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Abstract: Metal organic framework based mixed matrix membranes (MOF-MMMs) were synthesized
and applied for dispersive membrane extraction (DME) of four neonicotinoid insecticides (niten-
pyram, thiacloprid, imidacloprid, and acetamiprid) in environmental water, combined with high
performance liquid chromatography (HPLC) for determination. Several experimental conditions
were optimized in detail, involving dosage percentage of MOF, extraction time, sample pH, salinity,
type and volume of eluent, and elution time. High sensitivity with limits of detection and quantifica-
tion were achieved as 0.013–0.064 µg L−1 and 0.038–0.190 µg L−1, respectively, and good precision
with relative standard deviations were obtained as 3.07–12.78%. The proposed method has been
successfully applied to determine four neonicotinoid insecticides in tap water, surface water, and sea-
water, satisfactory recoveries of spiked water samples were between 72.50 and 117.98%. Additionally,
the MOF-MMMs showed good reusability with the extraction efficiencies almost remaining stable
after 14 cycles. The MOF-MMMs based DME followed by the HPLC method can be a promising
utility for the determination of neonicotinoid insecticides in environmental water samples, with high
sensitivity and convenient operation.

Keywords: metal-organic framework; neonicotinoid insecticides; dispersive membrane extraction;
high performance liquid chromatography; environmental analysis

1. Introduction

Neonicotinoid insecticides, as a newest major class of synthetic organic insecticides, have
undergone rapid development in recent years [1,2]. Low doses of neonicotinoid insecticides
can be absorbed by plants and act quickly on insect pests and afford long-term protection
for plants [3]. Due to their selectively high toxicity to insects, neonicotinoid insecticides
have become the most widely used insecticides and account for about a quarter of all in-
secticides. Neonicotinoid residues can leach into water bodies by rainfall, and they have
been frequently detected in groundwater, surface water, and ocean tides [4,5]. Neonicotinoid
insecticides molecules contain ionizable basic amine or imine substituent, which can attack
the acetylcholine receptors in the mammalian central nervous system, leading to adverse
impacts on memory, cognition and behavior development of human beings [6]. Neonicotinoid
contaminants in environments would pose a potential risk to both human health [7,8] and
ecosystems [9]. Therefore, it is necessary to establish sensitive and simple analytical methods
for the determination of trace neonicotinoid insecticides in environmental waters.

The residual concentration of neonicotinoid insecticides in environmental waters is
generally low for commonly used instruments to detect. In general, the most commonly
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used analytical methods for neonicotinoid insecticides are high-performance liquid chro-
matography coupled with an ultraviolet detector (HPLC-UV) [10,11] or mass spectrometry
(HPLC-MS) [12]. UV detectors are not competitive to provide high sensitivity as HPLC-MS.
However, the cost of HPLC-MS analysis is high. HPLC-UV is more commonly available, and
just needs a higher enrichment factor prior to analysis. Therefore, the sample pretreatment
process is imperative to enrich target analytes and eliminate the matrix effects of complex
samples. Several pretreatment methods, including packed solid-phase extraction (SPE) [13],
dispersive SPE [14], magnetic SPE [15], and liquid-liquid microextraction [16] have been
reported for the enrichment of neonicotinoid insecticides. In different SPE modes, the
selection of adsorbent material is always the crucial factor to improve enrichment efficiency.

Metal-organic frameworks (MOFs) are a novel class of porous materials composed of
organic ligands with inorganic clusters. Due to their unique properties, such as high specific
surface area, tunable pore size, and easy functionalization [17,18], MOFs have attracted ex-
tensive attention and have been widely applied in various fields such as gas storage [19,20],
catalysis [21,22], sensing [23], and especially in adsorbents [24–26]. Porous structure and
abundant adsorption sites in the organic ligand and inorganic clusters make MOFs exhibit
excellent adsorption performance towards various compounds. The separation of disper-
sive MOFs crystals from aqueous solutions is usually labored. Therefore, MOFs adsorbents
are always combined with different SPE modes, such as SPE cartridge [27], solid-phase
microextraction (SPME) [28], and stir bar sorptive extraction (SBSE) [29]. Our group has
prepared magnetic MIL-101 and magnetic MOF-5 for magnetic SPE of pyrazole/pyrrole
pesticides [30] and heterocyclic pesticides [31], respectively. However, amounts of MOFs
remain in the sample solution and cause subsequent problems. The formation of the mem-
brane is an efficient approach to integrating MOFs crystals, and meanwhile, the membrane
makes the separation of MOFs from aqueous phase much more convenient [32–34].

