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Abstract: Collegiate rowing performance is often assessed by a cardiopulmonary exercise test (CPET).
Rowers’ on-water performance involves non-linear dynamic interactions and synergetic reconfigura-
tions of the cardiorespiratory system. Cardiorespiratory coordination (CRC) method measures the
co-variation among cardiorespiratory variables. Novice (n = 9) vs. Intermediate (n = 9) rowers’ CRC
(H0: Novice CRC = Intermediate CRC; HA: Novice CRC < Intermediate CRC) was evaluated through
principal components analysis (PCA). A female NCAA Division II team (N = 18) grouped based on
their off-water performance on 6000 m time trial. Rowers completed a customized CPET to exhaus-
tion and a variety of cardiorespiratory values were recorded. The number of principal components
(PCs) and respective PC eigenvalues per group were computed on SPSS vs28. Intermediate (77%) and
Novice (33%) groups showed one PC1. Novice group formed an added PC2 due to the shift of expired
fraction of oxygen or, alternatively, heart rate/ventilation, from the PC1 cluster of examined variables.
Intermediate rowers presented a higher degree of CRC, possible due to their increased ability to
utilize the bicarbonate buffering system during the CPET. CRC may be an alternative measure to
assess aerobic fitness providing insights to the complex cardiorespiratory interactions involved in
rowing during a CPET.

Keywords: complex adaptive systems; coordinative variables; dynamic networks; network
physiology; intra-individual co-variability; dynamic couplings; principal component analysis;
time-series analysis; cardiovascular system; athlete’s performance evaluation

1. Introduction

Cardiopulmonary exercise testing (CPET) and the related concept of maximal oxygen
consumption (VO2max) is considered as the most important indicator of endurance capacity,
cardiorespiratory fitness, and health in sports science [1–8]. It measures a variety of vari-
ables (i.e., ventilation, VE; heart rate, HR; oxygen saturation, SpO2; ventilatory threshold,
VT; expired fraction of oxygen, FeO2; expired fraction of carbon dioxide, FeCO2) linked to
metabolic, cardiovascular and pulmonary responses during the CPET [7,9]. According to
this concept, the human body has a limited capacity to utilize oxygen for muscle work as
demonstrated by a plateau in VO2max that indicates a physiological ceiling in cardiorespira-
tory capacity [10–12]. Since VO2max is an important outcome for physical performance, a
variety of tests designed to access VO2max using a treadmill or cycle ergometer have been
used, with the most popular ones to be the ramp and graded maximal incremental exercise
tests [13–16].

Rowing as a sport has different biomechanical characteristics compared to running
and cycling, so there are few rowing-specific VO2max tests using work rate as a key element
for the CPET setup on a Concept II rowing ergometer (i.e., stroke rate, critical velocity,
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power output) [17–20]. The most popular protocol to assess off-water VO2max in rowers has
been the simulation of the 2000 m distance time trial with maximal individual intensity with
no differences observed compared to incremental exercise testing until exhaustion [19–25].
Competitive collegiate rowing requires a high physical demand [26], with metabolic contri-
bution to 70–88% aerobic and 12–30% anaerobic [22,27]. Due to the high contribution of the
aerobic system in rowing performance, direct VO2max measurement has been shown to be
highly correlated (e.g., r = 0.85–0.88) with actual rowing performance and to be the most
important physiological determinant of rowing performance [20,27–29]. Therefore, the gold
standard to assess direct off-water VO2max in rowing is through gas analysis in a rowing
ergometer (e.g., Concept II). Such off-water VO2max test have reported maximum values of
more of 6 L of oxygen per minute (L/min) or values close to 65 millimeters per kilogram
of body weight per minute (mL/kg/min) [18,30–40], while collegiate female rowers have
reported VO2max values of 58 to 65 mL/kg/min [41]. Being able to measure and track the
physical demands of rowers is crucial to both training and success in rowing [26]. Moreover,
even though is difficult to ensure a controlled load output on rowing ergometers during a
CPET [42], such a CPET allows for observing and describing both external (i.e., maximal
power output) [34,42–44] and internal loads (i.e., VO2max, HR) [45–49].

