short time. Both the proposed
INVS and Gurobi were implemented in Python and accomplished in the language editor
Anaconda on a PC with AMD Ryzen 5 4600U with Radeon Graphics 2.10 GHz and 8 GB
of RAM.

4.1. Parameter Settings

Different parameter settings will have a direct impact on the performance of the
algorithm. Three dominant parameters of the proposed IVNS algorithm are: the maximum
number of iterations M, the maximum number of continuous iteration results unchanged B,
and the frequency of disturbance Y. Based on the preliminary test, the maximum number
of iterations M is set to 1800, and the value ranges of the other two parameters that need to
be adjusted are as follows:

B: 100, 200, 300, 400.
Y: 5, 10, 15, 20.

The C101 example in the Solomon instance that contains 100 customers is utilized
for the parameter testing. The test results show that the number of dispatched vehicles
is the least when the number of iterations is 500, Y = 5, B = 300 or Y = 10, B = 100 or Y =
10, B = 300. When the number of iterations is 1800, Y = 10, B = 300, the running time is the
shortest. Finally, Y is set to be 10, and the value of B is 300 (Figure 7).
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4.2. Computational Experiment on Benchmarks
4.2.1. Dataset

The 20 PVRPTW benchmarks are shown in Table 2, where the difference between
the first ten and the last ten cases lies in the time window. Take the Pr01 case with a
cycle of 4 as an example, and the parameters are presented in Table 3. The frequency of
recycling represents the number of times that a point is recycled during the cycle. Each visit
combination is coded with the decimal equivalent of the corresponding binary bit string.
For example, in a 5-day period, the code 10, which is equivalent to the bit string 01010,
means that a customer is visited on days 2 and 4 (days are numbered from left to right).
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Table 2. The parameters of PVRPTW benchmarks.

No. Number of
Points

Number of
Days in a

Cycle

Number of
Vehicles

Maximum
Duration of

a Route

Load
Capacity

Pr01 48 4 3 500 200
Pr02 96 4 6 480 195
Pr03 144 4 9 460 190
Pr04 192 4 12 440 185
Pr05 240 4 15 420 180
Pr06 288 4 18 400 175
Pr07 72 6 4 500 200
Pr08 144 6 8 475 190
Pr09 216 6 12 450 180
Pr10 288 6 16 425 170
Pr11 48 4 3 500 200
Pr12 96 4 6 480 195
Pr13 144 4 9 460 190
Pr14 192 4 12 440 185
Pr15 240 4 15 420 180
Pr16 288 4 18 400 175
Pr17 72 6 4 500 200
Pr18 144 6 8 475 190
Pr19 216 6 12 450 180
Pr20 288 6 16 425 170

Table 3. The parameters of case Pr01.

Point
Number

Horizontal
Coordinate

Vertical
Coordinate

Service
Duration Demand

Frequency
of Recy-

cling

Number of
Possible

Visit Combi-
nations

List of All
Possible

Visit Combi-
nations

Beginning
of Time
Window

End of
Time

Window

0 −10.442 19.999 0 0 0 0 0 1000
1 −29.730 64.136 2 12 4 1 15 354 509

. . .
13 −76.672 99.341 2 9 2 2 5 10 368 528

. . .
48 42.883 −2.966 17 10 1 4 1 2 4 8 98 233

4.2.2. Results and Analysis

The computational results of benchmarks are shown in Table 4, where the second
column indicates the known optimal solution published on the website [49]; the third
column is the best computational results on 10 test questions with improved ant colony
optimization (IACO) [50]; the fourth column represents the initial solution obtained by the
C–W algorithm; the fifth to seventh columns demonstrate the maximum values, average
values, and optimal values obtained by running the IVNS algorithm ten times for each
example separately. The eighth column shows the results solved by the Gurobi optimizer.
The ninth to eleventh columns represent the relative percentage error between the optimal
value obtained by the IVNS algorithm and the optimal solution of the other algorithms.
The twelfth column presents the optimal number of tours on a certain day. The last column
shows the running time of the instances. The error is calculated as follows [51]:

