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Abstract: Shift work requires round-the-clock readiness to perform professional duties, and the
workers’ performance highly depends on their sleepiness level, which can be underestimated during
a shift. Various factors, including the time of day, can influence sleepiness in shift workers. The
objective of this study was to explore the dynamics of sleepiness-related conditions assessed through
heart rate variability analysis, starting from the biological evening and continuing in vivo (at home),
without the need for artificial alertness support. The participants solely performed regular evening
household duties. A total of 32 recordings were collected from the Subjective Sleepiness Dynamics
Dataset for analysis. At 8:00 p.m. and every 30 min thereafter, the participants completed cyclic
sleepiness scales (the KSS and the SSS) until the time they went to bed, while their heart rate was
recorded. The results of the study indicated that during the biological evening, high sleepiness is
associated with a ‘stressed’ condition characterized by higher sympathetic activation. Later on, it
is associated with a ‘drowsy’ condition characterized by higher parasympathetic activation and a
decline in heart rate variability. Our findings provide evidence that the type of condition experienced
during high sleepiness depends on the biological time. This should be taken into account when
managing work regimes in shift work and developing alertness detectors.

Keywords: sleepiness; ‘drowsy’ condition; ‘stressed’ condition; biological evening; circadian system;
shift work

1. Introduction

There are numerous professions that require round-the-clock readiness to perform
duties. They are usually organized as shift work. In most cases, shift work involves
professional activities not only during the day but also in the evening and at night. It is
worth noting that shift work is often used in emergency response services and in complex
industries where a high level of worker vigilance is important to eliminate errors due to
human factors. Research shows that there are differences in a person’s conditions during
day and night shifts [1–3].

These differences are associated with the natural dynamics of sleepiness levels through-
out the day: regardless of sleep time, sleepiness gradually decreases in the morning and
gradually increases towards the evening, reaching its peak at night [4,5]. Sleepiness is
defined as a natural biological function determined by the likelihood of falling asleep [6]
and the tendency to doze off or fall asleep when a person intends to be awake [7]. Subjec-
tive sleepiness is usually measured using the Stanford Sleepiness Scale (SSS) [8] and the
Karolinska Sleepiness Scale (KSS) [9].

Increased sleepiness is associated with the occurrence of critical errors in activity, in-
cluding those leading to accidents, such as driving a car [10]. During the study of a person’s
conditions during night shifts, a decrease in psychomotor vigilance [2] and sensitivity
to visual search [11] has been identified. This suggests that peaks and dips in subjective
sleepiness ratings coincide with objective indicators of impaired performance [12]. Night

Int. J. Environ. Res. Public Health 2023, 20, 6641. https://doi.org/10.3390/ijerph20176641 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20176641
https://doi.org/10.3390/ijerph20176641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-3228-9289
https://doi.org/10.3390/ijerph20176641
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20176641?type=check_update&version=2


Int. J. Environ. Res. Public Health 2023, 20, 6641 2 of 14

shifts have been shown to result in decreased productivity, manifested by increased reac-
tion time [1] and an increase in serious errors [3]. Similar trends persist across different
professions: helicopter pilots [13], fishermen [3], healthcare workers [2,11], and metallur-
gists [1]. Subjective vigilance and neurobehavioral indicators are also impaired in simulated
night shift conditions [14]. Subjective sleepiness is associated with a loss of productivity:
subjective sleepiness levels increased 2–3 h before a loss of performance and 4–6 h before
physiological sleepiness signs [15].