The inability of the most commonly VO2max used tests to capture maximum perfor-
mances is due to their inability to capture the non-linear dynamic interactions among
different physiological systems [50,51]. It has been proposed that the synergism of the
cardiovascular and respiratory systems during a sub maximum or maximum exercise stim-
ulus cannot be captured by the traditional VO2max tests [52]. The framework of Network
Physiology and, more specifically, Network Physiology of Exercise (NPE) [51,53–58] utilizes
non-linear modeling and time series analysis of coordinative variables to investigate how
different physiological systems coordinate and synchronize as a network [59–62]. For ex-
ample, cardiorespiratory coordination (CRC) has been recently proposed as an alternative
method to assess the synergism between the cardiorespiratory variables during an exer-
cise stimulus [52,63–67]. This method requires the use of principal component statistical
analysis (PCA) performed on time series cardiorespiratory data. Based on this statistical
approach, the time synchronization as derived from different physiological systems reflects
their shared co-variation between the involved physiological parameters, which at the end
is represented through fewer principal components (PCs). The respective PCs are extracted
in a decreasing fashion and represent the maximum covariance between the examined
physiological variables, with the total number of PCs to represent the coordination level
among them [67]. It is stated that the decrease in PCs and/or the increase PC eigenvalues
reflects a higher level of cardiorespiratory efficiency-coordination [52,68].

Along this line of thought, recent work from our lab analyzed postprandial network
interactions between autonomic nervous system and lipemia data in response to acute
partial sleep deprivation and high-intensity interval exercise under the NPE framework.
Even though we did not perform a true network analysis due to a non-time series data col-
lection methodology, we reported that negative links in short-sleep high-intensity interval
exercise (HIIE) condition reflected the influence of sleep on both the autonomic regulation
and lipemia [69]. A time series analysis would have allowed us to both capture the syner-
gistic reconfiguration of the autonomic nervous system and cardiometabolic lipemia and
identify the causality between the physiological signals by creating a physiological post-
prandial network [59,66,70]. In contrast, when the same research question was analyzed
using influential statistics, HIIE was cardioprotective regardless the impact of the short
sleep [71,72].

It is clear that a research question analyzed under different frameworks may lead
to different conclusions. Therefore, analyzing cardiorespiratory testing under the NPE
framework may reveal the non-liner dynamic interactions of the cardiorespiratory system.
Evidence supports the notion that CRC may be implicated to higher training adapta-
tions [52] and training load [64] than VO2max and other markers of aerobic fitness, pointing
out CRC’s potential to substitute the traditional markers of aerobic capacity. Although
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metabolic, cardiovascular, and pulmonary systems work in coordination during a CPET,
there is scarce evidence related to CRC in collegiate rowing CPET.

Therefore, this study investigated the measurement of CRC through PCA in collegiate
rowers. We hypothesized that Intermediate rowers compared to Novice rowers will have
higher CRC values. Authors seek to offer an alternative and more meaningful interpretation
of rowers’ performance and training for maximal adaptation and prevent undertraining
and overtraining. Results from this study may enrich the information provided by the
traditional rowing ergometry tests to assess VO2max [73–76].

2. Materials and Methods
2.1. Study Design and Participants

A cross-sectional observational study was conducted on a female rowing team that
competes in NCAA Division II, as part of their annual pre-season physiological measure-
ments. Rowers performed a preliminary rowing test to establish the initial rowing power
for the customized discontinuous incremental rowing test to exhaustion. Based on the
preliminary testing results, rowers were divided to Novice and Intermediate ones (Figure 1).
Athletes’ direct off-water VO2max capacity was measured through gas analysis using a Con-
cept II rowing ergometer and a discontinuous incremental rowing protocol [77,78]. Besides
measuring their VO2max capacity, demographics and anthropometrics were also recorded.
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Figure 1. Research design.

