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Abstract: Accurate monitoring of forest carbon flux and its long-term response to meteorological
factors is important. To accomplish this task, the model parameters need to be optimized with respect
to in situ observations. In the present study, the extended Fourier amplitude sensitivity test (eFAST)
method was used to optimize the sensitive ecophysiological parameters of the Biome BioGeochemical
Cycles model. The model simulation was integrated from 2010 to 2020. The results showed that using
the eFAST method quantitatively improved the model output. For instance, the R2 increased from
0.53 to 0.72. Moreover, the root-mean-square error was reduced from 1.62 to 1.14 gC·m−2·d−1. In
addition, it was reported that the carbon flux outputs of the model were highly sensitive to various
parameters, such as the canopy average specific leaf area and canopy light extinction coefficient.
Moreover, long-term meteorological factor analysis showed that rainfall dominated the trend of
gross primary production (GPP) of the study area, while extreme temperatures restricted the GPP. In
conclusion, the eFAST method can be used in future studies. Furthermore, eFAST could be applied to
other biomes in response to different climatic conditions.

Keywords: carbon flux simulation; Biome-BGC; rubber plantation ecosystem; eFAST sensitivity
analysis

1. Introduction

Because of fossil fuel combustion and changes in land use and land cover, the increase
in the atmospheric CO2 concentration has become a common problem in recent years [1].
Forests are important carbon sinks for terrestrial ecosystems, and rational use of the
carbon sequestration function of forest ecosystems can effectively alleviate the aggravation
of the greenhouse effect [2]. Rubber plantations widely planted in Southeast Asia and
tropical China can produce natural rubber, provide timber, and also have a considerable
carbon sink capacity [3]. At present, the rubber planting area on Hainan Island has
reached 5.43 × 105 hectares, accounting for more than 1/4 of the total forest area of the
island [4]. Therefore, rubber plantations may contribute significantly to global carbon
sequestration, and it is of great significance to accurately monitor the carbon sink capacity
of rubber plantations and their long-term responses to meteorological factors. Currently,
methods for monitoring forest carbon sinks include eddy covariance measurements, remote
sensing techniques, and model simulation. However, due to differences in specific research
objectives, these methods have certain shortcomings [5]. For example, eddy covariance
measurements can monitor precise exchanges of CO2, water, and energy between forests
and the atmosphere on smaller timescales, but are expensive and limited in scope [6].
Remote sensing techniques can provide continuous observations on a larger scale, but the
monitoring results are strongly influenced by clouds and rain and have low accuracy [7].
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Model simulation can describe the production of plants at different stages and has good
scalability, but there are general problems of low simulation accuracy and large simulation
uncertainty under different vegetation types and climatic conditions [8]. A common
approach today is to combine models with multiple sources of observations to achieve
accurate simulations [9].

Process-based models treat ecosystems as an atmosphere–vegetation–soil continuum
to describe the dynamics of carbon, nitrogen, and water stocks and fluxes between the
different modules [10,11]. Among them, the Biome-BioGeochemical Cycles (Biome-BGC)
model is widely used because it is driven by traditional meteorological data [12]. The model
has good scalability and can not only simulate the carbon sink changes of biological com-
munities under different environmental factors and human management modes through
structural adjustment [13,14], but also can be combined with remote sensing data to explore
the spatiotemporal dynamics of vegetation at the regional scale [15–17]. However, this
model was originally designed for temperate forests, and the phenological differences of
different vegetation types were ignored in its structure, so the application of the model in
tropical regions has been relatively rare and shown some simulation errors. The model uses
more than 40 ecophysiological parameters, introducing high uncertainty in the simulation
results [18]. The commonly used model calibration methods include model parameter opti-
mization based on observation data and data assimilation methods [19]. Sensitivity analysis
methods can quantify the contribution of parameters to the model output, which can be
used to explain the functional pattern of the model and its parameter optimization [20].
The variance-based global sensitivity analysis method can analyze nonlinear models and
is widely used in various process models to identify sensitive parameters for different
outputs or the coupling effects of different parameters on the outputs [21]. However, the
range of the parameter values used for analysis is usually defined by the model itself or the
perturbation of a certain value [22,23]; therefore, the influence of different parameter value
ranges on the analysis results is still uncertain.