Various factors can influence sleepiness in shift workers. In a night schedule, there
is a tendency for maximum levels of subjective sleepiness and low subjective vigilance
on the first night of work [1,11,13]. However, other studies show that on subsequent
nights, participants were unable to detect a decrease in vigilance, although objective factors
indicated its loss [2]. The environment in which people are situated also affects their
condition. For example, sleepiness and physical fatigue levels in fishermen were dependent
on the nature of the vessel’s movement [3], and regulating the level of illumination helped
shift the timing of the steady urge to sleep [14]. Age is also a significant factor: in drowsy
conditions, elderly drivers did not increase the number of errors as much as young drivers,
who were 11 times more likely to be involved in dangerous situations leading to accidents
compared to when they were alert [10]. Another important factor is the time of day.
The evening serves as a natural transitional time between low and high sleepiness and,
therefore, performance levels [5]. Thus, this period of the day allows for the observation
and identification of markers indicating transitions between different conditions. This can
provide data for optimizing work and rest schedules in accordance with the tasks and
internal regulations of each industry, where employee performance is crucial due to the
high cost of human errors [2].

One of the common solutions related to monitoring a person’s condition is the use of
technologies that involve the collection and analysis of heart-related data. Portable wearable
sensors allow for the recording of electrocardiographic signals and provide insights into a
person’s condition [16]. The advantage of methods related to heart activity monitoring in
assessing a person’s condition lies in their greater accuracy in detection, as they directly
analyze physiological indicators. Moreover, modern solutions based on wearable sensors
enable conducting long-term studies in natural activity settings, such as during emergency
response training [17], heavy industry work [18], and investigating occupational stress
among healthcare personnel during their work shifts [19].

Various heart rate variability (HRV) indices are calculated in studies focusing on
sleepiness or drowsiness, including those in the time, frequency, and non-linear domains.
The latter ones are employed in applied research to develop fatigue detectors [20] or
drowsiness detectors [21]. A significant portion of research is conducted within the context
of driving tasks. During simulated driving [22,23] and real driving situations [23], the
variance in HRV in the low-frequency (LF) to high-frequency band (HF) ratio (i.e., the
sympatho-vagal index) was lower in drowsy conditions compared to awake conditions,
as detected by an external observer. In a study involving continuous and monotonous
driving, fatigue was accompanied by a decrease in the LH to HF ratio [24]. However,
other studies have reported inverse patterns. Resisting sleep to maintain the driving task
resulted in an increase in the LH to HF ratio [25]. In a highway driving task characterized
by a monotonous environment and a constant speed, a positive correlation was found
between the LH to HF ratio and subjective sleepiness (as measured by the KSS) [26].
The inconsistencies in the results of different studies can be attributed to variations in
experimental protocols, leading to different intentions and motivations among the subjects.
According to a hypothetical classification of subject conditions based on LF and HF power
band analysis [23], a high intent to stay awake during sleepiness may result in a ‘stressed’
condition, characterized by high LF band power and low HF band power. Consequently,
this leads to high sympatho-vagal index values (LF to HF ratio).

The aforementioned logic aligns with the perspective that sleep deprivation acts as a
stressor [27] and that the intention to perform activities requires heightened sympathetic
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activation [28,29] and reduced parasympathetic activation [29]. Sleep deprivation, whether
partial or total, is a commonly employed protocol in the study of sleepiness, drowsiness,
and fatigue.

During a partial sleep deprivation period, where participants slept only 3 h per day
while carrying out their daily activities, measures of cardiac parasympathetic activity such
as square root of the mean of the sum of the squares of differences between adjacent NN
intervals (rMSSD) and HF band power decreased, while KSS scores and normalized LF
band power increased over a span of three days [30]. In a 40-h study involving total sleep
deprivation, KSS scores, standard deviation of the NN intervals (SDNN), variance in HRV
in the very low-frequency band (VLF), and LF were positively correlated with vigilance
lapses in the Psychomotor Vigilance Test (PVT) [31]. Hence, in a condition of diminished
vigilance, LF was higher. This observation suggests that participants exhibited a strong
motivation to mobilize themselves, leading to heightened sympathetic activation and a
‘stressed’ condition [23]. This proposition finds support in the results of another study [32],
where the authors found a positive correlation between LF to HF ratio and subjective
alertness within the first 13 h of sleep deprivation, and a positive correlation with PVT
reaction time (indicating a decline in performance) within 14–43 h of sleep deprivation.
Regardless, high motivation and the desire to appear alert result in an increased sympatho-
vagal index. However, after an extended period of sleep deprivation (14 h or more), the
body may lack the necessary resources to sustain optimal performance.

