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Abstract: The autoregressive integrated moving average with exogenous regressors (ARIMAX)
modeling studies of pulmonary tuberculosis (PTB) are still rare. This study aims to explore whether
incorporating air pollution and meteorological factors can improve the performance of a time series
model in predicting PTB. We collected the monthly incidence of PTB, records of six air pollutants
and six meteorological factors in Ningbo of China from January 2015 to December 2019. Then, we
constructed the ARIMA, univariate ARIMAX, and multivariate ARIMAX models. The ARIMAX
model incorporated ambient factors, while the ARIMA model did not. After prewhitening, the
cross-correlation analysis showed that PTB incidence was related to air pollution and meteorological
factors with a lag effect. Air pollution and meteorological factors also had a correlation. We found that
the multivariate ARIMAX model incorporating both the ozone with 0-month lag and the atmospheric
pressure with 11-month lag had the best performance for predicting the incidence of PTB in 2019,
with the lowest fitted mean absolute percentage error (MAPE) of 2.9097% and test MAPE of 9.2643%.
However, ARIMAX has limited improvement in prediction accuracy compared with the ARIMA
model. Our study also suggests the role of protecting the environment and reducing pollutants in
controlling PTB and other infectious diseases.

Keywords: pulmonary tuberculosis; air pollution; meteorological factor; time series

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis,
and it often affects the lungs. WHO proposed an End TB Strategy in 2014, with the targets
to reduce TB deaths by 95% and to cut incident cases by 90% between 2015 and 2035 [1].
The cumulative reduction in TB incidence from 2015 to 2020 was 11%, just over half-way to
the 2020 milestone of the strategy [2]. To achieve this ambitious goal, accurate prediction of
disease trends, as well as related factors, is of great importance.

The autoregressive integrated moving average (ARIMA) model, also known as the Box–
Jenkins model, is a commonly used model in time series analysis. Despite its effectiveness
to study time series, the ARIMA model applies only to one variable. The autoregressive
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integrated moving average with exogenous regressors (ARIMAX) model, however, adds
other variables related to the target series as input variables to improve the prediction
accuracy. Unlike the ARIMA model, the autoregressive integrated moving average with
exogenous regressors (ARIMAX) model adds other variables related to the target series as
input variables to improve the prediction accuracy. Several ARIMAX studies suggested that
weather parameters such as temperature, rainfall, humidity, wind speed, and air pollutants
may influence the occurrence of disease [3–7]. ARIMAX modeling studies of tuberculosis
are still rare. A time series study in Jiangsu, China, showed that the prediction accuracy
of the ARIMA model for PTB was improved by adding monthly PM2.5 with 0-month
lag as an external variable [8]. Another time series study in eastern China also indicated
that the predictive performance of the ARIMA model was improved after incorporating
meteorological factors [9].

Several studies have proposed the biological mechanisms linking air pollution ex-
posure and the risk of PTB. For example, PM2.5 exposure disrupted the synthesis and
secretion of inflammatory cytokines including interferon (IFN)-γ, tumor necrosis factor
(TNF)-α, and interleukin (IL)-10 and impaired key anti-mycobacterial T cell immune func-
tions [10]. In addition, blocking the IL-10 pathway and downregulating TNF-α by CO in
lung macrophages may promote the reactivation of PTB [11]. Therefore, we predicted a pos-
itive correlation between pollutant concentration and tuberculosis incidence. The possible
link between PTB and meteorological factors may be attributable to the following reasons.
The risk of Mycobacterium tuberculosis transmission appears to be the greatest during the
cold winter, particularly in overcrowded and poorly ventilated settings [12]. Less humidity
leads to the evaporation of droplets, reduces their size, and escalates their ability to travel
further, which increases the possibility of transmission [13]. The atmosphere pressure has
an indirect negative effect on the incidence of PTB. Low-level air rises under low-pressure
conditions, and surface pollutants diffuse vertically into the air, resulting in increased air
pollution. Therefore, we predicted a negative correlation between meteorological factors
and tuberculosis incidence [14].