The objective of this study was to optimize the process model using parameter sensi-
tivity analysis methods and parameter optimization methods based on observation data to
estimate the long-term carbon flux variability in the study area and explore its responses
to meteorological factors. The study used the extended Fourier amplitude sensitivity test
(eFAST) method to explore the most sensitive parameters for the carbon flux outputs of
Biome-BGC model, and then used the model-independent parameter estimation (PEST)
method and the observation data of the eddy covariance system to optimize the model
parameters. The 11-year net ecosystem exchange (NEE) and gross primary production
(GPP) in the study area were simulated, and their relationships with air temperature and
rainfall were analyzed. The study attempted to discuss the following questions: (1) What
are the most sensitive ecophysiological parameters for the carbon flux of the Biome-BGC
model in rubber plantations? (2) Is Biome-BGC suitable for carbon flux simulation of the
rubber plantation in the study area? (3) How does the carbon flux of the rubber plantation
in the study area respond to long-term changes in meteorological factors? To answer these
questions, the study designed the following numerical experiments: (1) to identify the most
sensitive parameters for the model output, as well as their variability for different outputs
in different simulation years; (2) to analyze the differences in parameters’ sensitivity to
different parameter value ranges; (3) to compare the differences in the model simulation
results by choosing different parameters for optimization; and (4) to simulate carbon flux
in the study area with optimal parameters and analyze its response to long-term changes
in meteorological factors.

2. Materials and Methods
2.1. Study Area

The observation site—the Hainan Danzhou Tropical Agro-Ecosystem National Obser-
vation and Research Station (19◦31′47′′ N, 109◦28′30′′ E)—is located in the northwestern
part of Hainan Province, P. R. China, and the site is in a gently sloping hilly area with an
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average altitude of 144 m. The city of Danzhou has a tropical island monsoon climate, with
an annual average temperature of 20.5 ◦C to 28.5 ◦C. There are obvious dry and rainy sea-
sons in the year, among which May to October is the rainy season and November to April
of the following year is the dry season, with an annual average rainfall of 1606~2000 mm.
The rainy season begins in July and ends in September, accounting for more than 70%
of the annual rainfall. The main vegetation type in the experimental area is rubber trees,
including 4 sample plots of different tree ages. The main types of soil in the study area
are sandy loam and sandy brick soil, with a thickness of 100 cm [24]. The eddy covariance
observation tower is located in the study area, and the near-surface flux observation has
been carried out since November 2009. The eddy covariance system outputs water vapor
and CO2 exchange data for 30 min through the CR3000 data collector. The 30-min data
were further filtered and linearly interpolated to obtain daily-scale NEE data for the rubber
plantation in the study area from 2010 to 2020 [25,26].

2.2. Biome-BGC Model

The Biome-BGC model is a biogeochemical model developed by the Numerical Terra-
dynamic Simulation Group (NTSG) of the University of Montana to simulate the combined
cycle of carbon, nitrogen, and water in regional ecosystems. The model was developed
by Forest-BGC. After more than 20 years of improvement and version changes, it can
simulate the carbon cycle of terrestrial ecosystems with daily steps [27]. Biome-BGC is
capable of simulating carbon balance, including GPP, net primary production (NPP), NEE,
and ecosystem respiration (Re). The model has been widely used for carbon budget sim-
ulation of multiple biomes. This study used version 4.2, provided by the official website
(http://www.ntsg.umt.edu/project/biome-bgc.php (accessed on 24 October 2022)).

2.2.1. Model Parameterization

The input data of the model include three parts: site characteristics data, meteorologi-
cal data, and ecophysiological parameters. Most of the site characteristics data—such as
altitude, latitude, and effective soil depth—are obtained through field measurements, and
other data—such as soil texture and CO2 concentration—are obtained from the relevant
literature (Table 1). Meteorological data include daily maximum temperature, minimum
temperature, average temperature, rainfall, vapor pressure deficit (VPD), solar radiation,
and day length from sunrise to sunset. This study used the daily temperature and rainfall
data from 2010 to 2020 provided by the Danzhou Meteorological Observatory and used the
MT-CLIM to simulate VPD, solar radiation, and day length. Ecophysiological parameters
are model-defined parameters used to characterize the vegetation of a specific biome. The
model provides ecophysiological parameters for seven vegetation types, such as evergreen
needle-leaved forest, deciduous broad-leaved forest, and shrub. This part of the parameters
was also the object of the model sensitivity analysis.

Table 1. Site characteristics.

Parameters Unit Value

Effective soil depth cm 100
Soil silt percentage % 19

Soil sand percentage % 52
Soil clay percentage % 29

Elevation m 144
Latitude degree 19.51

Shortwave albedo - 0.2
CO2 concentration ppm 407.8

Atmospheric nitrogen deposition g N m−2 a−1 1.71

2.2.2. Model Calibration

This study used the PEST and the NEE of the observation site in the year 2010 to
calibrate the model’s ecophysiological parameters. PEST is a model-independent param-

http://www.ntsg.umt.edu/project/biome-bgc.php
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eter estimation method that iterates the model and adjusts the parameters based on the
difference between the model output and the measured values, converging the difference to
a local optimum to obtain optimized parameters [28]. To run the PEST method, a file (*.tpl)
indicating the parameters to be optimized, an instruction file (*.ins) containing observation
data, and a control file (*.pst) identifying the range of parameter values and the controlling
method for reading and writing are generated. In this study, the ecophysiological parame-
ters (*.epc) were used as the parameters to be optimized, and the NEE of the observation site
in 2010 was used for the observed values. Model calibration was achieved by continuously
calling the model, comparing the simulated and observed values, and further adjusting the
model parameters within a certain parameter value range.