RPD =
Solution− BKS

BKS
× 100% (15)

where the solution is the optimal result obtained by the improved variable neighborhood
search algorithm, and BKS is the known optimal solution. It can be seen from Table 4
that the average value of the worst solutions in the 10 results of the improved variable
neighborhood search algorithm is 8966.67, the average value of the optimal solutions
is 8609.09, and the deviation between the mean solution and the worst solution after
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10 runs is 1.85%, and the deviation between the mean solution and the optimal solution
is −2.25%. It can thus be seen that the proposed IVNS algorithm can converge to the
optimal solution stably for PVRPTW. Furthermore, in terms of RPD metrics, three optimal
solutions acquired by the improved variable neighborhood search algorithm are better than
the known optimal solutions published on the website, and the difference between the
mean value of the 20 cases and the average optimal solutions is 1.9%. Compared with an
improved ant colony optimization algorithm, the difference between the mean value of
the first ten cases and the average optimal solutions is 0.89%. Both improved algorithms
are obviously superior to the Gurobi optimizer in terms of solution quality. Overall, the
improved variable neighborhood search algorithm can obtain better results under any data
size, while the Gurobi optimizer cannot generate a feasible solution when the number
of points exceeds 200. Consequently, the proposed IVNS has strong effectiveness and
feasibility in solving PVRPTW.

To further test the performance of the proposed IVNS, the convergence validation was
implemented through computational experiments. We run the IVNS algorithm with the
instances Pr1 (48 pints, 4 days in a cycle, narrow time window), Pr10 (288 points, 6 days
in a cycle, narrow time window), Pr11 (48 points, 4 days in a cycle, wide time window),
and Pr20 (288 points, 6 days in a cycle, wide time window), respectively. The convergence
curves of the instances are shown in Figure 8. It can be seen in Figure 8 that the target value
of instance Pr01 stabilized at around 3000 when the number of iterations reached 150, while
the target value of example Pr10 is around 17,800 after 2000 iterations. It shows the IVNS
can obtain the optimal global solution in a few iterations for the small size problem. For
the large size problem, the value of the objective function decreased greatly in the early
stage, and the decline gradually slowed down as the iterations increased. In general, the
improved variable neighborhood search algorithm is found to be capable of converting
to an optimal value with a fast convergence speed; thus, the superiority of the algorithm
is verified.
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Table 4. Results of PVRPTW benchmarks.