To our knowledge, few studies used the ARIMAX model to incorporate both the air
pollution and meteorological factors to predict PTB. Thus, in the current study, we performed
a time series analysis in Ningbo, China, and applied ARIMA models (ARIMA, univariate
ARIMAX and multivariate ARIMAX model) to explore whether the inclusion of air pollution
and meteorological factors can improve the performance of prediction modeling.

2. Materials and Methods
2.1. Study Site and Data Collection

As a city in Zhejiang province located along the eastern coast of China, Ningbo covers
an area of 98,000 thousand square kilometers. It governed 10 counties and had a permanent
population of 9.4 million at the end of 2020. All newly diagnosed TB cases are registered
in an online Tuberculosis Management Information System (TBIMS), which is operated
by the Center for Disease Control and Prevention (CDC) of China. We extracted monthly
incidence of PTB from January 2015 to December 2019 as the study subjects. Population
data were obtained from the Ningbo Statistical Yearbook. We used the monthly incidence
from January 2015 to December 2018 as the model-construction datasets and incidence
from January 2019 to December 2019 as the validation datasets.

The monthly average concentrations of the ambient air pollutants including nitrogen
dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), particulate matter
2.5 µm in diameter (PM2.5), and particulate matter 10µm in diameter (PM10) for the same
period were obtained from the Ningbo Environment Monitoring Center. Meteorologi-
cal factors included monthly average temperature (MAT, ◦C), monthly average highest
temperature (MAHT, ◦C), monthly average lowest temperature (MALT, ◦C), monthly av-
erage relative humidity (MAH, %), monthly average atmospheric pressure (MAP, hPa),
and monthly average wind speed (MAS, m/s) and data were obtained from the Ningbo
Meteorological Bureau.
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2.2. Construction of the ARIMA Model

Following Li et al. [9], we constructed a seasonal ARIMA model, which was expressed
as ARIMA (p, d, q) (P, D, Q)s. The variable p is the order of the autoregression (AR)
process, q is the number of moving average (MA) terms, d represents the differencing
process to form a stationary times series, and P, D, and Q are the seasonal orders of the
AR, differencing, and MA processes, respectively [3]. Additionally, s denotes the seasonal
period. The number of PTB incidence predicted at time t (Yt) was determined by the

formula: Yt =
θq(B)ΘQ(BS)at

ΦP(BS)ϕp(B)(1−B)d(1−BS)
D , where θq(B) is the operator of the moving-average

model, ΘQ(BS) is the operator of the seasonal-moving average model, ϕp(B) is the operator
of the auto-regressive model, ΦP(BS) is the operator of the seasonal autoregressive model,
(1−B)d is the component of the ordinary differences, (1−BS)D is the component of the
seasonal differences, at is white noise, and Yt is the predicted variable [9]. Based on the
monthly incidence of PTB, we used the auto. arima ( ) function in R software (the R
Core Team, Vienna, Austria) to undertake automatic ARIMA model selection and fitting
according to Bayesian information criterion (BIC). BIC takes into account the number
of observations and has a larger penalty compared with Akaike Information Criterion
(AIC) [15]. When the number of observations is too large, it can effectively prevent the
model from being too complicated and over-fitting. The model with the lowest BIC is
defined as the optimal model. The Ljung–Box test was used to test whether the model
residual sequence showed auto-correlation. Finally, we selected the optimal ARIMA model
to predict PTB incidence in 2019 and mean absolute percentage error (MAPE) was used to
model validation.

2.3. Cross-Correlation Analysis

Due to strong auto-correlations in the data, correlations of the time series of the
monthly incidence of PTB with air pollution and meteorological factors were difficult to
identify. In this study, a prewhitening process was applied to the data among the multiple
exogenous regressors [3]. Prewhitening is used to avoid common trends between incidence
and ambient factors [16]. We calculated the cross-correlation function (CCF) between the
residual series from ARIMA model of the monthly incidence and ambient factors to identify
the significant time lags. Based on the results from previous studies as well as biological
and epidemiological plausibility, within a lag length of 12, we selected the lag periods with
positive and significant values for the next step of the analysis [17].

