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Abstract: Road infrastructure has significant effects on road traffic safety and needs further exam-
ination. In terms of traffic crash prediction, recent studies have started to develop deep learning
classification algorithms. However, given the uncertainty of traffic crashes, predicting the traffic
risk potential of different road sections remains a challenge. To bridge this knowledge gap, this
study investigated a real-world expressway and collected its traffic crash data between 2013 and
2020. Then, according to the time-spatial density ratio (Pts), road sections were assigned into three
classes corresponding to low, medium, and high risk levels of traffic. Next, different classifiers were
compared that were trained using the transformed and resampled feature data to construct a traffic
crash risk prediction model. Last, but not least, partial dependence plots (PDPs) were employed
to interpret the results and analyze the importance of individual features describing the geometry,
pavement, structure, and weather conditions. The results showed that a variety of data balancing
algorithms improved the performance of the classifiers, the ensemble classifier superseded the others
in terms of the performance metrics, and the combined SMOTEENN and random forest algorithms
improved the classification accuracy the most. In the future, the proposed traffic crash risk prediction
method will be tested in more road maintenance and design safety assessment scenarios.

Keywords: traffic crash risk prediction; resampling algorithms; classifiers; performance evaluation
measures; feature importance

1. Introduction

The expressway (which is a class of very high standard road in China) is an essential
part of road transportation systems and is also the road type with the highest casualty rate
from traffic crashes. According to relevant statistics for China, the annual death toll per
1000 km of expressways is 43.68, which is 4 times that of ordinary roads, and the direct
property damage per traffic crash on expressways is US$6500, which is 10 times that of
ordinary roads [1]. In particular, the safety level of highways in mountainous areas is worse
due to poor alignment conditions [2], high proportion of tunnels [3], complex weather [4],
etc. In 2018 alone, there were more than 70,000 crashes in the mountainous areas in China,
resulting in more than 100,000 casualties and millions of dollars in losses [5].

Traffic risk evaluation is an important basis for road safety management, which
is an important subject in road safety research. Identification of the priorities of road
section management through traffic risk evaluation can help designers and managers to
efficiently allocate resources and improve road safety [6,7]. The operating environment of
an expressway is not affected by pedestrians and personal mobility devices such as bicycles
and scooters. There is a high correlation between traffic crashes and road design features [8].
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Presently, there are two principal methods for traffic risk evaluation. One method involves
the identification of crash-prone sections based on crash data [9]. Sufficient observation
time and sample size are the keys to accurate identification of crash-prone road sections.
Such an approach entails a certain lag and is hence difficult to incorporate into the design
and early stages of roadway operation. The other approach involves the identification of
high-risk sections based on road feature analysis [10]. However, though high-risk sections
have a greater potential of becoming crash-prone sections, some may not develop into
crash-prone sections. Furthermore, this approach only considers individual factors such as
road alignment, weather, pavement, etc., and the identified high-risk road sections are often
not sufficiently comprehensive. Given the constraints in the afore-mentioned methods, the
development of road traffic risk assessment methods that make better use of crash data
and with more comprehensive consideration of risk elements is of significant research and
application interest.

Newer modeling techniques have been developed in the analysis of motor vehicle
crash data, including two recent methods of clustering and classification [11–13]. Clustering
methods are mainly used to discover potential risk factors and quantify their weight [14].
Traffic risk prediction generally uses decision trees and classifiers. Commonly used clas-
sification models include the decision tree classifier [15], rule induction PART [16], lazy
classifier [17], Bayes classifier [18], etc. Compared with traditional traffic risk prediction
methods, the application of decision tree and classifiers is exploratory rather than infer-
ential. Hereby, more risk factors can be considered, including potential risk factors with
unclear impact mechanisms.

The number of road sections at different risk levels typically varies. The spatial dis-
tribution of traffic crashes on roads shows different degrees of aggregation given that
the occurrence of crashes is affected by various risk sources. Many scholars have taken
note of the inherent imbalance in crash datasets, and have proposed balancing methods
such as under-sampling, oversampling, and mixed sampling. Using these three meth-
ods to deal with imbalanced datasets, Mujalli et al. [19] used the Bayesian classifier to
predict the severity of traffic crashes, which mainly considered the number of vehicles,
crash mode, speed, lighting, and road conditions. Fiorentini et al. [20] used the random
under-sampling of majority class (RUMC) technique to deal with imbalanced datasets to
predict the severity of crashes wherein the reliability of the predictions was compared
for the four models of random tree, K-nearest neighbor (KNN), logistic regression, and
random forest. Danesh et al. [21] applied biogeography-based optimization and invasive
weed optimization to deal with imbalanced datasets, and applied the three algorithms of
decision tree, support vector machine (SVM), and KNN to construct a prediction model
of crash severity. Chen et al. [22] innovatively proposed the ENN-SMOTE-Tomek Link
(EST) algorithm to deal with the imbalance problem in the prediction of vehicle spatial
sequence features.

At present, classification algorithms are used to predict the severity of traffic collisions
with traffic crash datasets with imbalanced characteristics. There is a lack of relevant
research on the identification of high-risk road sections [23]. Compared with the prediction
of collision severity, the imbalance problem in road section risk prediction is more serious.
Data imbalance is not only due to the inherent imbalance of the risk level of road sections
but also the existence of potentially high-risk sections that are yet to develop into crash-
prone sections [24]. Therefore, new methods need to be proposed to deal with imbalanced
crash datasets for road section risk prediction using machine learning algorithms.

In this study, a prediction model of traffic crash risk potential was established. Three
types of data-balancing methods (11 algorithms in total) were introduced to deal with
traffic-related data. The processed balanced dataset was applied on 7 classifiers and
84 classification models were obtained. Finally, the performance of the established models
was compared, and the optimal resampling algorithm and classifier for expressway risk
potential prediction were proposed.



Int. J. Environ. Res. Public Health 2022, 19, 13693 3 of 23

The remaining paper is organized as follows: Section 2 presents a brief description
of the data used, data-balancing methods, and classifiers. Section 3 presents the findings.
Section 4 gives the conclusion.

2. Materials and Methods

In this study, traffic crash data and road data on Chinese expressways were collected,
which resulted in a dataset that is inherently imbalanced. Unbalanced data can easily lead
to the prediction results being biased towards the majority class samples, resulting in a
falsely high accuracy of the prediction results [25]. Herein, resampling algorithms and
classifiers were applied to improve the negative impact of the class imbalance problem on
the model performance. Considering that the potential risk of some roads may be improved
by traffic safety facilities, resulting in the predicted road risk level being higher than the
actual risk level, a new performance measure was proposed to evaluate the performance of
the trained model. Figure 1 shows the procedures employed.
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Figure 1. Section division by the homogeneous method; stratified k-fold cross-validation was used to
compare the developed models, which was repeated 5 times.

2.1. Data

In this study, traffic crash data and road data were collected for the GYX Expressway in
southwest China, which were provided by GYX Expressway’s traffic police and expressway
operating companies. A total of 4187 traffic crash data records were collected covering a
period of 8 years (2013–2020). Crash data included details such as the crash time, crash
location, etc. The total length of the two-way four-lane expressway is 210 km. Roadway
data included road alignment, pavement condition, tunnels, and expressway facilities. In
addition, daily weather data for 8 years (2013–2020) was obtained from the weather website.

The expressway was divided into 420 sections according to the driving direction
and kilometers. In order to study the traffic risk of road sections under different weather
conditions, four weather conditions were considered: sunny, cloudy, overcast, and rainy.
Therefore, there were a total of 1680 sampled units within this study as shown in Table 1.
Feature variables (road and weather information) and target variables (crash information)
were characterized for each sampled unit.
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Table 1. Overview of the sampled units used in this study.

Number Stake Number Driving Direction Weather

1 K1~K2 forward sunny
2 K1~K2 forward cloudy

. . . . . .
1679 K209~K210 reverse overcast
1680 K209~K210 reverse rainy

2.1.1. Data Integrity and Accuracy

Traffic crash data is an important basis for road safety research. The recording of
traffic crashes is generally the responsibility of road management companies and traffic
police. In China, each expressway has a dedicated agency responsible for managing traffic
crashes. Before the advent of mobile phones and monitoring systems, it was difficult to
contact the traffic police on the expressway in a timely manner. Drivers would often resolve
crashes themselves without going through the traffic police whenever minor traffic crashes
occurred. Therefore, in the past, there was a serious lack of traffic crash data for minor
crashes. With the popularity of mobile phones and monitoring systems, drivers can now
readily contact the traffic police department, resulting in the timely detection of traffic
crashes by the police authority. At the same time, traffic crash insurance compensation in
China requires the traffic police to issue a liability determination letter. Therefore, practically
all traffic crashes on the expressway are recorded by the traffic police department.