2.2.3. Process

The simulation followed a two-step procedure: First, we used the preindustrial CO2
levels and nitrogen deposition to initialize the soil carbon and nitrogen pools of the model,
until it reached the equilibrium levels of net ecosystem carbon exchange. Second, we
simulated the carbon exchange of the study area from 2010 to 2020. The data for 2010 were
used for calibration, while those of 2011–2020 were used for validation.

2.3. Sensitivity Analysis Experiment

Sensitivity analysis identifies the sensitive parameters for the model by quantifying
the magnitude of the influence of the input parameters on the outputs. Commonly used
global sensitivity analysis methods include the Sobol method, Morris method, and Fourier
amplitude sensitivity test (FAST) method. The eFAST method adopted in this study
combines the advantages of the Sobol method and the FAST method and can obtain
fully convergent results with less sampling. The eFAST method is a sensitivity analysis
method based on variance decomposition, which treats the model as a function in the
following form:

y = f(x1, x2, . . . , xk) (1)

The Fourier transform decomposes the total variance V of the model into the variance
Vi contributed by the changes of the individual parameters and the variance Vi,j, . . . ,k
contributed by the coupling of multiple parameters. Then, the first-order sensitivity index
of the parameter xi can be defined as follows:

Si =
Vi
V

(2)

and the total sensitivity index can be defined as follows:

STi =
V −V−i

V
(3)

where V−i is the sum of the variances contributed by all parameters unrelated to the
parameter xi [29].

The model defines 43 ecophysiological parameters, some of which are phenological
parameters obtained through field observations, and some of which are weakly related to
the carbon outputs and are not involved in the sensitivity analysis. Others have strong
dependence on one another, and only representative ones are selected for the analysis.
Based on conducting trial tests, only 19 ecophysiological parameters were identified for
further sensitivity analysis. The value range of the parameters has a great influence on the
sensitivity analysis results, so we selected the maximum range of values suitable for the
deciduous broadleaf forests of the study area from the literature in order to fully explore
the actual sensitivity of the model parameters (Table 2). To calculate the sensitivity of
parameters once using the eFAST method, the model needs to be run n × p times, where n
is the number of samples and p is the number of parameters. The method considers that
the result is valid only when the parameter sampling number is greater than 65. To make
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the result fully convergent, we took the sampling number n as 150. We implemented the
eFAST method of model parameters in a Python environment using the SALib package
(https://github.com/SALib (accessed on 24 October 2022)).

Table 2. Definitions, abbreviations, ranges, and sources of the 19 parameters of the Biome-BGC model
used in the sensitivity analysis.

Parameters Abbreviation Range Reference

Annual leaf and fine root turnover fraction LFRT [0.5, 0.828] [30]
Annual live wood turnover fraction LWT [0.56, 0.9] [18]

New fine root C: new leaf C FRC: LC [0.545, 1.59] [18]
New stem C: new leaf C SC: LC [0.84, 1.56] [18]

New live wood C: new total wood C LWC: TWC [0.096, 0.279] [18]
New root C: new stem C CRC: SC [0.077, 0.563] [18]

C: N of leaves C: Nleaf [8.96, 13.44] Measured
C: N of leaf litter C: Nlit [32.88, 49.32] [11]
C: N of fine roots C: Nfr [37.92, 56.88] [11]

C: N of dead wood C: Ndw [240, 360] [11]
Canopy water interception coefficient Wint [0.0328, 0.0492] [31]

Canopy light extinction coefficient k [0.56, 0.8] [11]
All-sided–projected leaf area ratio LAIall:proj [1.71, 2.29] [18]
Canopy average specific leaf area SLA [13, 26.4] [18]
Ratio of shaded SLA: sunlit SLA SLAshd: sun [1.6, 2.2] [18]

Fraction of leaf N in RuBisCO FLNR [0.048, 0.072] [11]
Maximum stomatal conductance gsmax [0.004, 0.006] [32]
Leaf water potential: complete LWPf [−3.9, −1.5] [18]

Vapor pressure deficit: complete VPDf [2300, 4700] [18]

3. Results
3.1. Sensitivity Analysis Results

In the sensitivity analysis experiment, the NEE, GPP, and leaf area index (LAI) were
used as the model outputs, and the eFAST method was performed on the 19 selected
sensitivity parameters (Table 2). Since the parameters with stronger sensitivity contributed
most of the influence, we only selected several parameters with the highest sensitivity
index for comparison.