2.4. Construction of the ARIMAX Model

The lag value of the statistically significant factors identified by the cross-correlation
analysis was incorporated as exogenous regressors into the ARIMAX model constructed

above. The ARIMAX model is described by equation: Yt =
θq(B)ΘQ(BS)at

ΦP(BS)ϕp(B)(1−B)d(1−BS)
D + X,

where X represents the exogenous regressor, which can be univariate or multivariate [9,16].
The other parameters are as described in the ARIMA model above. In this study, we first
took a single lag period of risk factor in the univariate ARIMAX model. The coefficients
of the model were estimated using the maximum likelihood method. Fitted MAPE was
used to measure the performance of the ARIMA and the ARIMAX model in predicting
PTB incidence from 2016 to 2018, and test MAPE was used to measure the performance in
2019. We determined the suitable univariate ARIMAX models according to four criteria: (a)
the BIC value smaller than the optimal ARIMA model; (b) the coefficients of the regression
term all significant (p < 0.05); (c) the fitted MAPE value smaller than the optimal ARIMA
model; and (d) the test MAPE value smaller than the optimal ARIMA model.

For the multivariate ARIMAX analysis, the incorporated factors were selected from
the factors in the suitable univariate ARIMAX models. The suitable multivariate ARIMAX
models were also determined by four criteria above. The optimal ARIMAX model should
have the lowest BIC, fitted MAPE, and test MAPE values.
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2.5. Statistical Software

We used the packages of “forecast”, “Stats”, and “ggplot2” of R 3.5.1 (the R Core Team,
Vienna, Austria) (https://www.r-project.org/, accessed on 8 Janunary 2022) to estimate
the ARIMA and ARIMAX models and present data visualization. The R code can be found
in Supplementary File S1. The significance level was set at 0.05.

3. Results
3.1. Descriptive Analysis

Descriptive statistics of the monthly incidence of PTB, the monthly average air pol-
lutants concentration, and meteorological factors in Ningbo from 2015 to 2019 are listed
in Table 1. Time series plots of these are shown in Figure 1. The annual PTB notifica-
tion rates from 2015 to 2019 of Ningbo were 48.20/100,000, 45.81/100,000, 45.99/10,000,
46.92/100,000, and 44.14/100,000, respectively. The monthly incidence series plot showed
a seasonal fluctuation. The peak incidence mainly occurred in March, April, and May,
and the trough was more common in November, December, and February. The mean
concentrations of PM2.5, PM10, SO2, CO, NO2, O3, were 35.79 µg/m3, 57.42 µg/m3, 10.90
µg/m3, 0.78 mg/m3, 37.47 µg/m3, and 95.26 µg/m3, respectively, compared with the
World Health Organization air quality guideline levels of 5 µg/m3, 15 µg/m3, 40 µg/m3,
4 mg/m3, 10 µg/m3, and 60 µg/m3, respectively [18].

Table 1. Descriptive statistics of the monthly incidence of PTB, the monthly average air pollutants
concentration, and meteorological factors in Ningbo from 2015 to 2019.

Variables Mean S.D. Min P25 P50 P75 MAX IQR

Monthly
incidence of

PTB
3.85 0.50 2.77 3.48 3.80 4.17 5.03 0.69

Air pollutants
concentration

PM2.5
(µg/m3) 35.79 14.73 14.35 24.30 32.64 43.95 81.42 19.65

PM10 (µg/m3) 57.42 21.51 24.48 41.62 52.55 69.57 121.16 27.95
SO2 (µg/m3) 10.90 3.97 5.130 8.182 10.36 12.665 26.900 4.483
CO (mg/m3) 0.78 0.15 0.53 0.67 0.75 0.85 1.25 0.18
NO2 (µg/m3) 37.47 12.25 14.68 28.76 35.36 46.19 64.52 17.43
O3 (µg/m3) 95.26 26.79 31.68 71.86 104.70 113.32 143.55 41.46