The crash data in this study were provided by traffic police and highway management
companies, respectively, and included details of the time, location, direction, crash type,
and casualties. Herein, the traffic police provided traffic crash data from 2013–2020, with
the time and the cause of the crash being recorded. However, the highway management
company only provided data for the two years of 2017 and 2018, with recording of the
amount of road damage and compensation. The analysis of the crash data entailed two
aspects of completeness and accuracy, as follows:

(1). Completeness of crashes: In the comparison of the crash records of 2017 and 2018
provided by the traffic police and highway management companies, no missing incidents
were found. In addition, there were many crashes in which vehicles slightly scratched the
road guardrails.

(2). Accuracy of crashes: The time of the crash was accurate to the minute. The location
information in some crash records in 2013 and 2014 was only accurate to the kilometer level.
In the crash records after 2015, the location information was accurate to the 10 m level.

In essence, the crash data used in this study had good completeness and accuracy,
thereby laying a good foundation for risk analysis and risk prediction.

2.1.2. Feature Variables

Relevant studies have demonstrated that road alignment, pavement state, tunnels, and
expressway facilities are key factors affecting the level of road safety [26,27]. Lee et al. [28]
found that factors such as road horizontal alignment, vertical alignment, road surface
type, and weather have a significant impact on crash severity. Schloegl et al. [29] used
random forests and boosted trees to predict the occurrence of crashes and concluded that
the application of feature variables, including road alignment, pavement conditions, traffic
volume, and weather variables, can effectively predict the occurrence of traffic crashes.

Altogether, 17 road features and one weather feature were selected as independent
variables, with the selected variables being used in the literature and available in our
datasets (Table 2).
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Table 2. Overview of the feature variables used in this study.

Factor Code Variable Description

Horizontal
alignment

HPNE Number of horizontal change points The number of change points of
horizontal alignment

CULR Curve length ratio Ratio of curve length per kilometer (value
between 0 and 1)

STLR Straight length ratio Ratio of straight length per kilometer (value
between 0 and 1)

RIMX Maximum curve radius index Maximum value of the inverse of the radius.
RIMX takes 0 in the straight sections

RICU Cumulative radius index Cumulative value of the inverse of the radius

Vertical
alignment

VPNE Number of vertical change points The number of change points of
vertical alignment

GAE Average grade Average grade per kilometer
GMX Maximum grade Maximum grade per kilometer

GDF Grade difference The difference in the maximum grade
per kilometer

DWLR Downhill length ratio The proportion of downhill in the section

Pavement

PCI Pavement surface condition index The value is between 0 and 100; the lower the
value, the more serious the road damage.

RQI Riding quality index
The value is between 0 and 100; the lower the
value, the lower the smoothness of the
road surface.

RDI Rutting depth index The value is between 0 and 100; the lower the
value, the deeper the road rut.

SRI Skidding resistance index
The value is between 0 and 100; the lower the
value, the lower the anti-skid performance of
the pavement.

Tunnels and
expressway

facilities

TNN Tunnel 0—No tunnel in the section; 1—There are
tunnels in the section.

ITC Interchange 0—There is no interchange in the section;
1—There are interchanges in the section.

SVA Service area 0—There is no service area in the section;
1—There are service areas in the section.

Weather WET Weather 1—Sunny; 2—Cloudy; 3—Overcast;
4—Rainy.

Among the variables, the maximum curve radius index (RIMX) and RICU (cumulative
radius index) were first proposed in this study, and the calculation formulas are as follows:

RIMX = MAX(RIn) (1)

RICU = ∑ RIn (2)

RI =
{ R∗

R
1
(R < R∗)
(R ≥ R∗)

(3)

where RI is an indicator of the radius of the horizontal alignment. The value ranges from 1
to infinity, and the larger the value, the smaller the radius. R is the radius of the horizontal
alignment. R∗ is the minimum radius without superelevation. According to Chinese
standards, when the design speed is 80 km/h, R∗ is 2500 m.

2.1.3. Road Risk Level

In order to quantify the traffic risk of different weather and road sections, this study
proposed a new traffic crash statistical index, the temporal-spatial density ratio (Pts), as
the target variable. The basic premise of Pts is to characterize the relative safety level
of the road section. Considering the spatial influence of the section length on the crash
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frequency, the number of crashes per kilometer was calculated. Considering the temporal
influence of weather on the crash frequency, the number of crashes per day under each
weather condition was calculated. Finally, the relative safety level of the road section was
characterized by the temporal-spatial density ratio, as defined in Equation (4):

Pts =
Nxe/Le/Dx/Vx

N/L/D/V
(4)

where Pts is the temporal-spatial density ratio, Nxe is the number of crashes with x weather
in the spatial unit, Le is the length of the spatial unit, Dx is the number of days with x
weather, N is the total number of crashes, L is the total length of the road network, and D
is the total number of days.

When Pts = 1, it means that the crash rate of this road section in given weather is at
the average level of the road network. When Pts = 3, it means that the crash rate of this
road section in given weather is 3 times the average level. Herein, the road risk can be
divided into three levels: when Pts < 1, the section’ risk level is L_1; when 1 ≤ Pts < 3, the
section risk level is L_2; and when Pts ≥ 3, the section risk level is L_3. Pts of 1680 units
was enumerated, as shown in Figure 2.
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2.2. Data Balancing

When there is a large difference in the number of samples among the classes, the
problem of class imbalance occurs. A dataset with such a problem is usually called an
imbalanced dataset. The imbalance ratio (IR) value is commonly used to measure the
degree of imbalance in a dataset. The IR value is the ratio of the number of samples in the
majority class to the number of samples in the minority class. In this study, the ratio of
road section data for the three risk levels is about 12:2:1, and the IR value is 12, which is an
extremely imbalanced dataset.

When using the classifiers, imbalanced data can cause degradation of the performance
of the classifier [30]. A popular solution is to balance the number of samples of each
category by sampling the original data when the sample size cannot be expanded. The data
balancing process can be carried out using three methods: under-sampling, oversampling,
and mixed sampling. Under-sampling is used to reduce the majority class samples to
achieve equilibrium. Oversampling is used to increase the minority class samples to achieve
equilibrium. Mixed sampling combines both methods and can handle both majority and
minority class samples. In this study, 11 resampling algorithms were selected from 3 data
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balancing methods: under-sampling (4), oversampling (5), and mixed sampling (2), as
described in Table 3.

Table 3. Overview of the 11 resampling algorithms used in this study.

Method Algorithm Description

Under-sampling

•Prototype generation (PG)

Generate new samples based on original samples to achieve
sample balance. Use K-means to cluster majority class
samples and then use cluster centroids as newly generated
replacement samples [31].

•Random under-sampling (RUS) Some samples are randomly removed from the majority
class, so that the samples of each class are balanced.

•Edited nearest neighbor (ENN) Apply the nearest-neighbors algorithm to edit the dataset to
remove samples with an insufficient neighborhood [32].

•All-KNN (ALLKNN) Apply ENN several times and vary the number of nearest
neighbors [32].

Oversampling

•Naive random over-sampling (ROS)

Using the method of extraction with replacement, random
sampling from minority class samples to replace the existing
sample set; can increase the weight of minority
class samples.

•Synthetic minority oversampling
technique (SMOTE)

For each minority class sample, the nearest k minority class
samples are identified, a sample point is randomly selected
each time, the corresponding adjacent sample point is
randomly selected, and a new sample point is obtained by
interpolating the sample point and adjacent sample point,
thereby increasing the minority class samples to balance the
data [33].

•Borderline-SMOTE

This is an improved algorithm of SMOTE. Divide the
minority class sample points into “noise points”,
“dangerous points”, and “safe points”, and only use the
dangerous points when calculating the nearest k minority
class samples [34].

•SMOTENC

This is an improved algorithm of SMOTE. Categorical
variables are not properly distanced and interpolated.
SMOTENC uses the value difference metric (VDM)
algorithm to calculate the distance of categorical variables,
which enables the processing of categorical variables [33].

•ADASYN

Similar to SMOTE, it is also based on k adjacent and
interpolation algorithms, the difference being that ADASYN
considers other types of samples when calculating k
adjacent samples [35].