As part of team ‘s requirements, all rowers (n = 18, age = 20.17 ± 2.28 SD years)
supplied their consent to have both their VO2max capacity and body composition assessed.
All testing was performed on a single day by the same research personnel during morn-
ing hours in an air-conditioned levorotatory environment when no team practice was
scheduled for 24 h prior to testing. The study was approved by the Ethics Committee of
Barry University’s institutional review board #1851725-2 based on established policies on
classroom and student research.

2.2. Procedures
2.2.1. Anthropometrics and Body Composition

Height and weight were determined using an electronic scale and stadiometer (Seca 703),
with participants removing their shoes prior to stepping on the scale [79]. Body composition
was measured via a bipolar digital bioimpedance system with tatcile poles (OMRON Body
Fat Analyzer, HBF-306BL, Omron Healthcare Corporation, Kyoto, Japan) and body fat per-
centage (%) was calculcated following standard procedures as previously described. Briefly,
participants visited lab in fasting condition, with no eating and consuming water 2 h before
testing and abstain from exercise 24 h prior to testing. All measurements happened during
noon time, before lunch, and approximately 20 min prior to the cardiopulomonary exercise
testing [79,80].

2.2.2. Preliminary Customized Discontinuous Incremental Rowing Protocol—Initial
Rowing Power

A customized discontinuous incremental rowing protocol based on rowers’ 60 s rowing
speed was employed. According to this, rowers had to perform a rowing sprint of 60 s
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as fast as possible they could on a Concept II rowing ergometer to determine the initial
power output for the actual cardiopulmonary exercise test (CPET). A priori power output
of 250 Watts for at least 10 strokes in 60 s was set as cutoff point in order to classify the
rowers into the Intermediate (>250 W) or to Novice (<250 W) group [77,78].

There is no clear consensus in the literature on Novice/Freshman rowers or DII rowers
regarding the testing protocols and how to establish the starting wattage [77,78]. Due
to this, we used a practical field approach to determine the starting power output. It
is a widespread practice in rowing coaches to base the starting Wattage output on the
performance of the 1-min all-out test. According to this common field practice, if a rower
could maintain a power output of ~250 Watts for 10 to 15 strokes, then it was expected to at
least make it to the fifth stage of the test and these values to represent a realistic oxygen
consumption. However, if a rower could not achieve this initial output and strokes rate,
then it was assumed that the lack of power is the reason why the test was terminated,
without achieving a realistic maximum oxygen consumption [26,36,41,81,82].

2.2.3. Cardiopulmonary Exercise Testing (CPET) Protocol

Having set the initial power, rowers completed a customized discontinuous incre-
mental rowing test to exhaustion. Prior to the customized CPET, a warmup of 5 min in
the Concept II rowing ergometer was performed. Participants were instructed to perform
2 min of easy rowing at a power output of <70 Watts, and the intensity was increased every
minute as follows: 1 min between 70–100 Watts, 1 min between 100–130 Watts, and last
minute was divided in 2 intervals of 30 s in which the power output was 130–160 Watts and
>160 Watts, respectively. Following the warmup, the incremental discontinued protocol was
performed. The incremental stages were set at 30 Watts for all rowers, while Intermediate
rowers started at 70 Watts and the advanced ones at 100 Watts [77,78]. The duration of each
stage was 2 min with 30 s rest in between. Since this was a maximum test until volitional
fatigue exhaustion, rowers were expected to give their absolute best. Participants were
encouraged to complete a maximum of 7 stages or until required power output could not
be maintained. Following the CPET a cool down period of 3 min was performed, where
participants were instructed to continue rowing at a power output of 50–70 Watts at their
preferred stroke rate with heart rates to be below 100 beats per minute.