No. The Vrp Web IACO Initial
Solutions

IVNS

Gurobi

RPD

The Number of Tours in Each Day Average
TimeMax AVG Best The Vrp

Web IACO Gurobi

Pr01 3007.84 2959.09 4124.74 3275.52 3190.55 3048.54 5326 1.35% 3.02% 77.07% 3 + 3 + 3 + 3 = 12 28.75
Pr02 5328.33 5323.29 5870.59 5786.76 5544.62 5421.99 9972.2 1.75% 1.85% 87.15% 6 + 5 + 5 + 6 = 22 225.75
Pr03 7397.10 7554.5 10,289.47 7991.69 7747.29 7578.25 17,747.6 3.1% 0.31% 139.93% 7 + 7 + 8 + 7 = 29 770.52
Pr04 8376.95 8364.61 10,438.8 8724.81 8694.54 8589.03 29,599 2.53% 2.68% 253.34% 10 + 8 + 9 + 8 = 35 1364.56
Pr05 8967.90 8964.46 11,132.58 9332.93 9195.34 9008.26 - 0.45% 0.48% - 10 + 12 + 10 + 11 = 43 2828.25
Pr06 11,686.91 11,122.6 14,027.47 11,541.02 11,407.5 11,095.82 - -5.05% -0.24% - 12 + 12 + 12 + 12 = 48 5148.25
Pr07 6991.54 7100.24 9528.99 7587.05 7339.47 7188.22 12,458.8 2.81% 1.23% 78.20% 5 + 5 + 5 + 4 + 5 + 4 = 28 117.66
Pr08 10,045.05 10,094.58 13,321.33 11,081.46 10,957.89 10,469.85 26,324.2 4.22% 3.71% 162.06% 7 + 7 + 7 + 8 + 7 + 7 = 43 602.51
Pr09 14,294.97 14,356.9 18,760.46 14,757.65 14,562.75 14,261.85 - -0.23% -0.66% - 10 + 10 + 9 + 10 + 10 + 10 = 59 2239.59
Pr10 18,609.72 17,733.2 22,274.61 18,572.11 18,228.6 17,751.03 - -4.61% 1.00% - 12 + 12 + 14 + 11 + 13 + 12 = 74 4950.83
Pr11 2318.37 - 3169.73 2612.77 2502.82 2449.15 5470.3 5.74% - 135.95% 3 + 2 + 3 + 2 = 10 28.75
Pr12 4276.13 - 4765.68 4765.68 4718.11 4582.77 10,295.4 7.17% - 140.76% 5 + 5 + 5 + 4 + 6 + 5 = 30 189.25
Pr13 5702.07 - 7847.23 6676.34 6510.41 6315.38 20,775.4 10.75% - 264.35% 5 + 7 + 6 + 6 = 24 551.51
Pr14 6789.73 - 8577.73 7373.38 7224.04 7053.58 20,890.2 3.88% - 207.67% 7 + 8 + 7 + 8 = 30 1760.23
Pr15 7102.36 - 8966.93 7705.69 7633.47 7554.06 - 6.66% - - 9 + 11 + 10 + 10 = 40 2205.64
Pr16 9180.15 - 11,984.49 9762.46 9559.34 9348.02 - 1.82% - - 11 + 11 + 11 + 11 = 44 4304.91
Pr17 5606.08 - 6097.75 6097.75 5999.52 5876.42 13,371.4 4.82% - 138.52% 4 + 4 + 4 + 3 + 5 + 4 = 24 74.66
Pr18 7987.64 - 11,246.73 8635.34 8574.79 8426.2 25,550.2 5.83% - 219.87% 7 + 6 + 6 + 6 + 7 + 6 = 38 587.78
Pr19 11,089.91 - 14,849.32 12,085.83 11,812.88 11,515.86 - 5.57% - - 8 + 9 + 8 + 8 + 8 + 9 = 50 2167.38
Pr20 14,207.64 - 14,687.4 14,967.31 14,668.88 14,355.56 - 1.04% - - 12 + 12 + 12 + 12 + 12 + 12 = 72 4112.16

Average 8448.32 - 10,598.1 8966.67 8803.64 8609.09 - 1.9% - - - 1712.95
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4.3. Case Study
4.3.1. Dataset and Parameter Setting

The case study of medical waste recycling was conducted by using real data from 108
tertiary medical institutions in which the amount of medical waste generated accounts for
56.7% of the medical waste generated by all the medical institutions in Beijing. The medical
waste recycling is carried out by Beijing Sanitation Group Operation Co., Ltd., which has a
total of K = 5 dedicated medical waste recycling vehicles with a maximum load capacity of
Q = 7 tons and a speed of s = 40 km/h. The medical waste recycling and processing center
is Gaoantun; the daily waste production and recycling time of the selected 108 medical
waste recycling points without time window are attached in Appendix A. Meanwhile, the
daily waste production, recycling time, and time window of the selected 31 medical waste
recycling points are presented in Table 5. According to the Chinese medical waste recycling
policy, the recycling frequency is once every two days when the daily waste production
is less than 0.3 tons. Besides, in accordance with the actual traffic and control situation in
Beijing, the medical waste recycling work starts as early as 5 a.m. and ends as late as 8 p.m.,
with a maximum vehicle working time of Tmax = 10 h. The medical waste loading time per
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ton is 0.5 h, the fixed cost of each vehicle departure is CNY 400, and the unit transportation
cost of the vehicle is CNY 8 per kilometer.

Table 5. The coordinates, loading time, daily waste production, and time window of the selected
points.