In general, MOFs-based mixed-matrix membrane (MMM) is quite robust, in which,
the MOFs particles act as a filler and the organic matrix acts as a continuous phase to
ensure the continuity of the membrane. The MMM synthesis does not need substrates for
MOF growth and it can obtain higher MOF loading [35]. The MOFs MMM have exhibited
wide application prospects in gas separation and storage [36–38]. Meanwhile, the excellent
adsorption capability and high porosity of MOFs MMM are also beneficial for targets’
mass transfer from the liquid phase to the MOFs MMM adsorbents [39]. In addition, the
robust MOFs MMM makes the separation of adsorbents from aqueous solutions extremely
convenient. Therefore, the MOFs MMM materials are potential candidate adsorbents in
sample preparation. Among various series of MOFs, MILs are famed for their flexible
skeleton and breathing effect. It has been proven that the flexible skeleton could significantly
promote adsorption capacity [40]. In view of the electropositive basic amine or imine
substituent on nitrogen heterocyclic ring in neonicotinoid insecticides, MILs MMM provides
a good prospect for adsorption of neonicotinoid insecticides by cation-π bonding, π-π
conjugation and breathing effect.

Therefore, herein, we proposed a kind of MOFs MMM (MIL-53 MMM) for simultane-
ous DME of four neonicotinoid insecticides followed by HPLC-DAD determination. The
main influence parameters of the DME process were systematically investigated. Under op-
timal conditions, the developed DME-HPLC method was well validated and practically ap-
plied for the determination of neonicotinoid insecticides in different environmental waters.

2. Materials and Methods
2.1. Reagents and Materials

All chemicals were of at least analytical grade. Benzene-1,4-dicarboxylic acid (Tianjin
Guangfu Fine Chemicals Research Institute, Tianjin, China), aluminum nitrate nonahydrate
(Aladdin Reagent Co., Ltd., Shanghai, China) and N, N-dimethylformamide (Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) were used to prepare MIL-53. Polyvinylidene
Fluoride (PVDF) was purchased from American Arkema Company (Crosby, TX, USA).
Methanol and acetonitrile were procured from Shanghai Anpu Reagent Co., Ltd. (Shanghai,
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China). Ethyl acetate was obtained from Honeywell (Charlotte, NC, USA). Acetone was
supplied by Sinopharm Chemical Reagent Co., Ltd. Sodium hydroxide was purchased
from Tianjin Hengxing Chemical Reagent Co., Ltd. (Tianjin, China). Sodium chloride
was obtained from ShangHai Aibi Chemistry Preparation Co., Ltd. (Shanghai, China).
Hydrochloric acid was purchased from Tianjin Kaixin Chemical Co., Ltd. (Tianjin, China).
Ultrapure water (18.2 MΩ) was obtained by a model Millipore D-24 UV ultrapure water
system (Millipore, France).

Imidacloprid, acetamiprid and thiacloprid were supplied by Shanghai Pesticide Test-
ing Research Center (Shanghai, China). Nitenpyram was procured from Beijing Yinuokai
Technology Co., Ltd. The structural formulas of four neonicotinoid insecticides are shown
in Figure 1. Stock solutions at 1000 mg L−1 were prepared by dissolving nitenpyram,
idacloprid, acetamiprid, and thiacloprid powders into methanol, respectively. Then, the
stock solutions were stored at 4 ◦C.
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Figure 1. Chemical structures of four neonicotinoid insecticides.

The environmental water samples were collected from laboratory tap water, Qingdao Bo-
hai Bay seawater and Qingdao Yinfu Reservoir surface water. All samples were filtered through
the 0.45 µm filter membrane, and then placed in the refrigerator at 4 ◦C for further analysis.

