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Abstract: Personalized medicine requires an understanding of treatment effect heterogeneity. Evolv-
ing toward causal evidence for scenarios not studied in randomized trials necessitates a methodology
using real-world evidence. Herein, we demonstrate a methodology that generates causal effects,
assesses the heterogeneity of the effects and adjusts for the clustered nature of the data. This study
uses a state-of-the-art machine learning survival model, riAFT-BART, to draw causal inferences
about individual survival treatment effects, while accounting for the variability in institutional ef-
fects; further, it proposes a data-driven approach to agnostically (as opposed to a priori hypotheses)
ascertain which subgroups exhibit an enhanced treatment effect from which intervention, relative
to global evidence—average treatment effects measured at the population level. Comprehensive
simulations show the advantages of the proposed method in terms of bias, efficiency and precision in
estimating heterogeneous causal effects. The empirically validated method was then used to analyze
the National Cancer Database.

Keywords: causal inference; survival data analysis; machine learning; treatment effect heterogeneity;
clustering

1. Introduction

Knowing which subgroup of individuals could best benefit from a treatment is crucial
to evidence-based medicine. It is critical to understand the treatment effect heterogeneity
(TEH), which reflects the variability in patient response to treatment [1]. The population
average treatment effect is less useful for personalized medicine because its estimate could
potentially average out treatment benefits and harms.

In health research, patient survival is of most clinical relevance. There is a pressing
need for robust causal inference methods to evaluate heterogeneous treatment effects on
clustered patient survival. Existing methods for assessing heterogeneous treatment effects
on patient survival are largely focused on subgroup analysis with a priori hypotheses
about either subpopulations who might depart from the population average or interactions
between treatment and pre-selected covariates. These methods are prone to multiple testing
concerns and estimation bias [2]. More importantly, when patients are clustered, and when
there are multiple treatments, special statistical considerations are needed to address the
implications of the multilevel data structure for drawing causal inferences about multiple
treatment comparisons.

2. Methods

We developed a random-intercept accelerated failure time model leveraging a prob-
abilistic machine learning technique, Bayesian additive regression trees (BART) [3–5],
for causal inferences about multiple treatments and clustered survival outcomes. This
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method, termed riAFT-BART [6], flexibly and accurately captures the relationships among
the patient survival times, treatment and covariates via a sum of the tree models; it also
accounts for the cluster-specific main effects using the random intercepts. Regularizing
priors are placed on the parameters of riAFT-BART to ensure that the model is flexible
in capturing nonlinearity and interactions but not overfitted [7,8]. An efficient and stable
Markov chain Monte Carlo algorithm is developed for posterior inferences about the pa-
rameters. The formal statistical methodology was described in our earlier work [6] and in
the Supplementary Material.

Putting riAFT-BART in the causal framework (Rubin causal model) [9,10], we can
obtain the individual treatment effect by contrasting the counterfactual survival time to
a treatment with the counterfactual survival time to another treatment (or control in a
binary treatment setting) for each individual. These individual effects, bearing a causal
interpretation, can then be used to identify TEH via a hypothesis-free and data-driven
procedure, leveraging the Random Forest (RF) model. The “fit-the-fit” procedure [11,12]
follows the following steps: (1) using the individual treatment effects as the responses, fit a
sequence of RF models, where covariates are sequentially added in a stepwise manner to
improve the model fit, as measured by R2; (2) at each step, select the variable producing the
largest R2 improvement; (3) stop the fitting process when the percent improvement in R2 is
less than 1%. The final RF model will be interpreted using the “inTrees” technique [13]. The
tree branch decision rules sending individuals to different end nodes define the combination
rules of covariates that form different subpopulations having differentiable treatment effects.
Subgroup treatment effects are estimated by averaging the individual effects in each end
note. A detailed description of the method is provided in Hu (2022) [14].

3. Results
3.1. Data Examples

We first used simulated data to evaluate the proposed method. An expansive and
representative simulation was conducted following the state-of-the-art guidance [6,10,15]
on generating data adhering to the structure of multiple treatments with heterogeneous
treatment effects on clustered survival outcomes. We based our simulation procedures
on real data from the National Cancer Database (NCDB) [16]. We compared our pro-
posed approach to three current methods popularly used in clinical research: (1) inverse
probability of treatment weighting with the random-intercept Cox regression model (IPW-
riCox) [9]; (2) doubly robust random-intercept additive hazards model (DR-riAH) [17]; and
(3) the random-intercept generalized additive proportional hazards model (riGAPH) [18].
Complete details for the simulation design are presented in the Supplement.