No. Horizontal
Coordinate

Vertical
Coordinate

Loading
Time (h)

Medical
Waste Volume

(t/d)

Start
time (h)

End
Time (h)

0 4,472,263 463,203 0 0 5 20
1 4,487,027 473,163 0.574 1.148 7 9
2 4,490,734 471,765 0.3608 0.7216 7.5 9
3 4,488,883 471,758 0.1208 0.2416 8 10
4 4,489,808 471,761 0.014 0.028 9 10.5
5 4,492,574 474,594 0.344 0.688 11.5 13.5
6 4,490,729 473,176 0.0616 0.1232 9.5 11.5
7 4,496,281 473,196 0.1608 0.3216 13 14.5
8 4,488,920 463,285 0.3432 0.6864 12.5 14
9 4,492,615 464,714 0.4 0.8 10 12

10 4,490,751 467,545 0.56 1.12 13.5 16
11 4,492,602 467,553 0.4 0.8 15.5 17.5
12 4,494,453 467,553 0.2424 0.4848 7 8.5
13 4,490,751 474,613 0.122 0.244 8.5 10.5
14 4,496,303 467,553 0.14 0.28 11.5 14
15 4,498,127 474,613 0.4528 0.9056 10 12.5
16 4,496,271 476,018 0.1836 0.3672 13 16
17 4,496,249 484,482 0.24 0.48 14 16.5
18 4,488,838 488,703 0.322 0.644 9 11
19 4,488,852 481,642 0.204 0.408 9.5 12.5
20 4,488,860 478,818 0.4 0.8 13 15
21 4,498,137 471,793 0.5192 1.0384 12.5 15
22 4,487,017 475,988 0.12 0.24 15.5 17.5
23 4,488,838 488,703 0.1072 0.2144 7 9
24 4,490,707 480,235 0.012 0.024 12 14.5
25 4,499,957 481,670 0.2604 0.5208 14 15.5
26 4,499,988 471,800 0.1208 0.2416 8.5 15.5
27 4,488,852 481,642 0.256 0.512 8 14.5
28 4,498,087 492,948 0.4 0.8 10.5 17.5
29 4,500,018 464,749 0.4792 0.9584 11.5 16
30 4,500,633 465,222 0.0852 0.1704 8 15.5
31 4,494,487 460,490 0.0628 0.1256 9 12

4.3.2. Results and Analysis

The proposed model and IVNS algorithm are adopted for calculation, setting the
number of iterations to 2000. The optimal route for recycling of 31 nodes is shown in
Table 6, where the second column indicates the number of vehicles to be used under
the cyclical recycling strategy, the third column expresses the number of vehicles to be
used without considering the cyclical condition, and the fourth column represents the
docking sequence of each medical waste recycling vehicle at medical institution points
under the cyclical recycling strategy. The fifth column shows the docking sequence of
each medical waste recycling vehicle at medical institution points without considering the
cyclical recycling strategy. For example, 0-3-1-4-20-0 means the medical waste recycling
vehicle departs from the recycling and processing center and successively serves medical
institution points 3, 1, 4, 20, and finally returns to the recycling and processing center.
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Table 6. Optimal route for medical waste recycling vehicles with and without considering the cyclical
recycling strategy.

Number of
Days

Route
Number Order of Stopping at Medical Institution Points

A B A B

1

1 1 0-1-2-15-5-16-7-21-17-25-28-0 0-3-1-4-20-0
2 2 0-18-19-27-20-8-0 0-12-9-14-31-10-8-0

3 3 0-12-9-10-29-11-0 0-13-2-15-6-7-26-5-16-21-29-30-
11-0

4 0-18-19-23-27-28-17-25-24-22-0

2

1 1 0-12-31-9-30-29-14-11-10-0 0-3-1-4-20-0
2 2 0-4-3-1-20-8-0 0-12-9-14-31-10-8-0