Meteorological
factors

MAT (◦C) 17.79 7.85 5.32 10.62 18.21 24.66 30.57 14.04
MAHT (◦C) 21.88 7.97 8.61 14.66 23.25 28.24 35.97 13.58
MALT (◦C) 14.53 8.01 2.83 6.35 14.20 22.06 26.74 15.70
MAH (%) 76.70 5.23 63.40 73.49 77.74 80.78 86.70 7.29

MAP (hPa) 1015.58 7.77 1002.69 1009.205 1015.89 1022.41 1027.19 15.18
MAS (m/s) 21.36 4.72 10.67 18.64 21.75 25.18 32.81 6.54

Notes: IQR = P75 − P25; MAT: monthly average temperature; MAHT: monthly average highest temperature;
MALT: monthly average lowest temperature; MAH: monthly average relative humidity; MAP: monthly average
atmospheric pressure; MAS: monthly average wind speed.

3.2. ARIMA Model

The optimal ARIMA model constructed by monthly incidence of PTB from 2015 to 2018
according to BIC was the ARIMA (0,0,0)(1,1,0)12 model with a BIC of 18.2228. The optimal
ARIMA model for PM2.5, PM10, SO2, CO, NO2, O3, MAT, MAHT, MALT, MAH, MAP, and
MAS from 2015 to 2018 is listed in Table 2. The Ljung–Box test indicated that residual
sequence from all models did not significantly depart from a white noise sequence (p > 0.05).

3.3. Cross-Correlation Analysis
3.3.1. CCF between the PTB and Ambient Factors

After prewhitening, we calculated the cross-correlation function (CCF) coefficients
between the PTB and each ambient factor at different lag periods. Table 3 shows that the
PTB was positively correlated with the PM2.5 (3-month lag), PM10 (3-month lag), and CO

https://www.r-project.org/
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(9-month lag) and negatively correlated with O3 (0-month lag), MAT (1, 3-month lag),
MALT (1,3-month lag), MAH (7-month lag), and MAP (2, 11-month lag) (p < 0.05).

Figure 1. Time series of the monthly incidence of PTB, the monthly average air pollutants concentra-
tion, and meteorological factors in Ningbo from 2015 to 2019.

Table 2. The optimal ARIMA model for monthly incidence of PTB, the monthly average air pollutants
concentration, and meteorological factors in Ningbo from 2015 to 2018.

Variables Model BIC
Ljung–Box Test

X-Squared p-Value

Monthly incidence
of PTB ARIMA(0,0,0)(1,1,0)12 18.2228 2.1833 0.1395

Air pollutants
concentration

PM2.5 (µg/m3) ARIMA (1,0,0)(0,1,0)12 266.6336 0.7367 0.3907
PM10 (µg/m3) ARIMA (1,0,0)(0,1,0)12 298.6734 0.6880 0.4068
SO2 (µg/m3) ARIMA (1,0,0)(0,1,0)12 161.6301 0.5341 0.4649
CO (mg/m3) ARIMA (1,0,0)(1,1,0)12 −74.6422 1.3417 0.2467
NO2 (µg/m3) ARIMA (1,0,0)(0,1,1)12 238.207 0.7107 0.3992
O3 (µg/m3) ARIMA (0,0,1)(1,1,0)12 297.4298 0.0011 0.9736

Meteorological
factors

MAT (◦C) ARIMA (0,0,0)(0,1,1)12 126.2939 2.2553 0.1332
MAHT (◦C) ARIMA (1,0,0)(0,1,1)12 148.7069 0.1210 0.7280
MALT (◦C) ARIMA (0,0,0)(0,1,0)12 139.3857 2.5996 0.1069
MAH (%) ARIMA (0,0,0)(1,1,0)12 224.0759 0.0009 0.9757

MAP (hPa) ARIMA (0,0,0)(1,1,0)12 250.4339 0.2565 0.6125
MAS (m/s) ARIMA (0,1,1) 262.4965 0.4851 0.4861
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Table 3. CCF coefficients between the prewhitened ambient factors residuals series with different
time lags and the prewhitened PTB incidence residuals series from 2015 to 2018.