Mixed sampling
•SMOTEENN

The SMOTE method is used to generate new minority class
samples. There may be some noisy samples in the new
samples. Apply the ENN method to remove noisy samples
and obtain cleaner data [36].

•SMOT-Tomek Links Similar to SMOTEENN, Tomek Links are applied to remove
noisy samples to obtain cleaner data [37].

2.3. Classifier Selection

The classification algorithm is a type of supervised learning. The training of a model
with known classes of data can classify unknown data. Classification algorithms are widely
used in traffic crash data mining. K-nearest neighbors (KNN), support vector machine
(SVM), Bayesian, and Ensemble algorithms are the four most widely used methods [38,39].

2.3.1. KNN Classifier

The KNN classifier performs classification according to the calculated distance, which
is the distance from an unlabeled object to all labeled objects [40]. Its advantage is simple,
and the application has good adaptability in most scenarios. Since the algorithm relies on
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the distance for classification, it is necessary to normalize feature variables with large differ-
ences in their physical units or scales [41]. However, normalization cannot completely solve
the shortcomings of the KNN algorithm’s complete dependence on distance, especially the
lack of accuracy in the voting decisions.

According to the number of neighbors, KNN can be divided into fine KNN, medium
KNN, and coarse KNN [42]. The number of neighbors in fine KNN is 1, which describes a
slight gap between sample classes. Since the value gap of CULR, GAE, and other feature
variables in the data of this study is very small, fine KNN is used for classification. Yigit [43]
introduced weight on the basis of distance and proposed weighted KNN, an improved
KNN algorithm. Kuang et al. [44] applied the weighted KNN algorithm to improve the
accuracy of duration prediction in traffic crashes. Finally, in this study, fine KNN and
weighted KNN were selected to represent the KNN method for model training.

2.3.2. SVM Classifier

SVM achieves sample classification by constructing hyperplanes in multi-dimensional
space. The distance from the sample point to the hyperplane is called the interval. The
interval is the distance from the sample point to the hyperplane. The goal of SVM is to find
an optimal hyperplane with the largest interval from each sample [45]. SVM was originally
designed to solve the two-class problem, but the present study belongs to the three-class
problem. To make the SVM algorithm suitable for this study, the one-versus-rest mode was
adopted to train the classifier in two steps: (1) Divide the dataset into two parts: L_1 level
and non-L_1 to train the first SVM classifier; (2) using L_2 and L_3 data, train a second
SVM classifier.

To train the model with the SVM classifier, a kernel function needs to be used to
transform the space for nonlinear data. Commonly used kernel functions are the radial
basis function, Gaussian (RBF) kernel, and cubic (polynomial degree 3) kernel, etc. [46].
Finally, in this study, cubic SVM and fine Gaussian SVM were selected to represent the
SVM method for model training.

2.3.3. Ensemble Classifier

The ensemble classifier classifies samples by combining multiple models. The basic
idea is to learn a set of classifiers and decide the classification result based on their votes.
This method has a better predictive performance than the use of a single model. Com-
pared with KNN and SVM, its advantage is that it does not need to normalize the data.
There are two commonly used ensemble classifiers: bagging (bootstrap aggregation) and
random forest. Bagging classifiers are used to reduce the variance of decision trees [47].
Random forest is an extension to bagging. Each classifier in the ensemble is a decision tree
classifier and uses randomly chosen attributes at each node to determine the split. When
classifying, each tree votes and returns the most popular class. Malik et al. [48] compared
the performance of six classifiers in predicting the severity of road crashes. The study
found that random forests, decision trees, and bagging are significantly better than other
algorithms in all performance measures. In addition, XGBoost is an emerging algorithm
that combines the loss function and the regularization term to build an overall loss function.
Shi et al. [49,50] established a driving risk assessment method based on XGBoost, and the
risk prediction accuracy rate can reach 89%. On this basis, a risk prediction method for
autonomous vehicle decision-making was further established. The prediction accuracy
reached 91.7%. Parsa et al. [51] used XGBoost to predict traffic crashes and reported that
XGBoost has a more robust effect. Finally, in this study, bagging and random forest were
selected to represent the ensemble classifier for model training.

2.3.4. Bayesian Classifier

The Bayesian classifier is a classification method based on Bayes’ theorem. The
algorithm decides the classification result by minimizing the probability of misclassification.
The naive Bayesian classifier is the simplest and most common classification method in the
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Bayes classifier [52]. The classification result can be described by an explicit network, and
each feature variable is a network node. The naive Bayesian classifier requires input feature
variables to be independent of each other [53]. Some feature variables in the horizontal
alignment and vertical alignment in this study are not independent of each other. Therefore,
the naive Bayes classifier is not suitable for this study.

In order to relax the conditional independence assumption that governs standard
naive Bayes learning algorithms, scholars have proposed various solutions [54]. Chen
et al. [55] used a Bayesian network to study the causes of vehicle crashes, but this method
requires the construction of explicit topological relationships between random variables.
Another solution is the AODE algorithm (averaged one-dependence estimators), which
does not require explicit topological relationships and improves the classification accuracy
at the cost of a modest increase in computation [56]. Finally, in this study, the AODE
algorithm was selected to represent the Bayesian classifier training model.

2.4. Performance Evaluation Measures

The confusion matrix is an important method used to evaluate the classification
effect of a model. The commonly used two-class confusion matrix divides classification
results into four categories: true positives (TPs), true negatives (TNs), false positives
(FPs), and false negatives (FNs). According to the four results, five measures of accuracy,
sensitivity, specificity, precision, and F1 were proposed. This study is a three-classification
problem, and the confusion matrix is shown in Figure 3. The equations of commonly used
performance measures are as follows:

Accuracy : Acc =
∑
i=j

Ni,j

∑ ∑ Ni,j
(5)

Precision : PPVn =
Nn,n

N1,n + N2,n + N3,n
(n = 1, 2, 3) (6)

Sensitivity : TPRn =
Nn,n

Nn,1 + Nn,2 + Nn,3
(n = 1, 2, 3) (7)

Specificity : TNRn =

∑
i 6=n

∑
j 6=n

Ni,j

∑ ∑ Ni,j −∑ Nn,j
(n = 1, 2, 3) (8)

F1(n) =
2× PPVn × TPRn

PPVn + TPRn
(n = 1, 2, 3) (9)

where Ni,j is the number of road sections, i is the observed risk level of the section, and j is
the predicted risk potential level of the section.
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When i = j, Ni,j is located on the diagonal of the confusion matrix, which means that
the observed risk level of the road section is consistent with the predicted risk level. When
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i < j, Ni,j is located in the upper right triangle of the matrix, which means that the observed
risk level of the road section is lower than the predicted risk level. When i > j, Ni,j is located
in the lower left triangle of the matrix, indicating that the observed risk level of the road
section is greater than the predicted risk level.

Road crash risk is affected by many factors, which can be divided into 59 risk factors
such as road alignment, pavement, environment, presence of work zones, cross-section,
and traffic control [57]. This study focused on the impact of inherent properties on road
risk. The feature variables considered, except for the road surface state, are all inherent
properties of the road. The prediction results characterize the traffic risk potential caused
by the inherent properties of the road. The positive impact of safety control measures
and other factors on traffic risk was not considered. Meanwhile, traffic crashes have a
certain randomness, including the crash location and time. Therefore, there is a significant
difference between the number of crashes on high-risk road sections and low-risk road
sections under a larger observation time and sample size. When the observed risk level
of the section is lower than the predicted risk level, the prediction result is not necessarily
inaccurate. For example, some road sections with L_3 traffic risk potential are subject to
traffic control measures and their observed risk level is L_2 or L_1. When the observed
risk level of the section is greater than the predicted risk level, the prediction result is less
affected by the inherent properties of the road, and the risk source may be attributed in part
to other factors. Considering the characteristics of this study, a new performance measure,
Score, was proposed to evaluate the predicted results, as defined in Equation (10):

Score : S =
Acc + TPR1 + TPR2

3
(10)

3. Results and Discussion

In this section, we focus on the following points for the purpose of finding the best
method for predicting the traffic risk potential of the road:

• Analysis of the correlation of 18 kinds of feature variables, retaining the necessary
feature variables to construct a dataset.

• Comparison of the improvement effects of 11 different resampling algorithms on
model training and identification of the best resampling algorithm.

• Comparison of the impact of seven classification algorithms on model performance
and identification of the best classification algorithm.