3 3 0-2-13-6-15-7-21-16-26-5-0 0-13-2-15-6-7-26-5-16-21-29-30-
11-0

4 4 0-18-19-23-27-28-17-25-24-22-0 0-18-19-23-27-28-17-25-24-22-0

It can be observed from Table 6 that three medical waste recycling vehicles are required
on the first day and four vehicles on the second day under the cyclical recycling strategy.
The recycling loads of each medical waste recycling vehicle on the first day are 6.9912 t,
3.0504 t, and 4.1632 t, respectively; the recycling working times of each medical waste
recycling vehicle are 11.6 h, 7 h, and 10 h; and the distances traveled by the medical waste
recycling vehicles are 80.198 km, 52.361 km, and 60.00 km. Meanwhile, on the second day,
the recycling loads of each medical waste recycling vehicle are 4.3152 t, 3.1736 t, 4.96 t, and
4.3216 t, respectively; the recycling working times of each medical waste recycling vehicle
are 10 h, 7 h, 8.23 h, and 7.92 h; and the distances traveled by the medical waste recycling
vehicles are 60 km, 34.142 km, 44.721 km, and 74.787 km. Comparatively, there are four
vehicles needed for recycling on both days without considering the cyclic condition. The
recycling loads of each medical waste recycling vehicle are 2.2176 t, 3.4968 t, 6.581 t, and
3.8432 t, respectively. Further, the recycling working times of each medical waste recycling
vehicle are 6.41 h, 8 h, 9.41 h, and 7.82 h, and the distances traveled by the medical waste
recycling vehicles are 28.284 km, 40 km, 66.50 km, and 74.78 km. According to the above
results, we can find that the total number of vehicles dispatched, recycling loads, recycling
time, and the distance traveled by the vehicle under the medical waste recycling vehicle
routing planning schemes, considering the cyclical recycling strategy, are smaller than the
medical waste recycling vehicle routing planning schemes without considering the cyclical
condition. Moreover, the optimal recycling schemes under the cyclical recycling strategy
and the optimal recycling schemes without considering the cyclical condition are shown
in Figures 9 and 10, respectively. There are differences in the number of medical waste
recycling vehicles used and the vehicle route under the two schemes for the same medical
institution point during the practical recycling process: the number of vehicles used and the
recycling routes under the consideration of cyclical conditions are more scientific, thereby
making the recycling more efficient.



Int. J. Environ. Res. Public Health 2022, 19, 12887 19 of 25

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 19 of 25 
 

 

 
(a) 

 
(b) 

Figure 9. The optimal recycling schemes under the cyclical recycling strategy. (a) Medical waste 
recycling vehicle route of the first day. (b) Medical waste recycling vehicle route of the second day. 

 
(a) 

 
(b) 

Figure 10. The optimal recycling schemes without considering the cyclical condition. (a) Medical 
waste recycling vehicle route of the first day. (b) Medical waste recycling vehicle route 
of the second day. 

In addition, an observation of the results in Table 7 for the instance of 31 nodes is that 
four medical waste recycling vehicles are required on both days. The total cost is 7,236 
RMB under the constraints of vehicle load capacity and time window without considering 
the cyclical condition, while, for the same medical institution point and constraints, only 
three medical waste recycling vehicles are required on the first day. Four medical waste 
recycling vehicles are required on the second day, with a total cost of 6419.2 RMB under 
the cyclical recycling strategy, which is 12.7% lower than the total cost without consider-
ing the cyclical condition. For the instance of 108 nodes, a total of 40 vehicles are needed 
in two days, and the cost is 29872 RMB without considering the cyclical condition. Further, 
considering the cyclical recycling strategy, a total of 37 vehicles are needed in two days 
with a total cost of 26176 RMB, which is 12.3% lower than the total cost without consider-
ing the cyclical condition. Consequently, the model that considers the cyclical recycling 
strategy has stronger superiority for the medical waste recycling vehicle routing problem. 

Figure 9. The optimal recycling schemes under the cyclical recycling strategy. (a) Medical waste
recycling vehicle route of the first day. (b) Medical waste recycling vehicle route of the second day.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 19 of 25 
 

 

 
(a) 

 
(b) 

Figure 9. The optimal recycling schemes under the cyclical recycling strategy. (a) Medical waste 
recycling vehicle route of the first day. (b) Medical waste recycling vehicle route of the second day. 

 
(a) 

 
(b) 

Figure 10. The optimal recycling schemes without considering the cyclical condition. (a) Medical 
waste recycling vehicle route of the first day. (b) Medical waste recycling vehicle route 
of the second day. 