Factors
Lag Periods (Months)

0 1 2 3 4 5 6 7 8 9 10 11 12

PM2.5 0.040 0.145 −0.125 0.353 * 0.028 0.124 −0.018 0.164 −0.175 0.151 0.013 −0.122 0.112
PM10 0.068 0.166 −0.114 0.343 * 0.041 0.076 −0.049 0.209 −0.172 0.190 −0.007 −0.110 0.077
SO2 0.202 0.069 −0.127 0.176 0.125 −0.161 −0.034 0.151 −0.211 0.031 0.103 −0.270 0.145
CO −0.013 0.075 −0.028 −0.086 −0.111 0.100 −0.036 0.115 −0.072 0.291 * −0.083 0.165 0.000

NO2 0.034 −0.100 −0.106 0.044 0.073 0.013 −0.164 0.008 −0.209 0.278 −0.075 −0.064 0.073

O3
−0.321

* −0.135 −0.279 −0.085 −0.014 0.026 −0.064 0.072 0.111 0.081 0.113 −0.151 0.216

MAT −0.206 −0.406
* −0.102 −0.316

* −0.002 −0.081 0.034 0.093 0.022 −0.126 −0.095 0.146 0.124

MAHT 0.093 −0.215 −0.040 −0.171 0.155 −0.014 0.148 0.241 0.162 0.080 −0.029 0.177 0.174

MALT −0.198 −0.310
* −0.040 −0.423

* −0.094 −0.085 −0.077 −0.158 −0.018 −0.133 0.014 0.149 0.122

MAH −0.136 −0.016 −0.019 −0.240 −0.238 0.073 −0.053 −0.307
* −0.074 −0.273 −0.036 −0.085 −0.157

MAP 0.029 −0.136 −0.299
* −0.030 0.105 −0.252 −0.151 0.066 0.053 −0.248 0.027 −0.335

* −0.066

MAS −0.091 0.125 −0.112 −0.205 −0.169 −0.098 0.068 0.045 0.091 −0.199 0.038 −0.053 −0.240

Note: *, p < 0.05.

3.3.2. CCF between the Air Pollutants and Meteorological Factors

We also calculated the CCF coefficients between prewhitened air pollutants concen-
tration and meteorological factors residual series at lag 0 between 2015 and 2018. Table 4
shows that PM2.5 and PM10 were significant negatively correlated with MAT, MALT, and
MAH; SO2 was significant negatively correlated with MALT and MAH; NO2 was signif-
icant negatively correlated with MALT, MAH, and MAS; O3 was significant negatively
correlated with MAH , but significant positively correlated with MAP.

Table 4. CCF coefficients between the prewhitened air pollutants concentration and meteorological
factors residuals series at lag 0 between 2015 and 2018.

Air
Pollutants

Meteorological Factors

MAT MAHT MALT MAH MAP MAS

PM2.5 −0.317 * −0.154 −0.527 * −0.477 * 0.022 −0.289 *
PM10 −0.319 * −0.136 −0.586 * −0.605 * 0.066 −0.248
SO2 −0.249 −0.059 −0.457 * −0.529 * 0.428 * −0.098
CO −0.249 −0.097 −0.115 −0.059 −0.199 −0.150

NO2 −0.272 −0.201 −0.308 * −0.400 * −0.016 −0.437 *
O3 0.048 0.122 −0.161 −0.403 * 0.318 * 0.027

Note: *, p < 0.05.

3.4. Univariate and Multivariate ARIMAX Analyses

Based on the cross-correlation analysis, we tested the univariate ARIMAX model by
incorporating different lag periods of risk factors as exogenous regressors based on the
ARIMA (0,0,0)(1,1,0)12 model from PTB time series. Because different ambient factors have
different lag periods, from 1 to 11 months, in order to compare the performance of different
univariate ARIMAX models and the optimal ARIMA model, it is necessary to make the
sequence length of modeling consistent. Therefore, the monthly incidence of PTB and
environmental factors with different lag periods from January 2016 to December 2018 were
selected to construct the ARIMAX model and the modeling times were all 36 months.