• Use of the best algorithms and classifiers to analyze the contribution of various fea-
ture variables in model training and identification of the key risk factors that affect
road risk.

3.1. Feature Analysis and Dimensionality Reduction

The focus of feature selection is to select a subset of variables from the input that
can efficiently describe the input data while reducing the effects from noise or irrelevant
variables and still provide good prediction results [58]. The Pearson correlation coefficient
is one of the commonly used indicators in feature selection [59]. The removal of redundant
data by correlation analysis can make each input variable relatively independent.

There were 18 features variables in this study, among which tunnel (TNN), interchange
(ITC), service area (SVA), and weather (WET) were categorical variables and had no direct
relationship with the other studied variables. The remaining 14 variables were continuous
variables. Using the Pearson correlation coefficient as an indicator, correlation analysis of
the continuous variables was carried out, and the analysis results are shown in Figure 4.

It can be seen that the correlation coefficient between the straight length ratio (STLR)
and curve length ratio (CULR) in the horizontal alignment variable is −0.75. Considering
that a gentle curve has a greater impact on the driver than a straight section, STLR was ex-
cluded from the feature variables. In addition, the correlation coefficients of the cumulative
radius index (RICU) with the number of horizontal change points (HPNE) and maximum
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curve radius index (RIMX) are 0.84 and 0.82, respectively. So, HPNE and RIMX were
excluded from the feature variables. The correlation coefficient between the average grade
(GAE) and maximum grade (GMX), GAE and downhill length ratio (DWLR), and GMX and
DWLR in the vertical line shape variable is 0.97, −0.92, and −0.9, respectively. GAE can
represent GMX and DWLR to a great extent, so GMX and DWLR were excluded. Finally,
13 feature variables were retained, including 4 categorical variables and 9 continuous
variables.
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3.2. Imbalanced Versus Balanced Datasets

The original dataset included 1680 road sections, and 80% of the samples were selected
as training data (1260 road sections in total). The sample size distribution of the training
data was: 1093 L_1 risk sections, 168 L_2 risk sections, and 83 L_3 risk sections. To address
the imbalanced dataset problem, under-sampling, oversampling, and mixed balanced
datasets were developed using 12 different resampling techniques. The normalization
algorithm was used in the establishment of the dataset. Table 4 shows the totals in all used
datasets and their distribution among different risk classes. It can be seen that except for
the ALLKNN and ENN algorithms, the other algorithms basically achieved the goal of data
re-collection. When the ENN algorithm was used to process unbalanced data, the sample
size of L_2 risk road sections in the processed dataset was abnormally reduced. However,
the algorithm combining SMOTE and ENN (i.e., SMOTEENN) can effectively improve the
effect of data re-collection.
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Table 4. Number of sections with different risk levels in the different datasets.

Dataset Balancing
Algorithm Total L_1 L_2 L_3

Original dataset / 1344 1093 168 83

Under-sampling

•PG 249 83 83 83
RUS 249 83 83 83
ENN 1124 1023 18 83

•ALLKNN 1065 948 34 83

Over-sampling

ROS 3279 1093 1093 1093
SMOTE 3279 1093 1093 1093

ADASYN 3278 1093 1099 1086
Borderline-SMOTE 3279 1093 1093 1093

SMOTENC 3279 1093 1093 1093

Mixed sampling SMOTEENN 2394 598 798 998
SMOT-Tomek Links 3219 1068 1066 1085

3.3. Classifier Performance

Based on the 12 datasets in Table 4, we trained the different models using the
7 classifiers described in Section 2.3. We randomly selected 80% of the original dataset
as training data and the remaining 20% as the test set. The random assignment process
was performed 10 times, with a total of 10 sets of “training + testing” data. Each training
data was balanced with 11 resampling techniques. Based on the processed dataset and the
original dataset, 7 kinds of classifiers were used for model training, and a total of 84 groups
of models (10 in each group) were obtained. In order to verify the validity of the model
of the method, we applied the trained model to predict the test data and compare the
observed and predicted results. The performance of each group of models was evaluated.
The mean and standard deviation of each of the six performance indicators were calculated,
as shown in Appendix A (Table A1).

Then, we calculated the scores of all models using Equation (10). All results were
ranked according to Score (the average of Score was used first, and when the averages
were equal, it was sorted according to the standard deviation), as shown in Appendix B
(Table A2). Table 5 lists the top 10 results.

Table 5. Top 10 models ranked according to Score; when the average value of Score was similar, S.D.
was used.

Rank
Resampling
Algorithm Classifier

Score

Mean S.D.

1 SMOTEENN Random forest 0.51 0.04
2 RUS Random forest 0.47 0.04
3 RUS XGBoost 0.46 0.04
4 ROS Random forest 0.46 0.04
5 SMOTENC Random forest 0.45 0..03
6 ROS XGBoost 0.45 0.04
7 SMOTE Random forest 0.44 0.03
9 SMOT-Tomek Links Random forest 0.44 0.03
8 ADASYN Random Forest 0.44 0.04
10 SMOTEENN XGBoost 0.44 0.04

With respect to the results obtained by the testing set, the following findings were
extracted:

• Evaluating the performance of a model based solely on the accuracy, precision, sensi-
tivity, and specificity did not result in a suitable model. For example, the accuracy of
the model trained by the SVM algorithm in the original dataset is 81%, the precision
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of L_1 is 81%, the sensitivity is 100%, and the specificity is 0. However, when the
precision and sensitivity of L_2 and L_3 are both 0, the specificity is 100%. Obviously,
it cannot meet the needs of road section risk classification.

• The F1 indicator can integrate the accuracy, precision, sensitivity, and specificity, and
collectively evaluate the classification effect of a single category. According to F1(1), it is
found that the original dataset and the under-sampling dataset are biased towards the
majority class (L_1). According to F1(2) and F1(3), it is found that the muse ensemble
classifier (XGBoost or random forest) can effectively improve the classification effect
of minority categories (L_2 and L_3).

• Not all data balancing algorithms improve the classification performance. Mean-
while, whether the data is balanced hardly affects the ranking order of the classifier
performance.

• The ensemble classifier is used in the top 10 method combinations in the Score in-
dex. Among them, the model trained by SMOTEENN and random forest has the
highest score.

Using Score to evaluate the model performance, the bias of the results is unclear.
Although Score can theoretically take into account both the accuracy and sensitivity, there
may be two types of classification effects that are excellent while the other is poor. In order
to verify the Score evaluation results, the probability distributions of the prediction results
of the models trained by random forest and XGBoost were compared, as shown in Figure 5.
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The expected result is that the predicted probability of the positive class (the predicted
result is consistent with the observed result) is higher than that of the other two negative
classes. Similar to the distribution of the observed L_3 of random forest in Figure 6,
the predicted probability of L_3 is almost always very high. It shows that there is a
certain regularity in the traffic crash risk level at L_3, and the prediction model can be
effectively classified. It can be seen that the classification effect of the random forest model
is significantly better than that of the XGBoost model. These results are consistent with the
trend of the Score values, indicating that the use of Score to evaluate the classification effect
is reliable, and can balance the sensitivity of the three risk levels and the overall accuracy.
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According to the results of Score in Appendix A, the tree-based ensemble classifiers
outperform the KNN and SVM methods in dealing with the three-class problem in this
study. The reason may be that KNN and SVM are “distance”-based classification algorithms,
which are not applicable to a traffic crash dataset, even if the data are normalized. Both the
random forest and XGBoost showed better results in this study. This is consistent with the
findings of Schloegl et al. [29] and Parsa et al. [51]. This shows that the ensemble method
has a better application prospect in traffic crash-related research.

At the same time, it is found that various resampling methods can improve the
classification effect of the random forest and XGBoost. It shows that the choice of classifier
is more important than the data balance method. In this study, the model trained by the
random forest method based on the SMOTEENN-balanced dataset is the best, which is
consistent with the results of Mujalli [19]. This again shows that the mixed resampling
method can deal with the imbalance problem in traffic crashes more effectively.

Schloegl [60] studied the impact of environmental factors on the occurrence of traffic
crashes and found that XGBoost has a higher classification effect than random forest. This
is inconsistent with the analysis results of this study. The reason may lie in the small sample
size and the existence of potentially high-risk road sections, resulting in a large proportion
of noise in the data. Compared with random forest, XGBoost is prone to overfitting due to
noisy samples. However, the effect of XGBoost may improve with an increased number of
feature variables and samples.