This section includes two numerical experiments: Experiment 1 compared the changes
in the sensitivity index from 2010 to 2020. The parameters with the highest sensitivity to
NEE and GPP were the same (Figure 1a,b)—namely, the extinction coefficient (k), canopy
average specific leaf area (SLA), leaf carbon-to-nitrogen ratio (C: Nleaf), fraction of leaf
nitrogen in RuBisCO (FLNR), and shaded-to-sunlit specific leaf area ratio (SLAshd: sun).
The main difference between the GPP and NEE sensitivity parameters was that GPP was
more sensitive to SLA than to k. NEE was much more sensitive to SLA and k than to
other parameters (Figure 1c). The other two sensitive parameters of carbon flux were the
new fine root carbon to new leaf carbon allocation (FRC: LC) and the new stem carbon
to new leaf carbon allocation (SC: LC), which happened to be the parameters with the
strongest influence on the LAI. None of the parameters showed large differences in long-
term variation, and the differences between the first-order sensitivity index and the total
sensitivity index were small.

On this basis, the sensitivity analysis of Experiment 2 compared the changes in differ-
ent value ranges. The experiment was based on the ranges of±10% and±20% perturbation
of the fixed parameter values in 2010. The results showed that the parameter sensitivity
index of the modified parameter value range was quite different from that of the default
parameter value range. It was mainly manifested in that the most sensitive parameter for
the model output was C: Nleaf, the sensitivity index of SLA dropped significantly (Figure 2),
and there were also differences in the top-ranked parameters. The difference between the

https://github.com/SALib
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parameter sensitivity indices in the range of±10% and±20% perturbation was small; these
parameters were ranked the same for different outputs, such as GPP, NEE, and LAI.
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3.2. Model Optimization and Validation

In this study, the Biome-BGC model was used to simulate the NEE from March 2010
to February 2011, and 19 parameters—including SLA and C: Nleaf—were optimized using
the actual NEE and the PEST method. The results showed that the simulation performance
of the model optimized by the PEST method was improved (Figure 3a). Before calibration,
the original model had a certain degree of deviation (R2 = 0.53, RMSE = 1.62); it had a
significant underestimate of NEE from August to October and an overestimate from March
to May. The revised model was significantly improved (R2 = 0.72, RMSE = 1.14). The
overall variation in the simulated values was reduced, and the trend was more obvious.
The overall relative error of the simulation improved from 16% to 13%, but there was still a
degree of underestimation.

Based on the sensitivity analysis results presented in Section 3.1, we selected several
parameters with strong sensitivity from the 19 parameters—namely, SLA, k, C: Nleaf, FLNR,
SLAshd: sun, FRC: LC, and SC: LC—and used the PEST method to optimize only these
7 parameters. We named the scheme optimized with 19 parameters “Scheme 1” and the
scheme optimized with 7 parameters “Scheme 2”. The results showed that Scheme 2 could
also achieve accurate optimization results (R2 = 0.71, RMSE = 1.19), and the difference
between the simulation results of the two optimization schemes was small (Figure 3b).
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Based on the optimized model parameters, we conducted validation on the NEE from
March 2011 to December 2020 (Figure 4). The simulation results showed that the model
could accurately simulate NEE in other years (R2 = 0.64, RMSE = 0.98) and the trend of NEE
in different phenological periods could be well-described. However, the overall simulation
accuracy was lower than that in 2010 due to the lack of eddy covariance observation data
in 2016 and other years. The overall relative error of the simulation was 12%, showing an
overall underestimation of carbon sink capacity.
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3.3. Factor Analysis of Ecosystem Carbon Flux

Based on the optimized model parameters, we simulated the interannual changes of
GPP and NEE in the study area from 2010 to 2020, and then we calculated the changes in
annual average temperature and total annual rainfall (Figure 5). According to the linear
correlation analysis and p-test between the dependent and independent variables, the GPP
and NEE in the study area showed a slight upward trend from 2010 to 2020, but the trend
was not significant (R2 = 0.17, p > 0.05; R2 = 0.20, p > 0.05). The annual average temperature
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showed a large fluctuation and a slight upward trend (R2 = 0.15, p > 0.05), the annual
rainfall showed a downward trend (R2 = 0.16, p > 0.05), and the trends were not significant.
Pearson’s correlation analysis showed that there was a weak correlation between annual
rainfall and GPP (pcc = 0.26)—both of them showed a downward trend in 2010–2015 and an
upward trend in 2015–2020. From the appearance time of extreme climate, the temperature
had a limiting effect on GPP. For example, 2011 and 2013 were the two years with the
lowest average annual temperature, and 2015 was the year with the highest annual average
temperature, all of which showed lower GPP.
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4. Discussion
4.1. Ecophysiological Parameters Affecting Carbon Flux in the Rubber Plantation