As shown in Table 5, the ARIMAX (0,0,0)(1,1,0)12 model with the O3 (0-month lag)
and ARIMAX (0,0,0)(1,1,0)12 model with the MAP (11-month lag) is the optimal univariate
ARIMAX model in terms of the four criteria being considered. The BIC value, fitted and
test MAPE of the two univariate ARIMAX models were all smaller than the ARIMA model,
and the coefficients of the regression term of these two univariate ARIMAX models were
all significant (p < 0.05). Then, we tested the multivariate ARIMAX model by incorporating
both the O3 (0-month lag) and the MAP (11-month lag) as exogenous regressors based
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on the ARIMA (0,0,0)(1,1,0)12 model, and the coefficients of the regression term of the
multivariate ARIMAX model were all significant (p < 0.05). Compared with the optimal
ARIMA and two suitable univariate ARIMAX models, the multivariate ARIMAX model
was the best fitting model, with the lowest BIC (8.1092), fitted MAPE (2.9097%), and test
MAPE (9.2643%). Finally, the actual incidence, fitted and predicted incidences of PTB
using ARIMA (0,0,0)(1,1,0)12 and ARIMA (0,0,0)(1,1,0)12 with O3 (0-month lag) and MAP
(11-month lag) in Ningbo were shown in Figure 2.

Table 5. Summary of the fitted parameters of the optimal ARIMA, univariate ARIMAX, and the
multivariate ARIMAX model analysis in Ningbo, 2016–2018.

Model BIC
MAPE(%) Risk Factors

Fitted Test Vars Coef S.E. T p-Value

(1) ARIMA(0,0,0)(1,1,0)12 9.0376 3.3269 10.6693 sar1 −0.5829 0.1907 3.0566 0.0021 *

(2) ARIMA(0,0,0)(1,1,0)12+PM2.5(lag3) d 12.1682 3.3748 10.5262 d
sar1 −0.5458 0.2720 2.0064 0.0264 *

PM2.5(lag3) 0.0019 0.0087 0.2147 0.4156

(3) ARIMA(0,0,0)(1,1,0)12+PM10(lag3) d 12.0662 3.3833 10.4819 d
sar1 −0.5355 0.2460 2.1767 0.0183 *

PM10(lag3) 0.0018 0.0048 0.3809 0.3528

(4) ARIMA(0,0,0)(1,1,0)12+CO(lag9) d 11.1900 3.2306 c 9.5569 d
sar1 −0.5843 0.1903 3.0707 0.0021 *

PM10(lag3) 0.0042 0.0041 1.0221 0.1570

(5) ARIMA(0,0,0)(1,1,0)12+O3(lag0) abcd 8.2634 a 3.0226 c 9.7944 d
sar1 −0.6418 0.1717 3.7374 0.0003 *

O3(lag0) −0.0061 0.0029 2.0751 0.0228 * b

(6) ARIMA(0,0,0)(1,1,0)12+MAT(lag1) abc −1.4075 a 2.3205c 12.0531
sar1 −0.5673 0.1978 2.8679 0.0035 *

MAT(lag1) −0.1317 0.0310 4.2421 <0.0001 * b

(7) ARIMA(0,0,0)(1,1,0)12+MAT(lag3) 10.5244 3.3860 11.0464
sar1 −0.5146 0.2169 2.3730 0.0117 *

MAT(lag3) −0.0595 0.0443 1.3410 0.0944

(8) ARIMA(0,0,0)(1,1,0)12+MALT(lag1) abc 7.8580 a 2.8932 c 12.4087
sar1 −0.4583 0.2670 1.7165 0.0476 *

MALT(lag1) −0.0697 0.0357 1.9497 0.0297 * b

(9) ARIMA(0,0,0)(1,1,0)12+MALT(lag3) abc 8.0334 a 3.2171 c 11.4344
sar1 −0.5035 0.2217 2.2709 0.0148 *