Finally, SMOTEENN and random forest were selected to build a traffic crash risk
prediction model of expressway.
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3.4. Feature Importance and Interpretation

Random forest is essentially a tree model, and its classification method is nonlinear.
Feature importance measures alone do not represent an impact on classification. However,
the ranking of feature importance represents its relative influence. Three feature importance
indicators were used in this study: Gini importance, permutation importance, and SHAP
importance. The Gini importance represents the probability of each feature in the tree
node, and the sum of its values is 1. The larger the value, the greater the importance of
the feature in the node. However, if there is a correlation between multiple features, the
feature that participates in the classification first will have a higher importance, and the
feature value that participates in the classification later will be reduced. So, this easily
results in an unstable order of influence. Permutation importance is used to analyze the
feature importance by disrupting the data of a feature after model training is completed
and observing whether the model accuracy is reduced. When the value is less than 0, it
means that the observation accuracy is improved after the data is scrambled. However, in
this study, the accuracy cannot evaluate the effect of the model, so it cannot truly reflect
the feature importance. SHAP (Shapley additive explanation) is proposed based on game
theory. The SHAP baseline value of a feature is calculated to indicate its importance, and its
value is consistent with the influence weight value of the feature, which can better describe
the classification contribution of the feature [61]. Feature importance analysis was carried
out based on the trained model, as shown in Figure 6.

In Figure 6, the permutation importance is relatively unstable. For example, the
permutation importance of SRI is inconsistent with the other two importance indicators.
The ranking results of Gini and the SHAP importance are basically the same. Two horizontal
alignment feature variables, RICU and STLR, have high importance. Among the three
vertical alignment feature variables of GAE, GDF, and VPNE, GAE and GDF are more
important while VPNE is less important. The four road condition indicators of PCI, RDI,
SRI, and RQI have high importance. The three structural feature indicators of TNN, ITC,
and SVA can be ignored except for TNN. The results show that the traffic risk potential of
this study section is highly correlated with horizontal alignment, vertical alignment, road
surface conditions, and weather, and is less affected by expressway facilities.

This study focuses on the prediction of traffic risk based on inherent road properties
rather than crash rate prediction. Inherent road properties are only part of the contributions
to crash risk. It should be emphasized that the purpose of this study was to optimize road
design and road maintenance programs. Therefore, the model in this study does not need a
particularly high accuracy, but the influence of feature variables on the prediction results
must be consistent with the theory of road risk.

The feature importance analysis results show which feature variables are more impor-
tant. However, its influence law is not clear, and the influence law of some factors may be
inconsistent with the theory.

The influence of inherent road attributes on the traffic risk potential was analyzed, and
the reliability of the proposed traffic crash risk prediction method was verified in this study.
The partial dependence was introduced to analyze the influence of feature variables on the
prediction results. The larger its value, the greater the influence of the feature variables on
the results. It is worth noting that RICU, GAE, and PCI are the three most important feature
variables, representing the horizontal alignment, vertical alignment, and pavement status,
respectively. The partial dependence plot under the interaction of RICU, GAE, and PCI is
shown in Figure 7.
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According to Figure 7, we can find the following points:

• When RICU is greater than 30 and GAE is less than 0, the partial dependence value
of the road section with the traffic risk level L_3 is greater than 0.32. At the same
time, when RICU is less than 5 and GAE is greater than 0.02, the partial dependence
value of the road section with the traffic risk level L_1 is greater than 0.65. This shows
that the model established in this paper can effectively identify two types of typical
high-risk road sections: downhill small radius curves or downhill continuous curved
road sections.

• When RICU is greater than 20 and PCI is less than 98, the partial dependence value
of the road section with the traffic risk level L_3 is greater than 0.32. However, when
RICU is less than 5 and PCI is less than 98, the partial dependence value of the road
section with the traffic risk level L_1 is greater than 0.64. This shows that in the model
established in this paper, the pavement condition has a greater impact on the driving
safety of small-radius road sections or continuous curved road sections while it has a
lesser impact on the driving safety of straight sections.

• When GAE is less than 0 and PCI is less than 95, the partial dependence value of the
road section with the traffic risk level L_3 is greater than 0.30. However, when GAE is
greater than 0.02 and PCI is greater than 0.4, the partial dependence value of the road
section with the traffic risk level L_1 is greater than 0.5. This is basically consistent with
the above two rules. At the same time, this also shows that in the model established
in this paper, the downhill section has higher requirements regarding the pavement
performance, and the higher the uphill slope, the safer the road section.

The results show that the larger the RICU (the smaller the radius of the curve or the
higher the number of curves), the higher the risk level of the road section. The smaller the
GAE (downhill and the greater the grade), the higher the risk level of the road section. The
smaller the PCI (more severe road damage), the higher the risk level of the road section.
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The classification principle of the model is consistent with the traffic risk mechanism and
the results of Elvik [62]. This shows that the traffic crash risk prediction model is reliable.

Compared to the study by Schlögl M [29], the variables in this study are very simple
in terms of weather. However, the results also show that weather is an important variable
after the road alignment and pavement condition. However, the impact of tunnels and
expressway facilities on traffic crashes seems to be very low, which may be due to three
aspects. First, the data sample size was small and there are only nine interchanges and two
service areas in this study. Second, this study excluded the crash data of ramps, and some
interchange entrance and exit crashes may be recorded as ramp crashes. Third, the service
area itself has a low impact on traffic crashes.

4. Conclusions

For highway management to develop precise and effective solutions, the traffic risk
potential must be predicted accurately. The inherent properties of the road are the main
factors affecting the traffic risk potential, which require many variables to be described.
Machine learning techniques offer an efficient method for analyzing many variables at
once, which is difficult to achieve with traditional data analysis techniques. Therefore, by
evaluating the performance of several resampling approaches and classifiers, this research
developed a new model for predicting the risk potential of highway traffic. The main
conclusions are as follows:

1. In predicting the risk potential of expressway, horizontal alignment, vertical align-
ment, pavement, and weather play a significant role. This study provided 18 feature
variables from 5 different perspectives, and 13 feature variables were retained after
dimensionality reduction. Incorporating Gini importance, permutation importance,
and SHAP importance, three feature importance indicators, the contribution of the
feature variables to the model was ranked. The results showed that 11 of these feature
variables have a high contribution to the prediction of the risk potential.

2. The ensemble classifier demonstrated a good performance in processing traffic acci-
dent data, and the addition of a resampling algorithm further enhanced the classifier’s
performance. By comparing the prediction results of XGBoost and the random forest
algorithm, it was demonstrated that the model performance index Score provided
in this research can effectively assess the performance of the three-level traffic risk
prediction model.

3. The combination of SMOTEENN and the random forest algorithm developed the best
model for predicting the highway traffic risk potential. The three most representative
feature variables, RICU, GAE, and PCI, were analyzed using the partial dependence
plot, and the results showed that the classification principle of the established traffic
crash risk prediction model was consistent with the objective risk effect law.

This research demonstrated the effectiveness of employing machine learning algo-
rithms to assess traffic crash risk. In addition, it provided recommendations for data
balancing and classification algorithm selection for machine learning applications based
on the inherent features of roads. This research proposed a method for traffic crash risk
prediction, which may be utilized to enhance road design and maintenance planning.

In the future, the sample size and feature variables of the dataset will be further
expanded for a more comprehensive analysis of the impact on road crash risk. At the same
time, an interpretable classifier will be applied in depth to study the mechanism of inherent
road features and traffic risk.
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Appendix A

Table A1. Comparison between the different models using performance measure.