2.2. Apparatus

The concentration of four neonicotinoid insecticides was detected by Agilent 1100 liquid
chromatographic system coupled with DAD detector. HPLC separation was carried out
using a ZORBAX SB-C18 column (4.6 × 250 mm, 5 µm) at room temperature. The sample
injection volume was 20 µL. DAD absorbance was monitored at 244 nm and 270 nm. The
mobile phase was a mixture of methanol and water. Gradient elution conditions were as
follows: 0–5 min, isocratic 30% methanol; 10–18 min, isocratic 55% methanol. The flow rate
was 0.8 mL min−1. Under these optimum conditions, all studied insecticides were well
separated from each other.

SUPRA 55 scanning electron microscope (SEM, ZEISS, Germany) were used to charac-
terize the synthesized MIL-53 mixed matrix membrane. X-ray diffractometer (XRD) pattern
recorded on D8 Advance (Bruker, Billerica, MA, USA). Frontier Nicolet iN10 infrared
spectrometer (Thermo Fisher, Waltham, MA, USA) with an attenuated total reflection (ATR)
accessory was used to identify the functional groups of materials.

2.3. Synthesis of MIL-53-PVDF MMM

MIL-53 was synthesized by the reported solvothermal method [41] 3.376 g aluminum
nitrate nonahydrate and 0.996 g terephthalic acid were dissolved in 44 mL DMF and 16 mL
ultrapure water. The mixture was placed in a water bath and stirred at 40 ◦C for 2 h. Then
the mixed solution was sealed in a 100 mL Teflon-lined stainless steel autoclave and heated
in the oven at 130 ◦C for 48 h. After cooling naturally to room temperature, the obtained
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particles were collected by centrifugation and washed three times with DMF. The resulting
MIL-53 was dried at 100 ◦C.

Subsequently, 120 mg of MIL-53 powder was dispersed in 5 mL of acetone under an
ultrasonic bath for 30 min. Then, 2 mL of PVDF solution (50 mg PVDF dissolved in 2 mL
DMF) was added to the MOFs suspension. The mixed suspension of MOFs and PVDF
was further mixed under ultrasound for 30 min, and then rotary evaporation was used to
remove acetone. The obtained mixture of MIL-53 and PVDF in DMF was uniformly poured
onto a clean glass plate. The coated glass substrate was then heated at 70 ◦C, and the
MIL-53 membrane gradually formed when the solvent was dried. The synthesis procedure
is schematically shown in Figure 2.
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Figure 2. Illustration for the synthesis of the MIL-53 MMM.

2.4. DME Procedure

A 100 mL water sample containing a certain concentration of neonicotinoid insecticides
was placed in a beaker and the MIL-53 MMM was immersed into the aqueous solution, the
beaker was shaken for 35 min. After extraction, 2 × 5 mL acetone was used to elute the
adsorbed insecticides from MIL-53 MMM, elution time was 6 min. The collected extract was
concentrated by a gentle stream of nitrogen to approximately dry, then it was diluted with
0.5 mL ultrapure water/methanol (v/v = 7:3), which was filtered with 0.45 µm nylon membrane
prior to HPLC analysis. The extraction procedure is shown schematically in Figure 3.
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3. Results and Discussion
3.1. Choice of Membrane Material

MIL-53 materials are a classic series of MOFs with flexible frameworks when they
interact with polar gas molecules by hydrogen bonds [41]. The relevant literature reported
that MIL-53 exhibited higher affinity to compounds with higher polarity [42]. Taking
account of the cationic amine or imine groups in neonicotinoid insecticides, MIL-53 was
selected as the adsorbents, and the abundant benzene rings in MIL-53 were also beneficial
to form π-π conjugation and cationic-π bonding to trap neonicotinoid insecticides. On
the other hand, MIL-53 MMM materials were proven to be stable when applied in the
desalination of dyes contaminated water [43]. Therefore, MIL-53 MMM based DME
pretreatment technique provides an appropriate approach to enriching neonicotinoid
insecticides from water samples.