The carbon flux outputs of Biome-BGC were highly sensitive to SLA, k, C: Nleaf,
FLNR, SLAshd: sun, FRC: LC, and SC: LC. In all of the sensitivity analysis experiments,
these parameters showed strong sensitivity and were significantly higher than the other
parameters (Figures 1 and 2). Moreover, the multiyear sensitivity analysis results showed
that the result does not change with the simulation year, so it is stable in time. Among
them, SLA, k, and SLAshd: sun were closely related to light. Broadleaf forests with low
canopy closure tend to have higher SLA, lower k, and lower SLAshd: sun; thus, they receive
more photosynthetic active radiation and fix more CO2 through photosynthesis. C: Nleaf
and FLNR can affect the photosynthesis efficiency of leaves by controlling the contents
of photosynthesis-related enzymes [33]; the processes have optimal temperatures, so they
are closely related to air temperature. LAI was highly sensitive to FRC: LC and SC: LC,
which affect carbon flux outputs by controlling the growth state of vegetation leaves. The
carbon in the environment enters the biosphere through photosynthesis and returns to
the atmosphere through respiration. These two physiological processes are crucial to the
carbon cycle of the ecosystem [34]. Therefore, it is reasonable that the above parameters
that can influence photosynthesis and respiration are the most sensitive parameters for the
carbon flux outputs of the Biome-BGC model. We can infer that not only for the Biome-BGC
model, but also for other ecosystem models, the most sensitive parameters for carbon
flux outputs are still parameters related to photosynthesis and respiration. This can help
with the application of the Biome-BGC model in other biomes and the optimization of
other models.

Different parameter value ranges significantly affected the results of the sensitivity
analysis, while the results of the analyses using the ranges of 10% and 20% perturbation of
the values had no significant differences. In three different sensitivity analysis experiments,
the results showed a great difference between the range of values determined by recent
reports and that from the range of perturbation of values. The difference was not only in
the ranking of parameter sensitivity; the latter analysis results did not show differences
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between carbon flux (GPP, NEE) and LAI (Figure 2). For the settings of the ranges of 10%
and 20% perturbation, previous studies have shown that there are certain differences in
the analysis results [20]. The reason for our undifferentiated results may be that the model
was revised in this study. For the revised model, this difference can no longer be reflected
in the results; it may also be because the range of 10–20% perturbation is too small to
reflect the difference. In a word, the undifferentiated results are determined by the model
itself. For sensitivity analysis methods, different value ranges mean different degrees of
parameter variation, and the variance-based sensitivity analysis results can naturally reflect
this difference [29]. The undifferentiated results show that the results of the sensitivity
analysis are not only affected by the value range but also more dependent on the model
itself, and this dependency has nothing to do with model selection, but for all “black-box
models” that need to consider parameter values the above results can help to understand
the relationship between models and parameters.

4.2. Applicability of the Biome-BGC Model to the Rubber Plantation in the Study Area

The Biome-BGC model is suitable for carbon flux simulation of the rubber plantation
in the study area. In all experimental years, the model showed a good fit and could also
accurately describe the carbon flux differences in different growth periods within a year.
Unlike deciduous broad-leaved forests in temperate regions, the rubber plantations in
the study area have special phenological characteristics. The general deciduous broad-
leaved forests begin to grow new leaves in spring and lose them in autumn, while the
rubber plantations generally drop leaves from February to March every year, and new
leaves grow almost simultaneously as the previous ones drop [35]. Therefore, there is an
obvious carbon flux change scenario in February and March every year. The phenological
setting of Biome-BGC was determined by two parameters: the time to start growing new
leaves, and the time to complete defoliation. It was found that this setting can accurately
characterize carbon flux changes in the deciduous broad-leaved forests in temperate regions
by adjusting parameters. However, for rubber plantations, using such a parameter setting
for simulation will cause the carbon pool of the model to enter the deciduous stage without
accumulating enough organic matter, leading to the model being unable to be initialized
normally. Similarly, treating rubber plantations as evergreen forests makes the model
unable to capture differences in carbon flux across phenological periods. In response to
the above problems, our approach was to adjust the start time of the simulation; that is,
by modifying the meteorological data, the time when the vegetation began to grow new
leaves was used as the start time of the simulation process so that the time of the growing
season was long enough for the model to initialize normally (Figure 6). This adjustment
is applicable to forests whose phenological cycle cannot be described by the phenological
module of Biome-BGC, so the above research helps with the application of the model in
other biomes.
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Parameter optimization based on observational data can effectively improve the
accuracy of the model. Although the phenologically adjusted model can accurately simulate
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the trend of carbon flux, it is still inaccurate in describing the magnitude of carbon flux in
each period, and the uncertainty of the simulation results is high (Figure 3a). The principle
of the PEST method is to traverse multiple parameter groups until the parameter group
with the smallest residual between the simulated and actual value is found [28], which
is advantageous for parameter groups with less overall variability, so that the optimized
simulation results are more stable in time. Uncertainty in model simulations arises from
many aspects, including the model structure and the driving data, with model parameters
being an important source of uncertainty [36]. The optimization method used in this study
was based on accurate observation data. Parameter optimization targeting observation data
can more effectively optimize model parameters, thereby eliminating parameter uncertainty
and making the simulation results closer to reality. Furthermore, the observation data used
for parameter optimization can include not just the target variable of the simulation, but
also other outputs or intermediate variables, such as leaf area index [19]. The above results
validate the applicability of this method in the study area and help with the application
and promotion of the method in other scenarios.