In addition, an observation of the results in Table 7 for the instance of 31 nodes is that 
four medical waste recycling vehicles are required on both days. The total cost is 7,236 
RMB under the constraints of vehicle load capacity and time window without considering 
the cyclical condition, while, for the same medical institution point and constraints, only 
three medical waste recycling vehicles are required on the first day. Four medical waste 
recycling vehicles are required on the second day, with a total cost of 6419.2 RMB under 
the cyclical recycling strategy, which is 12.7% lower than the total cost without consider-
ing the cyclical condition. For the instance of 108 nodes, a total of 40 vehicles are needed 
in two days, and the cost is 29872 RMB without considering the cyclical condition. Further, 
considering the cyclical recycling strategy, a total of 37 vehicles are needed in two days 
with a total cost of 26176 RMB, which is 12.3% lower than the total cost without consider-
ing the cyclical condition. Consequently, the model that considers the cyclical recycling 
strategy has stronger superiority for the medical waste recycling vehicle routing problem. 

Figure 10. The optimal recycling schemes without considering the cyclical condition. (a) Medical
waste recycling vehicle route of the first day. (b) Medical waste recycling vehicle route of the
second day.

In addition, an observation of the results in Table 7 for the instance of 31 nodes is that
four medical waste recycling vehicles are required on both days. The total cost is 7236 RMB
under the constraints of vehicle load capacity and time window without considering the
cyclical condition, while, for the same medical institution point and constraints, only
three medical waste recycling vehicles are required on the first day. Four medical waste
recycling vehicles are required on the second day, with a total cost of 6419.2 RMB under
the cyclical recycling strategy, which is 12.7% lower than the total cost without considering
the cyclical condition. For the instance of 108 nodes, a total of 40 vehicles are needed in
two days, and the cost is 29872 RMB without considering the cyclical condition. Further,
considering the cyclical recycling strategy, a total of 37 vehicles are needed in two days with
a total cost of 26176 RMB, which is 12.3% lower than the total cost without considering the
cyclical condition. Consequently, the model that considers the cyclical recycling strategy
has stronger superiority for the medical waste recycling vehicle routing problem.
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Table 7. The comparison of number of vehicles and total cost under two schemes.

Number
of Days

Instance with 31 Nodes Instance with 108 Nodes

Number of
Vehicles

Cost
(RMB)

Number of
Vehicles Cost (RMB)

Without cyclical
recycling strategy

1 4 3618 20 14,936
2 4 3618 20 14,936

With cyclical
recycling strategy

1 3 2801.2 15 11,072
2 4 3618 22 15,104

5. Conclusions and Remarks
5.1. Conclusions

Efficient recycling of urban medical waste is of great importance for protecting public
health and reducing environmental pollution. It is regarded as a cyclical medical waste re-
cycling vehicle routing optimization problem with time windows on the basis of analyzing
the network structure of medical waste recycling and fully considering the timeliness of
medical waste recycling. To study the multi-cycle medical waste recycling vehicle routing
problem with time windows, we conducted a comprehensive literature review on medical
waste recycling, the vehicle routing problem with time windows, the periodic vehicle
routing problem, and metaheuristics for these problems. Meanwhile, a mixed-integer
programming model was established to minimize the number of dispatched vehicles and
transportation costs. At the same time, in order to enhance the search ability of the algo-
rithm to the solution space, an improved variable neighborhood search algorithm was
proposed to optimize the construction of the initial solution and the disturbance mechanism.
With the purpose of verifying the proposed algorithm, the comparison experiment with the
benchmarks of PVRPTW was carried out. Eventually, a case study of the medical waste
recycling was conducted by utilizing the real data from 108 tertiary medical institutions in
Beijing. The computational results show that the optimal value obtained by the proposed
model and algorithm can afford a more scientific and efficient medical waste recycling
vehicle route so as to achieve the goal of reducing transportation time and cost.

To sum up, we can draw the following conclusions:

(1) The mixed-integer programming model is an effective approach that can accurately
reflect the characteristics of the multi-cycle medical waste recycling vehicle routing
optimization problem with time windows.

(2) For the parameter settings of IVNS, the performance of the algorithm is best when
the maximum number of iterations M is 1800, the maximum number of continuous
iterations results unchanged B is 300, and the frequency of disturbance Y is 10.