In a separate study involving shift work with an average duration of 13.8 h among
wildland firefighters, inverse correlations were identified between HRV (rMSSD) and
sleepiness and fatigue [33]. Therefore, heightened subjective sleepiness was associated with
reduced parasympathetic activation, indicating that attempting to work under conditions of
sleepiness primarily leads to increased sympathetic activation rather than parasympathetic
activation (prior to the ‘critical’ 14-h sleep deprivation period).

Shift work involves working outside the typical daytime hours of approximately 8 a.m.
to 6 p.m., which disrupts normal circadian rhythms [34]. During work shifts, individuals
may strive to maintain alertness artificially, depleting their resources. However, motivation
to remain alert during a work shift is always present, even though resources are finite.
Hence, it is crucial to examine the body’s functioning outside the explicit motivation to
stay alert, specifically in a natural environment when individuals voluntarily construct
their evening routines (outside of work shifts). In work shift scenarios, individuals may
unknowingly underestimate their subjective sleepiness, as they believe they are alert,
potentially skewing the results of sleepiness-related studies. By investigating the body’s
performance at different time points in the evening in relation to varying levels of subjective
sleepiness, we can obtain more objective data about performance at different sleepiness
levels. If the study is conducted at home, without the influence of an experimenter, there is
less inclination to distort the assessment of sleepiness.

To conduct such a study, it is needed to choose an experimental timeline. Shift work
encompasses any work conducted outside the standard daytime hours of approximately
8 a.m. to 6 p.m. [35], and it is widely acknowledged that shift work disrupts the circadian
system [34]. Within the circadian rhythm framework, two distinct stages can be identified:
daytime (6 a.m.–8 p.m.) and nighttime (8 p.m.–6 a.m.) [36], separated by the transitional
point of the biological evening, occurring around 8 p.m. [37–39]. Thus, 8 p.m. can be
considered as the time when the body transitions from an active to a passive regime.
Considering the definition of shift work mentioned earlier [35], it can be inferred that shift
workers frequently engage in their professional activities at 8 p.m. Despite the fact that
shift work may result in sleep-related disorders and negative health outcomes [40], shift
work does not alter the ‘internal circadian machinery’ [41].

We proposed a hypothesis that at the end of the biological daytime period (around
8 P.M.), the intention to resist sleepiness requires increased sympathetic activation. Con-
versely, after a biological evening, high sleepiness should be accompanied by parasympa-
thetic activation, as the circadian system allows the body not to resist sleepiness. Building
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upon Vicente’s et al. (2016) hypothesis regarding four conditions based on the distribution
of LF and HF band powers (‘drowsy,’ ‘fatigued,’ ‘awake,’ and ‘stressed’), we argue that high
subjective sleepiness during the biological evening should activate the ‘stressed’ condition,
while later, high sleepiness should lead to the ‘drowsy’ condition.

The objective of this study was to explore the dynamics of sleepiness-related conditions,
starting from the biological evening and continuing at home, without the need for artificial
alertness support, i.e., solely performing regular evening household duties.

2. Materials and Methods
2.1. Study Sample

Recordings for analysis were collected from the Subjective Sleepiness Dynamics
Dataset (SSDD [42]). By the time of this paper’s preparation, the total count of partic-
ipants in the SSDD was equal to 226. One of the inclusion criteria was that people worked
on the day of the experiment from 8 a.m. to 6 p.m. or from 9 a.m. to 7 p.m. These were
individuals whose professional duties primarily involved computer work and interacting
with people outside the home, without significant physical exertion.

Since we wanted to minimize the influence of the factor of going to sleep time, only
those participants’ recordings were selected who went to bed between 10:30 p.m. and
11:00 p.m. Also, we selected only those recordings where the time of cyclic tests (the KSS
and the SSS) filling out differed no more than 15 min at each time point from the needed
time (08:00 p.m., 08:30 p.m., 09:00 p.m., 09:30 p.m., and 10:00 p.m.). And the last criterion
was the quality of heart rate data. We selected only those recordings where there was at
least a 4 min breakless heart rate recording at each time of cyclic tests. Finally, for the
purpose of the current study, 32 recordings from the SSDD were collected for the analysis.
All 32 recordings were collected in November–December 2023, and these participants reside
in the same region.