4.3. Response of Rubber Plantation Ecosystem GPP to Meteorological Factors

Rainfall dominated the trend of GPP in the study area. Rainfall was more strongly
correlated with GPP than temperature. Although the interannual trend showed that the
overall trend of rainfall was decreasing, this was due to the significant decrease in 2019,
while both rainfall and GPP showed a decreasing trend in 2010–2015 and an increasing
trend in 2015–2020 (Figure 5a). The dominant effect of rainfall on production is manifested
in several aspects. Firstly, precipitation—especially dry-season precipitation—significantly
affects vegetation production. The tropics have abundant moisture and vigorous vegetation
growth, while limited precipitation in the dry season inhibits the enhancement of produc-
tion, highlighting its dominant role in production. Secondly, rainfall can influence plants’
root growth by altering the soil moisture content and soil nutrient flow. Previous studies
have shown that the seasonal dynamics of vegetation root growth in tropical regions are
consistent with soil moisture dynamics, with the rainy season tending to be the peak of
vegetation growth and accumulation, while the growth is slower in the dry season [37].
Thirdly, abundant precipitation tends to occur in the same season with sufficient light and
suitable temperature, promoting the growth of vegetation together and, thus, strengthening
the dominant role of precipitation.

The influence of temperature was mainly manifested in the limiting effect of extreme
temperatures on production. The GPP of the forest was lower in the years with the highest
and the lowest mean annual temperatures (Figure 5b). According to the literature [35],
the optimal temperature for the photosynthesis of rubber trees is 25–30 ◦C; when the
ambient temperature is below 10 ◦C, rubber tree photosynthesis stops, while above 40 ◦C
rubber trees’ respiration exceeds photosynthesis and growth is inhibited. The duration of
high-temperature weather in the study area was long. For example, there were 88 days
with maximum temperatures above 35 ◦C during 2015; the lowest temperatures generally
occurred in December and January, with 10 days with minimum temperatures below 10 ◦C
during 2011. Therefore, the temperature limitation of rubber plantation production in the
study area mainly lies in high-temperature limitations, where the inhibited photosynthesis
and enhanced respiration together reduce the accumulation of organic matter, thereby
limiting the level of vegetation production. Only under chilling conditions below 10 ◦C
did rubber plantations experience transient production limitations due to photosynthetic
cessation. These findings show that higher rainfall has a long-term enhancement effect on
rubber plantation production, while providing timely protection measures during extreme
weather can prevent damage to rubber plantations. This helps with the management of
rubber plantations in response to different climatic phenomena.
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5. Conclusions

The conclusions of this study can be summarized as follows: (1) The carbon flux out-
puts of the Biome-BGC model were highly sensitive to SLA, k, C: Nleaf, FLNR, SLAshd: sun,
FRC: LC, and SC: LC. (2) The Biome-BGC model based on observational data and PEST
was suitable for carbon flux simulation of the rubber plantation in the study area. (3) Rain-
fall dominated the trend of GPP in the study area, while extreme temperatures restricted
GPP. This study deepens the understanding of ecological model uncertainty caused by
parameter sensitivity and provides a reliable solution for the accurate simulation of carbon
flux in rubber plantations, which will be helpful in future research in other regions and the
sustainable development of forests. The results of the present study can be compared with
the offline Community Land Model version 4.5 (CLM45) at a point scale to discuss the role
of model complexity in simulating the GPP and NEE using the eFAST method.
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Biome-BGC Biome-BioGeochemical Cycles
eFAST Extended Fourier amplitude sensitivity test
FAST Fourier amplitude sensitivity test
PEST Model-independent parameter estimation
GPP Gross primary production
NEE Net ecosystem exchange
LAI Leaf area index
VPD Vapor pressure deficit
R2 Coefficient of determination
RMSE Root-mean-square error
pcc Pearson’s correlation coefficient

References
1. IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.
2. Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land

carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [CrossRef]
3. Chen, B.; Xiao, X.; Wu, Z.; Yun, T.; Kou, W.; Ye, H.; Lin, Q.; Doughty, R.; Dong, J.; Ma, J.; et al. Identifying establishment year and

pre-conversion land cover of rubber plantations on Hainan Island, China using landsat data during 1987–2015. Remote Sens. 2018,
10, 1240. [CrossRef]

4. Chen, B.; Yun, T.; Ma, J.; Kou, W.; Li, H.; Yang, C.; Xiao, X.; Zhang, X.; Sun, R.; Xie, G.; et al. High-Precision Stand Age Data
Facilitate the Estimation of Rubber Plantation Biomass: A Case Study of Hainan Island, China. Remote Sens. 2020, 12, 3853.
[CrossRef]