3.2. Characterization of MIL-53 MMM

The morphology of MIL-53 MMM was characterized by SEM. As seen in Figure 4,
cubic crystals of MIL-53 were cross-linked with each other by the polymer binder. The
microscopic morphology of MIL-53 MMM are consistent with the reported literature [44],
indicating successful synthetization.
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FT-IR spectra of MIL-53 (a) and MIL-53 MMM (b) were shown in Figure 5. As can
be seen from Figure 5a, the absorption peaks at 1500 cm−1 and 1450 cm−1 could be
assigned to C=C stretching in the benzene ring, and the absorption band at 1696 cm−1

could be attributed to C=O groups in terephthalic acid. These results demonstrated that the
terephthalic acid ligand was incorporated in the framework of MIL-53. Above absorption
peaks were also exhibited in MIL-53 MMM (Figure 5b), suggesting that the chemical
structure of MIL-53 remains in MIL-53 MMM. On the other hand, absorption band at
1200 cm−1 related to C-F stretching vibration in PVDF. These results indicate that MIL-53
was embedded in the PVDF membrane and MIL-53 MMM was successfully prepared [45].

XRD patterns of the MIL-53 crystal (a) and MIL-53 MMM (b) were shown in Figure 6.
As seen, the observed diffraction peaks at 2θ = 9.3◦, 17.8◦, 21.8◦, and 27.2◦ in the MIL-53
crystal were consistent with the reported literature [46]. These characteristic peaks also
existed in MIL-53 MMM, indicating that the crystal structure of MIL-53 was remained in
the process of forming a membrane.

3.3. Optimization of DME Conditions

Several major factors that could affect extraction efficiency were investigated, including
dosage ratio of MOFs in MOF-MMM, extraction time, sample pH, salt concentration, type
and volume of desorption solvent, and elution time. Further, 10 µg L−1 of spiked ultrapure
water sample was used under different experimental conditions, and the optimization was
conducted by three parallel experiments.
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3.3.1. Effect of the Dosage of MOFs

The dose ratio of MOFs in MOF-MMM is one of the key parameter conditions that
affect the efficiency of the DME process. Different amounts of MIL-53 powder in the range
from 30 mg to 150 mg were mixed with 50 mg of PVDF to form the MMM. As shown in
Figure 7a, the peak areas of the four neonicotinoid insecticides gradually increased from
30 mg to 120 mg, and then slightly decreased from 120 mg to 150 mg. This may be due to
the weight of the whole MIL-53 MMM being much too heavy, and cannot be uniformly
suspended in water samples, leading to a decrease in extraction efficiencies. As a result,
120 mg of MIL-53 powder was set to prepare the MIL-53 MMM.

3.3.2. Effect of Extraction Time

Sufficient extraction time is significant to reach the adsorption equilibrium between
sample solutions and adsorbents. Different extraction time at 15 min, 25 min, 35 min,
45 min, and 50 min were investigated. As shown in Figure 7b, the peak areas of the four
neonicotinoid insecticides increased rapidly from 15 min to 35 min and then reached a
plateau. Therefore, 35 min was selected as the extraction time.
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3.3.3. Effect of Sample Solution pH

The pH of the sample solution not only affects the molecular forms of neonicotinoid
insecticides, but also affects the surface charge of the MIL-53 MMM. In this study, solution
pH value was adjusted in the range of 3–9 by 0.1 M hydrochloric acid and sodium hydrox-
ide. As shown in Figure 7c, the peak areas of four neonicotinoid insecticides remained
almost constant within pH 3.0–8.0. The main adsorption mechanism in this pH range
were π-π conjugation between benzene rings in MIL-53 and neonicotinoid insecticides,
and cationic-π bonding between electropositive basic amine or imine in neonicotinoid
insecticides and benzene rings in MIL-53. When pH was lower than 4.0, the neonicotinoid
insecticides and MIL-53 MMM were both positively charged, the electrostatic repulsion
leading to the decrease in extraction efficiencies. With the pH value increasing higher than
8.0, more anionic OH- species in the sample solution would connect with neonicotinoid in-
secticides, cationic-π bonding was reduced, leading to the decrease in extraction efficiencies.
Therefore, the pH value of the water sample in the further experiments was not adjusted.

3.3.4. Effect of Salt Concentration

The salt concentration can influence the ionic strength and viscosity of the sample
solution, which would affect the interactions between the sorbent and analytes. In this
study, different salt concentrations of 0%, 0.1%, 1%, 5%, and 10% were investigated by
adding sodium chloride to the water samples. As shown in Figure 7d, the peak area of
the four neonicotinoid insecticides slightly decreased with the increase in salinity. This
phenomenon can be explained as the dissociated NaCl surrounding the MIL-53 MMM
would impede the cationic-π bonding between neonicotinoid insecticides and benzene
rings in MIL-53. Therefore, no salt was added to the water sample in subsequent studies.