(3) The improved variable neighborhood search algorithm (IVNS) performs better than
the improved ant colony optimization (IACO) and C–W algorithm. This is mainly
because the IVNS can work out the slow convergence rate and premature problem
through a novel initial solution generation scheme and a better solution search mech-
anism.

(4) The total number of vehicles dispatched, recycling loads, recycling time, and distance
traveled by the vehicle under the periodic strategy are smaller than those of the
single-cycle strategy because the periodic scheme can achieve the maximization of the
vehicle’s utility.

5.2. Future Scope of Research

The presented decision-making framework provides a novel procedure for the medical
waste recycling vehicle routing optimization. Although both the model and the approach
are innovative, there are some extensions suggested for future works. First, the multiple
objectives that especially involve service quality will be considered, and the characteristics
of medical waste, such as category and infectivity, will be further integrated into the model.
Second, the performance of IVNS will be tested in the multi-objective condition. Third,
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the proposed model does not take the fuzzy demand into account. The uncertain demand
could have an important impact on the medical waste recycling vehicle routing problem.
Owing to the consideration of the NP-hardness of the proposed model, the involvement of
uncertain demand is limited, but it would be a useful issue for further study.

5.3. Managerial Implications

In this paper, we propose a decision-making approach for the multi-cycle medical
waste recycling vehicle routing problem with time windows with respect to demand
fulfillment and cost saving.

(1) Based on the real-time data of the municipal medical waste recycling network, man-
agers can dispatch the medical waste recycling vehicles optimally according to the
scheme provided by the proposed approach.

(2) Considering the resources, that is, the fixed components (e.g., medical waste recycling
and processing center) and flexible components (e.g., medical waste recycling vehicles
and workers), the enterprises can increase or decrease the flexible components on the
basis of the actual situations so as to minimize the operating cost.

(3) Metaheuristics are the essential point of artificial intelligence technology, which is de-
veloping rapidly at present. Considering that our proposed approach is metaheuristic-
based, not only the researchers but also the enterprises can use it conveniently through
Python, MATLAB, or other tools.
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Appendix A

Table A1. The coordinates, loading time, and daily waste production of 109 points.

No. Horizontal
Coordinate

Vertical
Coordinate Loading Time (h) Medical Waste

Volume (t/d)

0 4,472,263 463,203 0 0
1 4,485,176 473,156 0.4988 0.9976
2 4,487,027 473,163 0.574 1.148
3 4,485,176 473,156 0.2736 0.5472
4 4,485,175 473,155 0.2592 0.5184
5 4,481,480 471,730 0.3 0.6
6 4,490,734 471,765 0.3608 0.7216
7 4,488,883 471,758 0.1208 0.2416
8 4,481,480 471,730 0.026 0.052

http://www.bernabe.dorronsoro.es/vrp/
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Table A1. Cont.

No. Horizontal
Coordinate

Vertical
Coordinate Loading Time (h) Medical Waste

Volume (t/d)