In both scenarios of proportional hazards (PH) and nonproportional hazards (nPH),
our method, riAFT-BART, yielded the smallest biases (Figure S1) and root-mean-squared
errors (Figure S2), and achieved the highest accuracy in estimating the the, indicated by
the smallest PEHE values across all scenarios (Tables S1 and S3). The violation of the PH
assumption had the least impact on the performance of our method but bore heavily on the
random-intercept Cox regression model, which requires PH. Figure 1 shows the Kaplan–
Meier survival curves for three simulated treatment groups, and the mean counterfactual
survival curves estimated by the four methods under PH and nPH. The survival curves
estimated by riAFT-BART are closest to the true survival curves for each treatment group
under both PH and nPH, corroborating the accuracy of our proposed method in estimating
the individual treatment effects (Table 1).
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Figure 1. The Kaplan–Meier survival curves for three treatment groups in our simulation, and the
mean counterfactual survival curves estimated by the four methods IPW-riCox, DR-riAH, riGAPH
and riAFT-BART, under proportional hazards and nonproportional hazards.

Table 1. Mean (and standard deviation) precision in the estimation of heterogeneous effects (PEHE)
for each of the four methods based on 5-year survival probability. The proposed method riAFT-BART
delivered the highest accuracy in estimating the treatment effect heterogeneity, indicated by the
smallest PEHE values across all simulation settings.

Proportional Hazards Nonproportional Hazards

Method Trt 1 vs. 2 Trt 1 vs. 3 Trt 2 vs. 3 Trt 1 vs. 2 Trt 1 vs. 3 Trt 2 vs. 3

IPW-riCox 0.093 (0.032) 0.070 (0.030) 0.075 (0.031) 0.112 (0.033) 0.090 (0.030) 0.094 (0.031)
DR-riAH 0.043 (0.024) 0.022 (0.023) 0.027 (0.022) 0.051 (0.022) 0.034 (0.021) 0.039 (0.022)
riGAPH 0.041 (0.022) 0.020 (0.021) 0.025 (0.022) 0.049 (0.023) 0.031 (0.023) 0.038 (0.023)

riAFT-BART 0.013 (0.011) 0.006 (0.009) 0.008 (0.009) 0.018 (0.014) 0.011 (0.011) 0.013 (0.012)
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3.2. Heterogeneous Treatment Effects for High-Risk Localized Prostate Cancer Patients

Next, we applied our method on 64,569 high-risk localized prostate cancer patients
diagnosed between 2004 and 2015, drawn from the NCDB. We evaluated the TEH among
three treatments: (i) radical prostatectomy (RP); (ii) external beam radiotherapy (EBRT)
combined with androgen deprivation (AD) (EBRT + AD); and (iii) EBRT plus brachytherapy
with or without AD (EBRT + brachy ± AD) [13]. Patients were naturally clustered within
the institution. The pre-treatment risk factors included age, prostate-specific antigen (PSA),
clinical T stage, Charlson–Deyo score, biopsy Gleason score, year of diagnosis, insurance
status, median income level, education, race, and ethnicity. Table S5 summarizes the
baseline characteristics of the patients.

Figure S3 demonstrates that, on average, the expected survival time for patients who under-
went RP was 1.25 (1.15, 1.37) times as long as that of patients who underwent
EBRT + brachy ± AD. However, among high-grade cancer patients with a Gleason score ≥ 9,
there was no statistically significant treatment benefit associated with RP. When compared
to EBRT + AD, RP led to a significantly longer survival time, and there was no directional
TEH (Figure S4). Between EBRT + AD and EBRT + brachy ± AD, the population average
treatment effect suggests a significant treatment benefit from EBRT + brachy ± AD; however,
TEH analysis suggests that younger patients with lower PSA had a favorable treatment effect
from EBRT + AD (Figure S5). Our method was able to identify the location (cluster-level) effects,
which are displayed in Figure S6. Hospitals in New England had substantially better patient
outcomes than hospitals in the South-Central area.

4. Discussion

We developed a machine learning-based method to evaluate the heterogenous causal
effects on patient survival using real-world evidence data with clustered patient observa-
tions. This method provides a much-needed causal analysis tool for researchers to conduct
in-depth analyses of multilevel data with a survival endpoint (overall and event-free
survival). Our method can be used to gain insights into personalized treatment and insti-
tutional variation in treatment effects. Expansive and representative simulations provide
strong empirical evidence that our method has better performance than existing methods
in a wide range of data settings. Application to the NCDB data elucidates the importance
of estimating heterogenous institutional and treatment effects. The developed methods
provide an analysis apparatus for researchers working with large health datasets with
clustered observations, and can aid in treatment effect discovery in subpopulations and
inform the planning of future confirmatory trials.