3.3.5. Effect of Desorption Condition

The property of desorption solvent is an important factor affecting elution efficiency.
Four frequently used organic solvents, including methanol, acetonitrile, ethyl acetate, and
acetone, were examined as desorption solvents. As shown in Figure 7e, acetone had the
best elution efficiency for four neonicotinoid insecticides. Therefore, acetone was selected
as the desorption solvent for further experiments.

Due to the fresh solvent can desorb more analytes, the eluent process was conducted
twice. Thus, 2 × 2 mL, 2 × 3 mL, 2 × 4 mL, 2 × 5 mL, and 2 × 7 mL of acetone were used
to optimize the volume of desorption solvent. As shown in Figure 7f, the peak areas of four
neonicotinoid insecticides gradually increased with the volume of acetone increasing from
2 × 2 mL to 2 × 5 mL and then reached to a plateau. Indicating that 2 × 5 mL of acetone
was enough to desorb the adsorbed neonicotinoid insecticides. Therefore, 2 × 5 mL of
acetone was used for the remaining experiments.

Subsequently, different elution time at 2 min, 4 min, 6 min, 8 min, and 10 min were
investigated. As shown in Figure 7g, the maximum peak areas of four neonicotinoid
insecticides were achieved at 6 min. Therefore, elution time was set at 6 min in the
following experiments.

3.4. Regeneration of MIL-53 MMM for DME

Reusability of the adsorbents related to the efficiency and cost effectiveness, which is
crucial for its practical applications. The exhausted MIL-53 MMM was rinsed by acetone
prior to the next DME process. As shown in Figure 8, the reusability efficiency of the
MIL-53 MMM remained high after fourteen successive cycles. The results suggested
that the MIL-53 MMM based DME pretreatment method possessed high stability and
good reusability.

3.5. Analytical Performance of the DME-HPLC Method

Under the optimum extraction conditions, several analytical performance parameters
of this established method were evaluated. As listed in Table 1, good linearity was achieved
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within the concentration ranges of 0.20–15.00 µg L−1 for nitenpyram, 0.04–15.00 µg L−1

for imidacloprid and thiacloprid, and 0.05–15.00 µg L−1 for acetamiprid. Calibration
curves were obtained by plotting the peak areas (y) of neonicotinoid insecticides versus
their concentrations (x). The obtained correlation coefficients (r2) is between 0.990–0.996.
The limits of detection (LODs) and the limits of quantitation (LOQs) were calculated
based on analyte signal to background noise ratio of 3 and 10, respectively. As seen in
Table 1, the LODs and LOQs of four neonicotinoid insecticides were 0.013–0.064 µg L−1 and
0.038–0.190 µg L−1, respectively.

Table 1. Regression equation, linear range, correlation coefficient (r2) and method detection limit,
and limit of quantification of four neonicotinoid insecticides.

Analyte Regression Equation a Correlation Coefficient (r2) Linear Range (µg L−1) LOD (µg L−1) LOQ (µg L−1)

Nitenpyram y = 1.764x − 0.6893 0.9937 0.20–15.00 0.064 0.190
Imidacloprid y = 12.801x − 1.0903 0.9957 0.04–15.00 0.013 0.038
Acetamiprid y = 14.542x + 0.0519 0.9960 0.05–15.00 0.017 0.050
Thiacloprid y = 12.638x − 2.8553 0.9901 0.04–15.00 0.014 0.041