Dataset
Fine KNN Weighted

KNN Cubic SVM Fine Gaussian
SVM XGBoost Random Forest AODE

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D

ACC
Original 0.70 0.02 0.76 0.01 0.81 0.00 0.81 0.00 0.78 0.01 0.77 0.01 0.50 0.04
PG 0.41 0.02 0.34 0.01 0.27 0.03 0.33 0.00 0.15 0.02 0.19 0.01 0.35 0.05
RUS 0.38 0.02 0.34 0.05 0.25 0.11 0.26 0.09 0.43 0.02 0.44 0.02 0.35 0.04
ENN 0.76 0.01 0.80 0.00 0.81 0.00 0.81 0.00 0.80 0.01 0.80 0.01 0.44 0.07
ALLKNN 0.72 0.01 0.80 0.00 0.81 0.00 0.81 0.00 0.78 0.00 0.79 0.01 0.42 0.05
ROS 0.70 0.02 0.54 0.06 0.31 0.07 0.37 0.07 0.75 0.01 0.74 0.02 0.35 0.05
SMOTE 0.63 0.03 0.52 0.07 0.32 0.08 0.31 0.08 0.75 0.01 0.75 0.02 0.35 0.05
ADASYN 0.62 0.04 0.53 0.06 0.32 0.08 0.30 0.08 0.76 0.01 0.76 0.01 0.35 0.04
Borderline-
SMOTE 0.64 0.03 0.55 0.05 0.38 0.06 0.37 0.06 0.76 0.01 0.75 0.02 0.37 0.05

SMOTENC 0.63 0.03 0.53 0.06 0.32 0.07 0.30 0.08 0.75 0.02 0.75 0.02 0.35 0.04
SMOTEENN 0.38 0.03 0.30 0.04 0.19 0.04 0.16 0.04 0.54 0.04 0.57 0.03 0.22 0.04
SMOT-Tomek
Links 0.62 0.04 0.51 0.06 0.32 0.07 0.30 0.07 0.75 0.01 0.75 0.02 0.35 0.04

PPV1
Original 0.82 0.01 0.83 0.01 0.81 0.00 0.81 0.00 0.85 0.00 0.85 0.00 0.83 0.01
PG 0.81 0.01 0.84 0.02 0.81 0.03 0.86 0.01 0.86 0.06 0.90 0.01 0.85 0.03
RUS 0.82 0.02 0.80 0.02 0.65 0.07 0.64 0.15 0.89 0.01 0.88 0.01 0.85 0.01
ENN 0.82 0.00 0.82 0.00 0.81 0.00 0.81 0.00 0.84 0.00 0.84 0.00 0.83 0.01
ALLKNN 0.82 0.00 0.83 0.00 0.81 0.00 0.81 0.00 0.84 0.01 0.84 0.01 0.83 0.01
ROS 0.82 0.01 0.82 0.03 0.75 0.05 0.76 0.06 0.86 0.01 0.86 0.01 0.85 0.01
SMOTE 0.82 0.01 0.81 0.03 0.75 0.04 0.74 0.05 0.85 0.00 0.85 0.01 0.84 0.01
ADASYN 0.83 0.01 0.82 0.02 0.74 0.05 0.72 0.06 0.85 0.00 0.85 0.01 0.85 0.01
Borderline-
SMOTE 0.82 0.01 0.82 0.02 0.80 0.02 0.79 0.01 0.85 0.01 0.85 0.00 0.83 0.01

SMOTENC 0.83 0.01 0.81 0.02 0.74 0.05 0.72 0.06 0.85 0.01 0.86 0.01 0.85 0.01
SMOTEENN 0.81 0.01 0.77 0.03 0.69 0.08 0.78 0.08 0.85 0.01 0.87 0.01 0.86 0.03
SMOT-Tomek
Links 0.82 0.01 0.81 0.02 0.74 0.05 0.73 0.06 0.85 0.01 0.85 0.01 0.85 0.01

PPV2
Original 0.14 0.03 0.11 0.04 / / / / 0.26 0.09 0.26 0.05 0.30 0.17
PG 0.10 0.01 0.10 0.02 / / 0.45 0.20 0.12 0.01 0.11 0.01 0.22 0.14
RUS 0.09 0.02 0.08 0.02 / / 0.25 0.17 0.12 0.02 0.12 0.01 0.07 0.04
ENN / / / / / / / / 0.05 0.04 0.07 0.06 / /
ALLKNN 0.19 0.05 / / / / / / 0.13 0.06 0.24 0.08 / /
ROS 0.14 0.03 0.15 0.04 0.04 0.01 0.06 0.03 0.25 0.07 0.24 0.05 0.32 0.18
SMOTE 0.12 0.02 0.12 0.03 0.04 0.02 0.04 0.02 0.23 0.08 0.27 0.07 0.17 0.12
ADASYN 0.13 0.03 0.13 0.03 0.04 0.01 0.04 0.01 0.26 0.09 0.27 0.07 0.29 0.18
Borderline-
SMOTE 0.13 0.02 0.12 0.03 0.06 0.02 0.04 0.02 0.24 0.08 0.22 0.06 0.15 0.12

SMOTENC 0.13 0.03 0.13 0.03 0.04 0.02 0.04 0.01 0.26 0.10 0.27 0.08 0.26 0.17
SMOTEENN 0.09 0.01 0.09 0.01 0.08 0.02 0.09 0.02 0.14 0.02 0.18 0.02 0.19 0.10
SMOT-Tomek
Links 0.14 0.02 0.13 0.02 0.04 0.02 0.04 0.01 0.22 0.05 0.22 0.07 0.15 0.09
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Table A1. Cont.

Dataset
Fine KNN Weighted

KNN Cubic SVM Fine Gaussian
SVM XGBoost Random Forest AODE

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D

PPV3
Original 0.15 0.07 0.16 0.09 / / / / 0.51 0.04 0.48 0.09 0.09 0.01
PG 0.09 0.02 0.08 0.01 0.08 0.01 0.08 0.01 0.09 0.01 0.11 0.01 0.08 0.00
RUS 0.07 0.02 0.07 0.01 0.07 0.01 0.07 0.01 0.16 0.01 0.17 0.01 0.08 0.00
ENN 0.12 0.04 0.14 0.08 / / / / 0.36 0.02 0.34 0.02 0.09 0.01
ALLKNN 0.09 0.03 0.15 0.08 / / / / 0.32 0.03 0.32 0.02 0.09 0.00
ROS 0.15 0.07 0.15 0.05 0.11 0.01 0.11 0.01 0.41 0.05 0.46 0.09 0.08 0.00
SMOTE 0.14 0.06 0.15 0.06 0.12 0.01 0.11 0.01 0.44 0.05 0.47 0.06 0.08 0.00
ADASYN 0.16 0.06 0.15 0.06 0.12 0.01 0.11 0.00 0.43 0.04 0.48 0.08 0.08 0.00
Borderline-
SMOTE 0.14 0.06 0.16 0.05 0.12 0.01 0.10 0.01 0.48 0.08 0.45 0.06 0.08 0.01

SMOTENC 0.16 0.05 0.14 0.06 0.12 0.01 0.09 0.01 0.45 0.04 0.45 0.06 0.08 0.00
SMOTEENN 0.08 0.02 0.08 0.02 0.10 0.00 0.08 0.01 0.21 0.01 0.27 0.03 0.08 0.00
SMOT-Tomek
Links 0.13 0.05 0.12 0.05 0.12 0.01 0.09 0.01 0.45 0.06 0.48 0.07 0.08 0.00

TPR1
Original 0.83 0.02 0.92 0.02 1.00 0.00 1.00 0.00 0.91 0.02 0.89 0.01 0.56 0.06
PG 0.44 0.02 0.35 0.02 0.25 0.05 0.34 0.00 0.07 0.01 0.12 0.01 0.36 0.06
RUS 0.40 0.03 0.36 0.07 0.25 0.15 0.26 0.12 0.43 0.03 0.45 0.03 0.38 0.05
ENN 0.92 0.01 0.98 0.01 1.00 0.00 1.00 0.00 0.95 0.01 0.95 0.01 0.49 0.09
ALLKNN 0.86 0.02 0.97 0.01 1.00 0.00 1.00 0.00 0.93 0.01 0.93 0.01 0.46 0.06
ROS 0.83 0.02 0.61 0.07 0.32 0.09 0.40 0.09 0.86 0.02 0.85 0.03 0.37 0.06
SMOTE 0.73 0.04 0.59 0.08 0.33 0.10 0.32 0.10 0.88 0.02 0.87 0.02 0.37 0.06
ADASYN 0.72 0.04 0.59 0.07 0.33 0.10 0.31 0.10 0.88 0.02 0.88 0.02 0.37 0.05
Borderline-
SMOTE 0.74 0.04 0.62 0.06 0.41 0.08 0.40 0.08 0.88 0.02 0.87 0.02 0.40 0.06

SMOTENC 0.73 0.04 0.59 0.07 0.32 0.09 0.31 0.10 0.88 0.02 0.86 0.02 0.37 0.05
SMOTEENN 0.41 0.04 0.29 0.04 0.14 0.06 0.11 0.05 0.58 0.06 0.60 0.05 0.18 0.06
SMOT-Tomek
Links 0.72 0.04 0.57 0.07 0.32 0.09 0.31 0.09 0.87 0.02 0.86 0.02 0.37 0.05