5. Yan, M.; Tian, X.; Li, Z.; Chen, E.; Li, C.; Fan, W. A long-term simulation of forest carbon fluxes over the Qilian Mountains. Int. J.
Appl. Earth Obs. Geoinf. 2016, 52, 515–526. [CrossRef]

http://doi.org/10.1038/s41586-020-2849-9
http://doi.org/10.3390/rs10081240
http://doi.org/10.3390/rs12233853
http://doi.org/10.1016/j.jag.2016.07.009


Int. J. Environ. Res. Public Health 2022, 19, 14068 12 of 13

6. Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M. Simulation of olive grove gross primary
production by the combination of ground and multi-sensor satellite data. Int. J. Appl. Earth Obs. 2013, 23, 29–36. [CrossRef]

7. Zhu, X.; Pei, Y.; Zheng, Z.; Dong, J.; Zhang, Y.; Wang, J.; Chen, L.; Doughty, R.B.; Zhang, G.; Xiao, X. Underestimates of grassland
gross primary production in MODIS standard products. Remote Sens. 2018, 10, 1771. [CrossRef]

8. Schaefer, K.; Schwalm, C.R.; Williams, C.; Arain, M.A.; Barr, A.; Chen, J.M.; Davis, K.J.; Dimitrov, D.; Hilton, T.W.; Hollinger, D.Y.;
et al. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis.
J. Geophys. Res. Biogeosci. 2012, 117, 15. [CrossRef]

9. Zhang, T.; Sun, R.; Peng, C.; Zhou, G.; Wang, C.; Zhu, Q.; Yang, Y. Integrating a model with remote sensing observations by a data
assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites. Sci.
China Earth Sci. 2016, 59, 337–348. [CrossRef]

10. Sun, Q.; Li, B.; Zhang, T.; Yuan, Y.; Gao, X.; Ge, J.; Li, F.; Zhang, Z. An improved Biome-BGC model for estimating net primary
productivity of alpine meadow on the Qinghai-Tibet Plateau. Ecol. Modell. 2017, 350, 55–68. [CrossRef]

11. Ren, H.; Zhang, L.; Yan, M.; Tian, X.; Zheng, X. Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of
typical forests in China. For. Ecosyst. 2022, 9, 100011. [CrossRef]

12. Running, S.W.; Hunt, E.R. Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application
for Global-Scale Models. In Scaling Physiological Processes; Ehleringer, J.R., Field, C.B., Eds.; Academic Press: San Diego, CA, USA,
1993; pp. 141–158.

13. Mao, F.; Li, P.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Development of the BIOME-BGC model for the simulation
of managed Moso bamboo forest ecosystems. J. Environ. Manag. 2016, 172, 29–39. [CrossRef] [PubMed]

14. Li, C.; Han, Q.; Xu, W. Contribution of Climate Change and Grazing on Carbon Dynamics in Central Asian Pasturelands. Remote
Sens. 2022, 14, 1210. [CrossRef]

15. Zheng, L.; Qi, Y.; Wang, Y.; Peng, J.; Qin, Z. Calibration and validation of phenological models for Biome-BGCMuSo in the
grasslands of Tibetan Plateau using remote sensing data. Agric. For. Meteorol. 2022, 322, 109001. [CrossRef]

16. Huang, B.; Yang, Y.; Li, R.; Zheng, H.; Wang, X.; Wang, X.; Zhang, Y. Integrating Remotely Sensed Leaf Area Index with
Biome-BGC to Quantify the Impact of Land Use/Land Cover Change on Water Retention in Beijing. Remote Sens. 2022, 14, 743.
[CrossRef]

17. Zhang, Y.; Li, W.; Li, S.; Xie, B.; Shi, F.; Zhao, J. Spatial Distribution of Optimal Plant Cover and Its Influencing Factors for Populus
simonii Carr. on the Bashang Plateau, China. Land 2022, 11, 890. [CrossRef]

18. White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and sensitivity analysis of the BIOME–BGC terrestrial
ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–85. [CrossRef]

19. Liu, Q.; Zhang, T.; Du, M.; Gao, H.; Zhang, Q.; Sun, R. A better carbon-water flux simulation in multiple vegetation types by data
assimilation. For. Ecosyst. 2022, 9, 100013. [CrossRef]

20. Ma, H.; Ma, C.; Li, X.; Yuan, W.; Liu, Z.; Zhu, G. Sensitivity and uncertainty analyses of flux-based ecosystem model towards
improvement of forest GPP simulation. Sustainability 2020, 12, 2584. [CrossRef]

21. Raj, R.; Hamm, N.A.; van der Tol, C.; Stein, A. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary
production. Ecol. Modell. 2014, 292, 26–36. [CrossRef]

22. Tatarinov, F.A.; Cienciala, E. Application of BIOME-BGC model to managed forests: 1. Sensitivity analysis. For. Ecol. Manag. 2006,
237, 267–279. [CrossRef]

23. Vazquez-Cruz, M.A.; Guzman-Cruz, R.; Lopez-Cruz, I.L.; Cornejo-Perez, O.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Global
sensitivity analysis by means of EFAST and Sobol’methods and calibration of reduced state-variable TOMGRO model using
genetic algorithms. Comput. Electron. Agric. 2014, 100, 1–12. [CrossRef]

24. Wu, Z.; Guan, L.; Chen, B.; Yang, C.; Lan, G.; Xie, G.; Zhou, Z. Components of soil respiration and its monthly dynamics in rubber
plantation ecosystems. In Proceedings of the 4th International Conference on Digital Manufacturing and Automation (ICDMA),
Shinan, China, 29–30 June 2013; pp. 361–369.