2.2.4. Principal Components Analysis (PCA)

To analyze the CRC for each participant, we performed a PCA on the data series
of the following selected cardiorespiratory variables: VE, FeO2, FeCO2, and HR. We
excluded from the analysis VEqO2, VEqCO2, O2 pulse, RER, VO2, etc., due to their known
deterministic mathematical relation (linear combination) with the selected variables [52].
There is diverse evidence about the use of dimensionality reduction by PCA in small
samples, which indicates certain robustness in the estimates of shared variance that [83]
pointed out some time ago. In this sense, it should be noted that the estimates in small
samples should be more descriptive than inferential considerations, but appropriate to our
objectives [84]. Continuous blood pressure monitoring could not be provided in this study.
However, non-published results of our lab have shown similar results while analyzing
CRC with and without continuous blood pressure measurement.

2.3. Statistical Analysis

To analyze the suitability of the PCA implementation, we calculated Bartlett’s test for
sphericity and the Kaiser-Mayer-Olkin (KMO) test for all participants. We determined the
number of PCs using the Kaiser-Gutmann criterion and thus considered PCs with eigenval-
ues λ ≥ 1.00 as significant [85]. Given that the first PC (PC1) always contains the highest
proportion of the data variance [63,66], the PC1 eigenvalues were compared between Nand
Intermediate rowers by means Mann–Whitney U test. Effect size (Cohen’s d) was calculated
when possible, to demonstrate the magnitude of standardized mean differences [86–88].
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3. Results

Demographic characteristics are presented in Table 1.

Table 1. Demographics.

Age BW (kg) Height (cm) BF (%)

N 18 18 18 18
Mean 20.17 70.89 170.17 22.01
Standard
deviation 2.28 16.54 6.97 5.85

Minimum 18 47.50 159.50 12.30
Maximum 25 117.90 183.00 34.10

The Bartlett’s sphericity test (p < 0.001) and the KMO index showed an accept-
able sampling adequacy in both Novice (M = 0.61; SD = 0.12) and Intermediate rowers
(M = 0.59; SD = 0.08). While 7 participants (77%) in the Intermediate group showed one
PC, only 3 participants (33%) in the Novice group displayed 1 single PC (Table 2). The
formation of an additional PC (i.e., PC2) in Novice rowers was the result of the shift of
FeO2 or, alternatively, HR and VE, from the PC1 cluster of variables. As shown in Table 2,
FeO2, VE and HR for Novice rowers showed the lowest projections onto PC1. Remarkably,
eigenvalues of PC1, representing the highest proportion of the data variance, were higher
in Intermediate (M = 2.59; SD = 0.22) in contrast to the Novice group (M = 2.30; SD = 0.30)
(U = 18; p = 0.04; d = 1.10).

Table 2. Projection Variables in PC1.

Novice Rowers Intermediate Rowers

ID VO2max (mL/kg/min) VE HR FeO2 FeCO2 #PC ID VO2max (mL/kg/min) VE HR FeO2 FeCO2 #PC

1 45.1 0.87 0.93 0.78 0.91 1 10 32.6 0.79 0.80 0.77 0.90 1
2 45.1 0.17 0.01 0.97 0.95 2 11 50.2 0.89 0.48 0.82 0.96 1
3 41 0.69 0.87 0.78 0.90 1 12 38.5 0.94 0.89 0.71 0.08 2
4 40.8 0.96 0.92 0.03 0.63 2 13 45.7 0.78 0.67 0.80 0.94 1
5 34.9 0.07 0.08 0.97 0.96 2 14 46.4 0.86 0.87 0.64 0.91 1
6 54.4 0.92 0.89 0.13 0.50 2 15 48.3 0.83 0.88 0.61 0.95 1
7 25.2 0.94 0.89 0.15 0.46 2 16 47.4 0.84 0.50 0.90 0.92 1
8 41 0.88 0.03 0.96 0.98 2 17 41.8 0.84 0.90 0.69 0.91 1
9 43.3 0.72 0.68 0.87 0.93 1 18 54.2 0.93 0.94 0.17 0.48 2

Mean 0.69 0.59 0.63 0.80 Mean 0.86 0.77 0.68 0.78
SD 0.34 0.42 0.40 0.21 SD 0.06 0.18 0.21 0.30

Means and standard deviations are presented for each column and respective examined variable. ID: Rower’s
assigned identification number; #PC: Indicates number of principal components; VE: Ventilation; HR: Heart
rate; FeO2: Fraction of expired oxygen; FeCO2: Fraction of expired carbon dioxide. VO2max: Maximum oxygen
consumption in mL/kg/min. ID#18 = Olympian athlete.