TPR2
Original 0.13 0.02 0.06 0.03 0.00 0.00 0.00 0.00 0.12 0.02 0.17 0.02 0.13 0.08
PG 0.24 0.03 0.25 0.05 0.12 0.05 0.07 0.03 0.38 0.04 0.37 0.02 0.06 0.04
RUS 0.24 0.05 0.21 0.08 0.17 0.07 0.13 0.05 0.33 0.03 0.34 0.03 0.01 0.01
ENN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
ALLKNN 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.06 0.02 0.00 0.00
ROS 0.13 0.02 0.27 0.06 0.17 0.06 0.13 0.06 0.20 0.02 0.23 0.03 0.02 0.01
SMOTE 0.17 0.02 0.23 0.03 0.18 0.06 0.17 0.06 0.15 0.01 0.21 0.03 0.02 0.01
ADASYN 0.19 0.03 0.25 0.04 0.18 0.06 0.16 0.06 0.16 0.01 0.20 0.03 0.02 0.01
Borderline-
SMOTE 0.18 0.02 0.22 0.03 0.16 0.05 0.14 0.05 0.15 0.02 0.17 0.01 0.01 0.01

SMOTENC 0.19 0.03 0.26 0.04 0.18 0.06 0.17 0.06 0.14 0.02 0.22 0.02 0.02 0.01
SMOTEENN 0.29 0.02 0.31 0.03 0.29 0.08 0.30 0.08 0.31 0.03 0.41 0.04 0.20 0.06
SMOT-Tomek
Links 0.21 0.03 0.27 0.04 0.18 0.06 0.16 0.06 0.16 0.02 0.18 0.02 0.02 0.01

TPR3
Original 0.15 0.09 0.14 0.09 0.00 0.00 0.00 0.00 0.37 0.05 0.34 0.06 0.53 0.08
PG 0.36 0.09 0.45 0.09 0.76 0.06 0.73 0.06 0.78 0.05 0.75 0.05 0.80 0.04
RUS 0.35 0.09 0.37 0.08 0.47 0.12 0.48 0.11 0.63 0.06 0.63 0.07 0.76 0.05
ENN 0.17 0.08 0.14 0.09 0.00 0.00 0.00 0.00 0.38 0.05 0.37 0.05 0.68 0.09
ALLKNN 0.18 0.08 0.14 0.09 0.00 0.00 0.00 0.00 0.35 0.06 0.37 0.05 0.75 0.05
ROS 0.15 0.09 0.26 0.07 0.48 0.07 0.51 0.08 0.40 0.07 0.40 0.06 0.77 0.06
SMOTE 0.20 0.09 0.25 0.09 0.49 0.07 0.48 0.08 0.36 0.07 0.38 0.05 0.75 0.06
ADASYN 0.23 0.08 0.26 0.08 0.49 0.07 0.48 0.08 0.36 0.06 0.38 0.06 0.77 0.06
Borderline-
SMOTE 0.19 0.08 0.23 0.07 0.47 0.08 0.46 0.10 0.39 0.07 0.34 0.06 0.72 0.06

SMOTENC 0.22 0.07 0.24 0.08 0.51 0.08 0.47 0.10 0.36 0.05 0.38 0.06 0.76 0.05
SMOTEENN 0.27 0.08 0.34 0.09 0.57 0.09 0.54 0.11 0.47 0.04 0.53 0.06 0.75 0.06
SMOT-Tomek
Links 0.19 0.08 0.23 0.08 0.51 0.08 0.48 0.10 0.39 0.06 0.40 0.06 0.76 0.05

TNR1
Original 0.23 0.04 0.15 0.05 0.00 0.00 0.00 0.00 0.29 0.04 0.30 0.03 0.49 0.06
PG 0.54 0.05 0.70 0.04 0.79 0.02 0.75 0.03 0.96 0.01 0.94 0.01 0.73 0.05
RUS 0.62 0.05 0.64 0.03 0.72 0.11 0.76 0.06 0.76 0.02 0.73 0.04 0.70 0.04
ENN 0.12 0.03 0.09 0.03 0.00 0.00 0.00 0.00 0.21 0.02 0.21 0.03 0.56 0.09
ALLKNN 0.17 0.03 0.10 0.03 0.01 0.01 0.00 0.00 0.21 0.03 0.24 0.03 0.60 0.06
ROS 0.23 0.04 0.45 0.05 0.64 0.05 0.60 0.05 0.38 0.05 0.39 0.05 0.72 0.04
SMOTE 0.33 0.04 0.43 0.04 0.63 0.06 0.63 0.06 0.31 0.04 0.35 0.04 0.70 0.04
ADASYN 0.35 0.05 0.45 0.05 0.62 0.07 0.63 0.06 0.31 0.03 0.34 0.04 0.72 0.04
Borderline-
SMOTE 0.31 0.03 0.41 0.03 0.57 0.06 0.57 0.05 0.31 0.04 0.32 0.03 0.65 0.04

SMOTENC 0.34 0.04 0.44 0.04 0.62 0.06 0.61 0.06 0.31 0.04 0.37 0.04 0.71 0.04
SMOTEENN 0.58 0.02 0.66 0.05 0.83 0.05 0.86 0.06 0.56 0.04 0.60 0.05 0.83 0.06
SMOT-Tomek
Links 0.34 0.03 0.45 0.04 0.62 0.06 0.61 0.06 0.32 0.04 0.34 0.04 0.71 0.04
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Table A1. Cont.

Dataset
Fine KNN Weighted

KNN Cubic SVM Fine Gaussian
SVM XGBoost Random Forest AODE

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D

TNR2
Original 0.88 0.01 0.94 0.01 1.00 0.00 1.00 0.00 0.92 0.02 0.92 0.01 0.90 0.04
PG 0.68 0.01 0.67 0.02 0.83 0.07 0.91 0.07 0.59 0.03 0.54 0.03 0.97 0.02
RUS 0.68 0.03 0.64 0.07 0.63 0.12 0.67 0.12 0.64 0.03 0.64 0.01 0.94 0.04
ENN 0.99 0.00 0.99 0.00 1.00 0.00 1.00 0.00 0.99 0.01 0.99 0.01 1.00 0.00
ALLKNN 0.97 0.01 0.99 0.00 1.00 0.00 1.00 0.00 0.98 0.01 0.97 0.01 0.99 0.00
ROS 0.88 0.01 0.72 0.06 0.57 0.13 0.68 0.14 0.88 0.03 0.88 0.03 0.95 0.04
SMOTE 0.80 0.03 0.70 0.06 0.57 0.12 0.57 0.12 0.90 0.02 0.89 0.02 0.93 0.04
ADASYN 0.80 0.03 0.71 0.05 0.57 0.12 0.56 0.12 0.90 0.02 0.90 0.02 0.94 0.04
Borderline-
SMOTE 0.81 0.03 0.71 0.06 0.62 0.09 0.63 0.09 0.90 0.02 0.89 0.02 0.93 0.04

SMOTENC 0.81 0.03 0.72 0.05 0.57 0.12 0.57 0.12 0.90 0.02 0.89 0.02 0.94 0.04
SMOTEENN 0.60 0.03 0.53 0.04 0.50 0.11 0.50 0.11 0.69 0.06 0.70 0.05 0.75 0.06
SMOT-Tomek
Links 0.80 0.03 0.70 0.05 0.58 0.12 0.58 0.12 0.90 0.02 0.89 0.02 0.94 0.04

TNR3
Original 0.95 0.00 0.98 0.01 1.00 0.00 1.00 0.00 0.97 0.01 0.97 0.01 0.67 0.05
PG 0.76 0.02 0.66 0.02 0.42 0.07 0.42 0.07 0.49 0.04 0.58 0.03 0.39 0.05
RUS 0.71 0.01 0.71 0.02 0.61 0.10 0.57 0.09 0.78 0.02 0.80 0.02 0.43 0.06
ENN 0.93 0.01 0.98 0.01 1.00 0.00 1.00 0.00 0.95 0.01 0.95 0.01 0.49 0.10
ALLKNN 0.89 0.01 0.98 0.01 1.00 0.00 1.00 0.00 0.95 0.01 0.95 0.01 0.47 0.06
ROS 0.95 0.00 0.88 0.02 0.74 0.05 0.71 0.05 0.96 0.01 0.96 0.01 0.42 0.06
SMOTE 0.92 0.01 0.88 0.02 0.75 0.04 0.74 0.05 0.97 0.01 0.97 0.01 0.44 0.06
ADASYN 0.91 0.01 0.87 0.02 0.75 0.04 0.74 0.04 0.97 0.01 0.97 0.01 0.42 0.06
Borderline-
SMOTE 0.93 0.01 0.91 0.01 0.78 0.04 0.76 0.04 0.97 0.01 0.97 0.01 0.47 0.06