9 4,489,808 471,761 0.014 0.028
10 4,492,574 474,594 0.344 0.688
11 4,490,729 473,176 0.0616 0.1232
12 4,496,281 473,196 0.1608 0.3216
13 4,487,056 466,101 0.2308 0.4616
14 4,488,920 463,285 0.3432 0.6864
15 4,492,615 464,714 0.4 0.8
16 4,490,751 467,529 0.56 1.12
17 4,485,225 461,854 0.1592 0.3184
18 4,483,342 468,910 0.4152 0.8304
19 4,481,485 470,316 0.3624 0.7248
20 4,492,602 467,537 0.4 0.8
21 4,483,354 466,084 0.3124 0.6248
22 4,487,062 464,688 0.3124 0.6248
23 4,494,453 467,545 0.2424 0.4848
24 4,483,361 464,671 0.2196 0.4392
25 4,490,751 467,529 0.122 0.244
26 4,496,303 467,553 0.14 0.28
27 4,481,503 466,076 0.1472 0.2944
28 4,498,127 474,613 0.4528 0.9056
29 4,479,610 477,378 0.4792 0.9584
30 4,496,271 476,018 0.1836 0.3672
31 4,496,249 484,482 0.24 0.48
32 4,488,838 488,703 0.322 0.644
33 4,435,207 472,978 0.288 0.576
34 4,487,152 449,151 0.1192 0.2384
35 4,483,307 478,802 0.1804 0.3608
36 4,488,852 481,642 0.204 0.408
37 4,431,535 465,850 0.2 0.4
38 4,488,860 478,818 0.4 0.8
39 4,498,137 471,793 0.5192 1.0384
40 4,487,017 475,988 0.12 0.24
41 4,488,838 488,703 0.1072 0.2144
42 4,490,707 480,235 0.012 0.024
43 4,433,317 488,619 0.1488 0.2976
44 4,499,957 481,670 0.2604 0.5208
45 4,499,988 471,800 0.1208 0.2416
46 4,488,852 481,642 0.256 0.512
47 4,498,087 492,948 0.4 0.8
48 4,435,249 463,022 0.0992 0.1984
49 4,500,018 464,749 0.4792 0.9585
50 4,500,633 465,222 0.0852 0.1704
51 4,494,487 460,490 0.0628 0.1256
52 4,487,152 449,151 0.34 0.68
53 4,498,196 459,099 0.28 0.56
54 4,485,240 459,028 0.352 0.704
55 4,488,966 454,812 0.296 0.592
56 4,435,249 463,022 0.28 0.56
57 4,501,914 456,300 0.26 0.52
58 4,498,247 450,637 0.12 0.24
59 4,488,984 451,988 0.128 0.256
60 4,485,282 451,964 0.1528 0.3056
61 4,472,285 458,957 0.26 0.52
62 4,475,945 467,465 0.36 0.72
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Table A1. Cont.

No. Horizontal
Coordinate

Vertical
Coordinate Loading Time (h) Medical Waste

Volume (t/d)

63 4,481,539 459,008 0.2072 0.4144
64 4,474,094 467,457 0.244 0.488
65 4,481,539 459,008 0.048 0.096
66 4,477,764 475,958 0.12 0.24
67 4,475,908 477,367 0.18 0.36
68 4,479,659 464,653 0.284 0.568
69 4,475,908 474,544 0.37 0.74
70 4,470,535 443,375 0.16 0.32
71 4,492,756 442,132 0.128 0.256
72 4,490,894 443,529 0.3224 0.6448
73 4,492,756 442,132 0.32 0.64
74 4,485,342 443,487 0.26 0.52
75 4,485,311 447,726 0.1 0.2
76 4,492,802 436,486 0.1 0.2
77 4,492,878 428,017 0.32 0.64
78 4,485,131 507,064 0.4168 0.8336
79 4,483,281 507,066 0.1008 0.2016
80 4,488,833 507,061 0.2448 0.4896
81 4,481,429 505,654 0.22 0.44
82 4,448,117 492,901 0.232 0.464
83 4,449,967 521,297 0.34 0.68
84 4,448,144 521,297 0.12 0.24
85 4,453,669 507,094 0.15 0.3
86 4,461,075 490,079 0.08 0.16
87 4,468,497 480,177 0.056 0.112
88 4,413,056 460,062 0.3608 0.7216
89 4,461,079 487,244 0.0928 0.1856
90 4,455,614 461,703 0.1468 0.2936
91 4,461,103 477,322 0.15 0.3
92 4,448,268 451,727 0.68 1.36
93 4,444,496 464,488 0.12 0.24
94 4,448,268 451,727 0.12 0.24
95 4,472,355 447,635 0.2584 0.5168
96 4,470,505 447,622 0.1608 0.3216
97 4,470,515 446,207 0.048 0.096
98 4,446,367 460,236 0.2 0.4
99 4,442,610 473,004 0.36 0.72

100 4,440,816 460,200 0.4276 0.8552
101 4,462,984 468,826 0.18 0.36
102 4,448,162 473,024 0.22 0.44
103 4,442,638 465,900 0.6528 1.3056
104 4,457,386 517,017 0.3 0.6
105 4,457,417 517,040 0.164 0.328
106 4,453,749 464,531 0.2284 0.4568
107 4,457,649 434,769 0.328 0.656
108 4,453,960 433,319 0.2688 0.5376
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