4. Discussion

This study aimed to examine the cardiorespiratory coordination of collegiate rowers
under the prism of the network physiology of exercise. Results from this study showed
that Intermediate rowers exhibited higher degree of cardiorespiratory coordination (CRC)
compared to Novice rowers. More specifically, only 77% of the Intermediate group showed
high CRC (i.e., PC1), while only 33% of the Novice group presented 1 single principal
component analysis. The formation of an additional PC (i.e., PC2) in Novice rowers was
the result of the shift of FeO2 or, alternatively, HR and VE, from the PC1 cluster of variables.
The formation of an additional PC in Novice rowers was the result of the shift of FeCO2
from the PC1 cluster of variables.

Results of this study demonstrate the challenge around the VO2max concept and its
relevance to determine performance. When we examined the CRC among rowers within
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each group, we identified a member of the Intermediate group that had less degree of CRC
despite the fact that she is an Olympian with the 2nd highest VO2max. Based on the applied
grouping (i.e., Novice vs. Intermediate) of the initial rowing power and subsequent VO2max
rowing performance, it was expected that all of the Intermediate rowers would have had
higher degree of CRC and vice versa for the Novice’s group. We showed that categorization
of rowers just based on their respective VO2max misclassified them and NPE framework
provided more insights on rowers’ performance. Taking as reference the Olympian rower,
where her VO2max was the 2nd maximum, 54.2 mL/kg/min compared to 54.4 mL/kg/min
which was the maximum value of a Novice rower, a reductionist approach would have
implied that this athlete has reached the peak of her performance. However, with the
NPE approach we can infer that her cardiorespiratory coordination has ample room for
improvement, since her FeCO2 had decreased eigenvalues [52].

During maximum exercise FeCO2 and FeO2 present different patterns that accounts
for 96–98% of variability in VO2max [89], with FeO2 to be increased and FeCO2 at exhaustion
compared to the beginning of the exercise [90]. At exhaustion, FeCO2 decreases driven
primarily by the hyperventilation due to an increase in blood pH. The influence on FeCO2
on forming PC1 was shown elsewhere [52,63–65,67], therefore, since at maximum levels
PC1 was loaded primarily by the FeCO2, this can be interpreted as improvement of in-
dividuals’ CRC in respect to buffering system and greater efficiency of the gas exchange
system [91]. The reduction of CRC and the presence of PC1 driven by the FeCO2 may be
related to the cardiorespiratory coupling and neuroautonomic regulation [92,93]. Higher
intensities increase sympathetic activation as a result to feedback mechanisms from the
pulmonary mechanoreceptors and peripheral chemoreceptors in response to carbon diox-
ide and oxygen levels during muscle perfusion [94]. Moreover, it has been suggested that
the inability of the cardiorespiratory system to control and regulate its function is due to
circular causality between VE, FeCO2, FeO2, and HR [95]. In addition, the importance of
forming a PC1 due to FeCO2 and FeO2 in respect to CRC was also documented in runners
under normoxia condition [96].