MALT(lag3) −0.0736 0.0347 2.1198 0.0207 * b

(10) ARIMA(0,0,0)(1,1,0)12+MAH(lag7) cd 10.2365 3.1969 c 10.4618 d
sar1 −0.6337 0.1732 3.6587 0.0004 *

MAH(lag7) −0.0157 0.0107 1.4625 0.0764

(11) ARIMA(0,0,0)(1,1,0)12+MAP(lag2) c 9.9590 3.1324 c 10.9889
sar1 −0.6733 0.1607 4.1897 <0.0001

MAP(lag2) −0.0095 0.0059 1.6023 0.0592

(12) ARIMA(0,0,0)(1,1,0)12+MAP(lag11) abcd 8.4574 a 3.2063 c 10.0108 d
sar1 −0.4940 0.2186 2.2601 0.0152 *

MAP(lag11) −0.0125 0.0060 2.0680 0.0232 * b

(13) ARIMA(0,0,0)(1,1,0)12+
O3(lag0)+MAP(lag11) abcd 8.1092 a 2.9097 c 9.2643 d

sar1 −0.5608 0.2018 2.7791 0.0045 *

O3(lag0) −0.0054 0.0028 1.9383 0.0306 * b

MAP(lag11) −0.0115 0.0059 1.9461 0.0301 * b

Notes: Fitted: fitted results; Test: test results; BIC: Bayesian information criterion; MAPE: mean absolute
percentage error; Coef: coefficient of risk factors; lag: time lag of risk factors; S.E.: standard error; T: t statistic; sar1:
seasonal AR (1); a: meet criteria (a): the BIC value smaller than the optimal ARIMA model; b: meet criteria (b): the
coefficients of the regression term all significant (p < 0.05); c: meet criteria (c): the fitted MAPE value smaller than
the optimal ARIMA model; d: meet criteria (d): the test MAPE value smaller than the optimal ARIMA model;
*: p < 0.05.
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Figure 2. Actual incidence, fitted and predicted incidences of ARIMA (0,0,0) (1,1,0)12 and ARIMA
(0,0,0) (1,1,0)12 with O3 (0-month lag) and MAP (11-month lag) in Ningbo.

4. Discussion

In this study, we developed and evaluated time series models to characterize the
ambient factors of pulmonary tuberculosis transmission in Ningbo to inform control mea-
sures. To our knowledge, this is the first time series study to construct ARIMAX models
to explore the role of both air pollution and meteorological factors in predicting PTB. We
found that both air pollution and meteorological factors were associated with the incidence
of tuberculosis in Ningbo with a lag effect. Additionally, the multivariate ARIMAX model
that included both the ozone at lag 0 and the monthly mean atmospheric pressure at lag
11 had a better predicting performance than the inclusion of one variable. This modeling
technique can be a useful tool for planning control interventions and could be implemented
during routine tuberculosis surveillance in Ningbo.

Although preventive measures have made great progress, the prevention and treat-
ment of tuberculosis still involves enormous challenges, such as increased drug resis-
tance [19,20], dual infection of tuberculosis and AIDS [21], and increased migrant popula-
tion [22]. Furthermore, urban air quality is an important potential factor in the contribution
of tuberculosis infection. There is a growing body of evidence suggesting an association
between air pollution exposure and PTB incidence. However, available evidence on the
association of air pollution and PTB risk is inconsistent [23]. Our study found a significantly
positive correlation of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5)
or ≤10 µm (PM10) with PTB incidence, which is consistent with other studies [24,25]. More-
over, we also found that CO was positively correlated with PTB incidence, while O3 was
negatively correlated with PTB incidence, which is consistent with other studies [11,24].
Limited evidence from vitro studies has suggested that the survival rate of mice intra-
venously inoculated with Mycobacterium tuberculosis after intravenous injection of dissolved
ozone was significantly higher than that of mice not treated with ozone [26]. The association
between PTB and air pollution exposure varied across regions, which may be partially
attributed to pollutant concentration or analytic methods. Our study site is a coastal city of
South China, the concentrations of air pollutants in our study (PM2.5: 35.79 ± 14.73 µg/m3,
SO2: 10.90 ± 3.97 µg/m3, NO2: 37.47 ± 12.25 µg/m3) were much lower than those in
mega cities such as Beijing (PM2.5: 105.10 ± 80.90 µg/m3, SO2: 48.60 ± 49.10 µg/m3, NO2:
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64.20 ± 25.70 µg/m3) [27]. Evidence from the area with lower air pollution levels will be
important to strengthen the basis for policy making [28].