a x means concentration of neonicotinoid insecticides (µg L−1), y means peak area.
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Figure 7. Effects of (a) dosage of MIL-53, (b) extraction time, (c) sample solution pH, (d) salinity,
(e) eluent type, (f) eluent volume, and (g) elution time on the DME efficiencies for four neonicotinoid
insecticides. Extraction conditions: sample volume, 50 mL; concentration of each neonicotinoid
insecticide: 10 µg L−1. (a) Water sample pH: 6.0; water sample volume: 100 mL; salt concentration:
0%; extraction time: 25 min; eluent: 2 × 5 mL of acetone; elution time: 2 × 10 min; (b) Water sample
pH: 6.0; water sample volume: 100 mL; salt concentration: 0%; MOF dosage: 120 mg; eluent: 2 × 5 mL
of acetone; elution time: 2 × 10 min; (c) Water sample volume: 100 mL; salt concentration: 0%; MOF
dosage: 120 mg; extraction time: 35 min; eluent: 2 × 5 mL of acetone; elution time: 2 × 10 min;
(d) Water sample pH: 6.0; water sample volume: 100 mL; MOF dosage: 120 mg; extraction time:
35 min; eluent: 2 × 5 mL of acetone; elution time: 2 × 10 min; (e) Water sample pH: 6.0; water
sample volume: 100 mL; salt concentration: 0%; MOF dosage: 120 mg; extraction time: 35 min; eluent
volume: 2 × 5 mL; elution time: 2 × 10 min; (f) Water sample pH: 6.0; water sample volume: 100 mL;
salt concentration: 0%; MOF dosage: 120 mg; extraction time: 35 min; eluent: acetone; elution time:
2 × 10 min; (g) Water sample pH: 6.0; water sample volume: 100 mL; salt concentration: 0%; MOF
dosage: 120 mg; extraction time: 35 min; eluent: 2 × 5 mL of acetone.

The relative standard deviations (RSDs) of peak areas at three spiked concentration
levels (0.5, 5 and 10 µg L−1) were used to evaluate the precision of the proposed method. As
listed in Table 2, the spiked recoveries ranged from 78.72% to 119.68%. The intra-day (n = 6)
and inter-day (n = 6) RSDs were in the range of 3.07–12.78% and 3.43–13.12%, respectively.
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Table 2. Intra-day and inter-day precision (RSDs, %) for the MOF membrane extraction-HPLC
method for the determination of four neonicotinoid insecticides.

Insecticides Spiked (µg L−1)
Intra-Day (n = 6) Inter-Day (n = 6)

Recovery (%) RSD (%) Recovery (%) RSD (%)

Nitenpyram
0.50 112.17 12.04 111.03 12.55
5.00 104.19 10.04 87.97 9.02
10.00 84.52 5.06 81.12 4.44

Imidacloprid
0.50 111.25 3.07 119.68 13.12
5.00 104.27 3.95 105.48 6.37
10.00 96.84 3.72 90.88 3.43

Acetamiprid
0.50 92.53 8.53 80.43 12.65
5.00 85.02 4.19 90.08 4.92
10.00 92.37 3.65 80.83 7.04

Thiacloprid
0.50 106.11 12.78 96.14 11.97
5.00 95.40 6.97 88.28 6.39
10.00 92.86 3.62 78.72 9.82

3.6. Application of the DME-HPLC Method to Real Water Samples

Three real water samples collected from the laboratory tap water, Qingdao Bohai Bay
seawater, Qingdao Yinfu Reservoir surface water were used to verify the practicability
of this proposed method. Representative HPLC chromatograms of tap water samples
were displayed in Figure 9. None of these four neonicotinoid insecticides were detected
in above water samples. Three levels of spiked samples at 0.5, 5 and 10 µg L−1 were used
to investigate the extraction recoveries of the developed method. As listed in Table 3,
satisfactory recoveries of four neonicotinoid insecticides were achieved in the range of
72.50–117.98%. These results demonstrated that the proposed method can be successfully
applied to the enrichment and determination of neonicotinoid pesticides in environmental
water samples.
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Figure 9. HPLC chromatograms from DAD of four neonicotinoid insecticides in real tap water
samples after DME without spiking (a) and with spiking (b); measurement wavelength 270 nm (left)
and measurement wavelength 244 nm (right). Peak identification: (1) nitenpyram (2) imidacloprid
(3) acetamiprid and (4) thiacloprid.

Table 3. Determination of four neonicotinoid insecticides and method recoveries in real water samples.