Physiological interpretation of the VO2max needs to identify the limiting steps/factors
that affect VO2max and may change with training [97]. For example, in general limit-
ing factor is the oxygen delivery (i.e., pulmonary ventilation and gas exchange, cardiac
output, muscle blood flow, arterial oxygen content, muscle diffusion capacity or mito-
chondrial capacity) [13,98]. Having as reference point again the Olympian rower, lack of
improvement on her already compared to the rest of the team maximum VO2max value
with team’s training cannot imply that the training program has failed or that it has elicited
no adaptations. In elite athletes we expect to see an increase in peak cardiac output, in
mitochondrial oxidative capacity, and in peripheral adaptations regardless any signifi-
cant changes in the VO2max [99,100]. This phenomenon was supported by our data that
showed that Olympian’s CRC was not the highest (i.e., PC2), even though she had the
2nd highest VO2max. The increase in her number of PCs may also imply the absence of
non-liner reconfiguration due to possible training adaptations [52] and less efficient CRC
(i.e., increase in number of PCs and or decrease in PC eigenvalues) [52,68]. On the opposite
side, the Novice athletes that had low or high VO2max and a dimension reduction in their
PCs that would imply that irrespective of their VO2max they possess high coordinative
structures [68,101]. In any of the aforementioned cases, a high or low CRC would reflect
synergistic or non-synergistic adaptations of the involved systems under their respective en-
vironmental and/or systems-organs limitations [102]. Following the same line of thought,
coaches may use this framework to take decisions about the potential of an athlete that
demonstrates both high VO2max and CRC values. In this case, it is logical to assume that
this athlete has reached his/hers maximum athletic potential.

From a practical point of view, we showed that CRC can provide an insightful inter-
pretation of a CPET. It seems that CRC might be more sensitive than VO2max to assess the
synergy between the cardiorespiratory system, the involved variability [103] between max-
imum presented efforts [104] that reflect the adaptive or not properties of the physiological
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network in response to VO2max testing [53]. Current CRC approach via PCA evaluation
of common CPET variables may be an alternative and supplementing assessment to the
traditional CPET, as previous research has shown CRC is very responsive to cases related
to maximum performance after training [52,67], after different fatigue states [64], and
nutritional interventions [63].

Our results are not free from any methodological limitations. First, our sample size
is limited to the number of the actual rowers that compete at the NCAA Division II and
data were collected as part of team’s rowing performance testing. Second, no verification
of the results of CPET was performed to determine whether it was a “true” VO2max test
nor any evaluation was made based on the established criteria [105,106]. In addition, since
we did not measure lactate levels nor graphically examined the ventilatory threshold, it
is possible that not all of the examined rowers gave their absolute maximum effort. This
measurement was part of rowers’ annual evaluation, therefore we believe that the obtained
results reflect rowers’ maximum efforts. No dietary control was performed, so our results
may influenced by a diet high in carbohydrates or fat that subsequently would affect the
metabolic rate with higher CO2 output at any given O2 uptake compared to a diet high
in fat [107]. Another limitation of this study may be due to the applied discontinuous
incremental rowing protocol to exhaustion, as continuous time series of the involved
physiological variables were recorded and analyzed, but in a discontinued way. In order
to capture interactions among physiological systems with PCA, a continuous time series
analysis using a continuous CPET has been proposed [57]. This study examined the NPE
framework in rowing using the PCA method, and for field applicability was decided to use
a discontinuous incremental protocol instead of a continuous one. At the same time though,
this is study’s major strengths as we showed that PCA can be used for discontinuous
protocols too and its results can be immediately transferred from the laboratory settings to
the on-water training and performance.

As the concept of CRC is not still wide known, future research need to utilize al-
ternative to linear PCA modeling, such as non-linear PCA [108] or network component
analysis [92,109,110]. Doing as such, a better understanding of the number of PCs involved
to sports will be established and whether or not their increase or decrease is linked bet-
ter physiological adaptation and performance. Moreover, future studies when perform
CPET need to analyze the results under the NPE and CRC perspective in order to develop
normative data across different sports, ages, gender.

5. Conclusions

A higher degree of CRC was displayed for the Intermediate rowers compared to
Novice ones. Intermediate rowers were able to better manage the cardiometabolic by-
products during the CPET possible due to enhanced bicarbonate buffering efficiency, as
they relied less on ventilation. In accordance with the emerging CRC literature, we showed
that CRC may provide insightful information to coaches, athletes and other stakeholders
other than what a traditional CPET has to offer.
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