Meteorological factors, including MAT, MALT, MAH, and MAP, had a negative effect
on PTB with a lag effect in our study, which are largely consistent with the findings in
previous studies [14,29]. Climate change affects tuberculosis through diverse pathways:
changes in climatic factors such as temperature, humidity, and precipitation influence host
response through alterations in vitamin D distribution, ultraviolet radiation, malnutrition,
and other risk factors [30]. Our research also found that PM2.5 and PM10 were significant
negatively correlated with MAT, MALT, and MAH, and O3 was significant negatively cor-
related with MAH, but significant positively correlated with MAP. The results of our study
support previous findings that climatic factors could affect the incidence of tuberculosis by
indirectly regulating urban air quality [14].

Our study used incidence of PTB from 2016 to 2018 and delayed ambient factors
modeling to predict TB incidence in 2019 and compare it with the actual incidence. Cross-
validating to calculate test MAPE could avoid the over-fitting of the model caused by
incorporating ambient factors. For example, ARIMA (0,0,0)(1,1,0)12 + MAT (lag1) has the
smallest fitted MAPE of 2.3205%, but its test MAPE is as high as 12.0531%, which is an
obvious over-fitting phenomenon. The fitted and test MAPE of ARIMA (0,0,0)(1,1,0)12 +
O3 (lag0) + MAP (lag11) are both smaller than the optimal ARIMA model, so over-fitting
is effectively avoided. Through ARIMA model prewhitening, we found a lag correlation
between the residual sequence of ambient factors and the residual sequence of tuberculosis
incidence, which suggests that it is possible to control tuberculosis and other infectious
diseases by protecting the environment and reducing pollutants.

Admittedly, there were limitations in our study. Firstly, because there was a lag
relationship between ambient factors and the incidence of PTB, we could accurately predict
the incidence in these future lag periods by using the ARIMAX model. For example, the
lag time of MAP is 11 months, so we can accurately predict the incidence of the next
11 months. However, there was no lag relationship between O3 and PTB in this study.
Therefore, using O3 to predict tuberculosis in the same month does not produce significant
result. In addition, the ARIMA model can only extract the seasonal and long-term trends
of ambient factors and tuberculosis incidence. This model cannot extract and predict the
information of residual sequences. Thus, it is invalid to use the ARIMA model to predict
future ambient factors and then incorporate them into the ARIMAX model. Because we are
temporarily unable to accurately predict the future ambient factors, we can only rely on
factors such as MAP to accurately predict the incidence of PTB in the next 11 months. It is
our future direction to improve the accuracy of the ARIMAX model in predicting long-term
incidence of PTB by finding a more advanced model to predict the future ambient factors.
Secondly, the ARIMAX model can only identify a correlation between PTB incidence
and ambient factors but cannot identify causal relationships. Thirdly, data from fixed
monitoring stations assume that all participants in the target area were at the same level of
air pollution exposure, and personal exposure data were not collected [31].

5. Conclusions

Ambient air pollutants and meteorological factors were associated with monthly
incidence of PTB with a lag effect. Meteorological factors may affect the incidence of PTB
by indirectly regulating urban air quality. The multivariate ARIMAX model that included
both the ozone with a 0-month lag and the monthly average atmospheric pressure with an
11-month lag had the best performance to predict the incidence of PTB. However, ARIMAX
has limited improvement in prediction accuracy compared with the ARIMA model. This
modeling technique can be a useful tool for planning control interventions and could
be implemented during routine tuberculosis surveillance in Ningbo. When the peak of
tuberculosis and low atmosphere pressure arise, health education on tuberculosis should
be strengthened to remind people to seek medical treatment as soon as symptoms appear.
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