25. Yu, G.; Wen, X.; Sun, X.; Tanner, B.D.; Lee, X.; Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement.
Agric. For. Meteorol. 2006, 137, 125–137. [CrossRef]

26. Wu, Z.; Tao, Z.; Lan, G.; Wang, J.; Xie, G.; Zhou, Z. The Net Ecosystem Carbon Exchange and Its Environmental Factors in a
Tropical Rubber Plantation Ecosystem in Hainan Island. Chin. J. Trop. Crop. 2014, 35, 2099.

27. Running, S.W.; Gower, S.T. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic
carbon allocation and nitrogen budgets. Tree Physiol. 1991, 9, 147–160. [CrossRef]

28. Doherty, J.; Johnston, J.M. Methodologies for calibration and predictive analysis of a watershed model. J. Am. Water Resour. Assoc.
2003, 39, 251–265. [CrossRef]

29. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The
Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008.

30. Wen, D.; Wei, P.; Kong, G.; Ye, W. Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan.
Chin. J. Plant Ecol. 1999, 23, 361.

31. Zhao, X.; Ouyang, L.; Zhao, P.; Zhang, C. Effects of size and microclimate on whole-tree water use and hydraulic regulation in
Schima superba trees. PeerJ 2018, 6, e5164. [CrossRef]

http://doi.org/10.1016/j.jag.2012.11.006
http://doi.org/10.3390/rs10111771
http://doi.org/10.1029/2012JG001960
http://doi.org/10.1007/s11430-015-5160-0
http://doi.org/10.1016/j.ecolmodel.2017.01.025
http://doi.org/10.1016/j.fecs.2022.100011
http://doi.org/10.1016/j.jenvman.2015.12.013
http://www.ncbi.nlm.nih.gov/pubmed/26921563
http://doi.org/10.3390/rs14051210
http://doi.org/10.1016/j.agrformet.2022.109001
http://doi.org/10.3390/rs14030743
http://doi.org/10.3390/land11060890
http://doi.org/10.1175/1087-3562(2000)004&lt;0003:PASAOT&gt;2.0.CO;2
http://doi.org/10.1016/j.fecs.2022.100013
http://doi.org/10.3390/su12072584
http://doi.org/10.1016/j.ecolmodel.2014.08.012
http://doi.org/10.1016/j.foreco.2006.09.085
http://doi.org/10.1016/j.compag.2013.10.006
http://doi.org/10.1016/j.agrformet.2006.02.011
http://doi.org/10.1093/treephys/9.1-2.147
http://doi.org/10.1111/j.1752-1688.2003.tb04381.x
http://doi.org/10.7717/peerj.5164


Int. J. Environ. Res. Public Health 2022, 19, 14068 13 of 13

32. Liu, C.; Li, Y.; Xu, L.; Chen, Z.; He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in
temperate and subtropical forests. Sci. Rep. 2019, 9, 5803. [CrossRef]

33. Aber, J.D.; Federer, C.A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary
production in temperate and boreal forest ecosystems. Oecologia 1992, 92, 463–474. [CrossRef]

34. Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales; Elsevier: Amsterdam, The Netherlands, 2010.
35. He, K.; Huang, Z. Rubber Culture in the Northern Part of Tropical Area; Guangdong Science and Technology Press: Guangzhou,

China, 1987.
36. Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.; et al.

Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers
and terrestrial biosphere models. Glob. Biogeochem. Cycles 2007, 21. [CrossRef]

37. Kavanagh, T.; Kellman, M. Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica 1992, 24, 157–165.
[CrossRef]

http://doi.org/10.1038/s41598-019-42335-2
http://doi.org/10.1007/BF00317837
http://doi.org/10.1029/2006GB002915
http://doi.org/10.2307/2388669

	Introduction 
	Materials and Methods 
	Study Area 
	Biome-BGC Model 
	Model Parameterization 
	Model Calibration 
	Process 

	Sensitivity Analysis Experiment 

	Results 
	Sensitivity Analysis Results 
	Model Optimization and Validation 
	Factor Analysis of Ecosystem Carbon Flux 

	Discussion 
	Ecophysiological Parameters Affecting Carbon Flux in the Rubber Plantation 
	Applicability of the Biome-BGC Model to the Rubber Plantation in the Study Area 
	Response of Rubber Plantation Ecosystem GPP to Meteorological Factors 

	Conclusions 
	References