5. Conclusions

For evidence-based medicine, it is difficult to apply evidence of population average
effects to individual patients who might deviate from the population average. To reveal a
potentially complex mixture of causal treatment effects (e.g., treatment benefit and treat-
ment harm), robust analyses of TEH are needed. Large-scale clinical datasets collected from
multiple institutions become common for generating real-world TEH evidence but intro-
duce clustered observations. We developed a robust method to overcome these challenges
and to provide accurate and efficient estimation of heterogenous causal treatment effects
on patient survival. The TEH analysis of the NCDB prostate cancer data suggests that there
may exist heterogeneous treatment effects between the EBRT-based treatments, which can
inform individualized treatment strategies. The examination of variation due to clusters
may stimulate further investigation into reasons why patient outcomes are different across
clusters, which may lead to new insight into the quality of treatment delivery. Results from
applying our methods to the NCDB prostate cancer data suggest a substantial variability in
institutional effects, with hospitals in the New England area having much better patient
outcomes than hospitals in the East Central region. Importantly, the results based on our
methods are relevant to all stakeholders, including researchers, patients, clinicians and
policymakers. For future research, an immediate extension of the proposed methods is to
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include the random slopes in the model so that the variability of the covariate effects across
different clusters can be incorporated. Developing a sensitivity analysis to potentially have
no unmeasured confounding factors could also be a worthwhile contribution.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijerph192214903/s1. S1: The proposed method riAFT-
BART; S2: Simulation design; Table S1: Subclasses of the true generalized propensity scores; Table S2:
True survival probabilities, restricted mean survival time (RMST), and treatment effects under both
proportional hazards and nonproportional hazards; S3: Simulation results; Figure S1: Biases results
among subclasses defined by distributions of true generalized propensity scores under proportional
hazards (PH) and nonproportional hazards (nPH) for each of four methods, IPW-riCox, DR-riAH,
riGAPH and riAFT-BART. Treatment effects were estimated based on 5-year survival probability. Each
boxplot visualizes the distribution of biases for 45 subclasses across 250 simulation runs; Figure S2:
RMSE results among subclasses defined by distributions of true generalized propensity scores under
proportional hazards (PH) and nonproportional hazards (nPH) for each of four methods, IPW-riCox,
DR-riAH, riGAPH and riAFT-BART. Subgroup treatment effects were estimated based on 5-year
survival probability. Each boxplot visualizes the distribution of biases for 45 subclasses across 250 sim-
ulation runs; Table S3: Mean (and standard deviation) of precision in the estimation of heterogeneous
effects (PEHE) for each of the 4 methods based on 5-year survival RMST in months; S4: Additional
results for case study; Table S4: Descriptions of pre-treatment variables and hospital locations (clus-
ters) for each of three treatment groups in NCDB data.; Figure S3: Final Random Forests model fit
to the posterior mean of the individual survival treatment effect comparing radical prostatectomy
with external beam radiotherapy plus brachytherapy with or without androgen deprivation. Values
in each node correspond to the posterior mean and 95% credible intervals of the average treatment
effect, in terms of the ratio of expected survival time, for the subgroup of individuals represented in
that node; Figure S4: Final Random Forests model fit to the posterior mean of the individual survival
treatment effect comparing radical prostatectomy (RP) with external beam radiotherapy combined
with androgen deprivation (EBRT + AD). Values in each node correspond to the posterior mean and
95% credible intervals of the average treatment effect, in terms of the ratio of expected survival time,
for the subgroup of individuals represented in that node; Figure S5: Final Random Forests model fit to
the posterior mean of the individual survival treatment effect comparing external beam radiotherapy
combined with androgen deprivation (EBRT + AD) to external beam radiotherapy plus brachytherapy
with or without androgen deprivation (EBRT + brachy ± AD). Values in each node correspond to
the posterior mean and 95% credible intervals of the average treatment effect, in terms of the ratio
of expected survival time, for the subgroup of individuals represented in that node; Figure S6: The
institutional (location) effects in terms of the expected survival months represented by the posterior
mean and credible intervals of random intercept b, k, k = 1, 2, . . . , 9; References [6,11,17–20] are cited
in the supplementary materials.
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