Insecticides
Spiked
(µg L−1)

Tap Water Surface Water Sea Water

Found
(µg L−1)

Recovery
(% ± RSD, n = 3)

Found
(µg L−1)

Recovery
(% ± RSD, n = 3)

Found
(µg L−1)

Recovery
(% ± RSD, n = 3)

Nitenpyram

0.00 ND ND ND
0.50 0.43 86.09 ± 12.91 0.57 114.06 ± 11.96 0.58 115.57 ± 10.93
5.00 3.96 79.24 ± 5.10 5.34 106.83 ± 6.31 5.54 110.99 ± 6.12
10.00 12.1 72.50 ± 11.58 9.03 90.26 ± 4.93 8.80 88.00 ± 13.25

Imidacloprid

0.00 ND ND ND
0.50 0.40 79.53 ± 12.66 0.56 112.33 ± 7.9 0.57 114.94 ± 8.03
5.00 3.88 77.64 ± 3.59 4.41 88.10 ± 3.83 5.47 109.45 ± 2.28
10.00 7.38 73.81 ± 10.59 7.51 75.14 ± 5.79 10.29 102.88 ± 3.46

Acetamiprid

0.00 ND ND ND
0.50 0.51 101.06 ± 10.31 0.45 90.52 ± 11.11 0.38 75.85 ± 7.26
5.00 3.96 79.14 ± 3.30 4.01 80.25 ± 7.36 5.69 113.85 ± 3.33
10.00 7.42 74.23 ± 4.62 8.11 81.11 ± 3.59 9.50 94.95 ± 8.70

Thiacloprid

0.00 ND ND ND
0.50 0.59 117.98 ± 13.76 0.59 117.98 ± 7.16 0.57 113.76 ± 9.33
5.00 3.76 75.26 ± 5.98 4.20 83.96 ± 5.77 5.79 115.82 ± 4.62
10.00 7.66 76.56 ± 1.08 8.22 82.18 ± 5.64 9.90 98.95 ± 4.13

3.7. Method Performance Comparison

The analytical performance of the developed DME-HPLC method was compared with
other reported methods for the analysis of neonicotinoid insecticides. As shown in Table 4,
compared with various pretreatment methods combining HPLC-DAD as the detector, the
MOFs MMM-based DME method exhibits lower LODs and LOQs, on the other hand, in
comparison with those pretreatment methods using MOFs as adsorbents, the developed
MIL-53 MMM offers similar sensitivity with UiO-66 dispersive solid phase extraction
followed by HPLC-MS/MS method. In addition, the MIL-53 MMM possesses the highest
reusability and convenient separation process, suggesting the high practicability of the
MIL-53 MMM based DME method.
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Table 4. Method performance comparison for neonicotinoid insecticides by HPLC in water samples.

Insecticides Pretreatment
Technique Adsorbents Detection

Techniques LOD (µg L−1) LOQ (µg L−1) Reusability Refs.

Imidacloprid, acetamiprid,
thiacloprid, thiamethoxam

Magnetic solid
phase extraction

Magnetic
nanoporous carbon HPLC-UV 0.01–0.06 NA NA [47]

Imidacloprid, acetamiprid,
thiamethoxam thiacloprid

Magnetic solid
phase extraction

Magnetic
porous carbon HPLC-UV 0.1–0.2 NA NA [48]

Dinotefuran, thiamethoxam,
clothianidin, imidacloprid,

acetamiprid, thiacloprid

Magnetic solid
phase extraction

Magnetic zeolitic
imidazolate
framework/

grapheme oxide

HPLC-MS/MS 0.06–1.0 0.2–3.0 NA [15]

Dinotefuran, thiamethoxam,
clothianidin, imidacloprid,

acetamiprid and thiacloprid

Dispersive solid
phase extraction UiO-66 HPLC-MS/MS 0.02–0.4 0.05–1 NA [14]

Idacloprid, acetamiprid,
thiacloprid, nitenpyram

Dispersion
membrane
extraction

MIL-53(Al) MMM HPLC-DAD 0.01–0.06 0.038–0.19 13 This work

NA means not accessible.

4. Conclusions

In the present work, MIL-53 MMM was successfully prepared and applied for DME of
four neonicotinoid insecticides in environmental water samples along with HPLC-DAD de-
termination. The specific structure of MIL-53 offered abundant adsorption sites leading to
high extraction efficiencies and the membrane form of MOFs simplified the separation pro-
cedure. The developed MOFs-DME pretreatment combined with the HPLD-DAD method
exhibited high sensitivity with low LODs and LOQs. Meanwhile, satisfactory precision
and accuracy were achieved by this established DME-HPLC method, indicating that the
developed MIL-53 MMM is a highly efficient and reliable material for the enrichment of
neonicotinoid insecticides in environmental waters.
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