SMOTENC 0.92 0.01 0.88 0.02 0.75 0.04 0.73 0.04 0.97 0.01 0.97 0.01 0.43 0.06
SMOTEENN 0.80 0.01 0.75 0.00 0.63 0.06 0.60 0.07 0.89 0.01 0.90 0.01 0.43 0.06
SMOT-Tomek
Links 0.91 0.01 0.87 0.02 0.74 0.04 0.73 0.04 0.97 0.01 0.97 0.01 0.43 0.06

F1(1)
Original 0.83 0.01 0.87 0.01 0.90 0.00 0.90 0.00 0.88 0.01 0.87 0.01 0.66 0.04
PG 0.57 0.01 0.49 0.02 0.37 0.06 0.49 0.00 0.13 0.03 0.22 0.01 0.50 0.06
RUS 0.54 0.03 0.48 0.07 0.28 0.14 / / 0.58 0.02 0.59 0.02 0.51 0.05
ENN 0.87 0.00 0.89 0.00 0.90 0.00 0.90 0.00 0.89 0.00 0.89 0.00 0.59 0.07
ALLKNN 0.84 0.01 0.89 0.00 0.90 0.00 0.90 0.00 0.88 0.00 0.88 0.01 0.58 0.05
ROS 0.83 0.01 0.69 0.06 0.42 0.09 0.50 0.10 0.86 0.01 0.85 0.01 0.51 0.05
SMOTE 0.77 0.03 0.67 0.06 0.43 0.10 0.42 0.10 0.86 0.01 0.86 0.01 0.51 0.05
ADASYN 0.77 0.03 0.68 0.05 0.42 0.10 0.41 0.10 0.86 0.01 0.86 0.01 0.51 0.05
Borderline-
SMOTE 0.78 0.02 0.70 0.05 0.52 0.07 0.51 0.07 0.86 0.01 0.86 0.01 0.53 0.05

SMOTENC 0.77 0.03 0.68 0.06 0.42 0.10 0.41 0.10 0.86 0.01 0.86 0.01 0.51 0.04
SMOTEENN 0.54 0.04 0.41 0.05 0.22 0.08 0.18 0.08 0.68 0.04 0.71 0.03 0.27 0.08
SMOT-Tomek
Links 0.77 0.03 0.66 0.06 0.42 0.09 0.41 0.09 0.86 0.01 0.86 0.01 0.51 0.04

F1(2)
Original 0.13 0.02 / / / / / / 0.15 0.03 0.20 0.02 / /
PG 0.14 0.01 0.14 0.03 / / / / 0.18 0.02 0.16 0.01 / /
RUS 0.13 0.03 / / / / / / 0.17 0.02 0.18 0.01 / /
ENN / / / / / / / / / / / / / /
ALLKNN 0.06 0.01 / / / / / / / / / / / /
ROS 0.13 0.02 0.18 0.04 / / / / 0.20 0.03 0.22 0.03 / /
SMOTE 0.14 0.02 0.15 0.02 / / / / 0.17 0.02 0.21 0.02 / /
ADASYN 0.15 0.03 0.16 0.03 / / / / 0.19 0.03 0.20 0.03 / /
Borderline-
SMOTE 0.15 0.02 0.15 0.03 0.07 0.02 / / 0.17 0.03 0.18 0.02 / /

SMOTENC 0.15 0.03 0.17 0.03 / / / / 0.16 0.02 0.23 0.03 / /
SMOTEENN 0.14 0.01 0.14 0.01 0.12 0.03 0.13 0.03 0.18 0.01 0.24 0.02 / /
SMOT-Tomek
Links 0.16 0.02 0.17 0.02 / / / / 0.17 0.02 0.19 0.03 / /

F1(3)
Original / / / / / / / / 0.41 0.03 0.37 0.04 0.16 0.01
PG 0.14 0.03 0.13 0.02 0.15 0.01 0.14 0.01 0.17 0.01 0.19 0.01 0.15 0.00
RUS 0.12 0.03 0.12 0.02 0.12 0.01 0.12 0.02 0.25 0.02 0.26 0.02 0.15 0.00
ENN / / / / / / / / 0.35 0.01 0.34 0.01 0.15 0.01
ALLKNN / / / / / / / / 0.31 0.02 0.33 0.02 0.16 0.01
ROS / / 0.18 0.06 0.18 0.01 0.17 0.01 0.39 0.05 0.41 0.05 0.15 0.01
SMOTE 0.17 0.07 0.18 0.07 0.19 0.01 0.18 0.01 0.38 0.06 0.40 0.04 0.15 0.01
ADASYN 0.19 0.06 0.18 0.07 0.18 0.01 0.17 0.01 0.38 0.04 0.41 0.05 0.15 0.00
Borderline-
SMOTE / / 0.18 0.06 0.19 0.01 0.16 0.03 0.41 0.06 0.37 0.03 0.15 0.01

SMOTENC 0.18 0.06 0.17 0.07 0.19 0.01 0.15 0.03 0.38 0.03 0.40 0.05 0.15 0.00
SMOTEENN 0.12 0.03 0.13 0.03 0.16 0.01 0.13 0.02 0.29 0.01 0.35 0.04 0.15 0.00
SMOT-Tomek
Links / / 0.16 0.06 0.18 0.01 0.16 0.03 0.40 0.05 0.42 0.06 0.15 0.00
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Table A1. Cont.

Dataset
Fine KNN Weighted

KNN Cubic SVM Fine Gaussian
SVM XGBoost Random Forest AODE

Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D Mean S.D

Score
Original 0.33 0.04 0.32 0.04 0.27 0.00 0.27 0.00 0.42 0.03 0.43 0.03 0.39 0.07
PG 0.34 0.04 0.35 0.05 0.38 0.05 0.37 0.03 0.44 0.04 0.44 0.03 0.40 0.04
RUS 0.32 0.05 0.31 0.07 0.30 0.10 0.29 0.08 0.46 0.04 0.47 0.04 0.37 0.03
ENN 0.31 0.03 0.32 0.03 0.27 0.00 0.27 0.00 0.39 0.02 0.39 0.02 0.37 0.05
ALLKNN 0.31 0.03 0.32 0.03 0.27 0.00 0.27 0.00 0.38 0.02 0.40 0.03 0.39 0.03
ROS 0.33 0.04 0.36 0.06 0.32 0.07 0.34 0.07 0.45 0.04 0.46 0.04 0.38 0.04
SMOTE 0.33 0.05 0.33 0.06 0.33 0.07 0.32 0.07 0.42 0.03 0.44 0.03 0.37 0.04
ADASYN 0.35 0.05 0.35 0.06 0.33 0.07 0.31 0.07 0.43 0.03 0.44 0.04 0.38 0.04
Borderline-
SMOTE 0.33 0.04 0.33 0.05 0.34 0.06 0.32 0.07 0.43 0.04 0.42 0.03 0.37 0.04

SMOTENC 0.35 0.05 0.34 0.06 0.33 0.07 0.31 0.08 0.42 0.03 0.45 0.03 0.38 0.04
SMOTEENN 0.31 0.04 0.32 0.05 0.35 0.07 0.33 0.08 0.44 0.04 0.51 0.04 0.39 0.05
SMOT-Tomek
Links 0.34 0.05 0.34 0.06 0.33 0.07 0.31 0.08 0.43 0.03 0.44 0.03 0.38 0.04

Appendix B

Table A2. Ranking results based on Score.

Dataset Fine KNN Weighted KNN Cubic SVM Fine Gaussian SVM XGBoost Random Forest AODE Rank

Original 59 63 84 82 17 15 27 11
PG 48 44 30 35 11 12 21 1

RUS 64 76 77 78 3 2 37 10
ENN 75 69 82 81 23 24 34 13

ALLKNN 72 66 79 80 28 22 25 12
ROS 59 39 67 49 6 4 29 3

SMOTE 54 52 58 65 18 7 36 7
ADASYN 42 41 61 70 16 9 31 4
Borderline

SMOTE 51 55 50 62 14 19 38 8

SMOTENC 42 45 56 74 20 5 32 5
SMOTEENN 73 68 40 53 10 1 26 2

SMOT-
Tomek
Links

46 47 57 71 13 8 32 6

Rank 5 4 6 7 2 1 3 /
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