As there were 32 selected participants, and each of them had heart rate metrics and KSS/SSS
scores for five time points, the entire dataset for analysis consisted of 32 × 5 = 160 observations.
During the analysis of the research results, grouping and selection of observations were
applied based on time and the level of subjective sleepiness, as indicated in the relevant
sections of Section 3.

2.2. Apparatus and Web Application

To collect sociodemographic information and data on sleepiness, a web application
UnnCyberpsy was developed. UnnCyberpsy was developed using the PHP programming
language and was based on the modern microframework ‘CodeIgniter’ version 4 (British
Columbia Institute of Technology, British Columbia, Canada). MariaDB RDBMS was
selected as the tool for data storage.

For recording the sequence of heart rate intervals, the Polar H10 sensor (Polar Electro
Oy, Kempele, Finland), along with the Pro Strap belt (Polar Electro Oy, Kempele, Finland),
was utilized. The validity of the Polar H10 sensor has been demonstrated in several studies
(e.g., [43,44]). The Polar Sensor Logger App v. 0.25 (Jukka Happonen, Helsinki, Finland),
which is based on the Polar SDK, was installed on a Samsung A23 smartphone. This app
was used to receive the signal via Bluetooth from the Polar H10 sensor. The collected data
was stored on the smartphone and then transferred to a laptop for further analysis.

2.3. Study Design

To attract participants for the study, information about the planned research was sent
to regional news portals. Interested individuals submitted applications through a Google
Form, where they provided their contact information, age, and gender. Subsequently, the
timing of their visit to the laboratory for equipment distribution and instructions was
coordinated with the participants.

The full description of the study design is provided in [42] and demonstrated in
Figure 1.
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Figure 1. Experimental design.

The participants connected the Polar H10 sensor to the Polar Sensor Logger App at
07:40 p.m. Then, they filled out personal information and some questionnaires. At 08:00 p.m.,
and each 30 min further, they filled out cyclic tests (the KSS and the SSS) until the time they
went to bed. Participants of the study were instructed that after the start of the experiment,
they should remain at home, carry out their regular household duties, and refrain from
engaging in any physical exercises.

2.4. Data Analysis

Data was preprocessed in the Jupyter Notebook within the Anaconda 2020.07 (Python
3.8.3 64-bit) distribution (Anaconda Inc., Austin, TX, USA). For the purpose of data filtering,
NN intervals with duration below 400 msec and above 1300 msec, as well as the ones
differing more than 70% of the median of 5 intervals before were removed from the
analysis. 4 min heart rate recordings (NN intervals) were selected for each time point for
each participant. The ‘hrv-analysis’ module was used to calculate the time- (mean_nni,
sdnn, sdsd, nni_50, pnni_50, nni_20, pnni_20, rmssd, median_nni, range_nni, cvsd, cvnni,
mean_hr, max_hr, min_hr, std_hr) and frequency-domain metrics (lf, hf, lf_hf_ratio, lfnu,
hfnu, total_power, vlf), as well as non-linear-domain ones (csi, cvi, Modified_csi, sampen),
at each time point (08:00 p.m., 08:30 p.m., 09:00 p.m., 09:30 p.m., and 10:00 p.m.). The
description of metrics is provided in Table A1 (Appendix A).

Statistical analysis was performed using the ‘scipy.stats’ module in the Jupyter Note-
book. The independent t-test was used to assess differences in heart rate metrics between
different levels of subjective sleepiness, as measured by the KSS and the SSS. The Mann-
Whitney U test was used to assess differences in heart rate metrics between different levels
of subjective sleepiness within different time points. The Pearson criterion was used to cal-
culate the correlations between heart rate metrics and KSS and SSS scores at each time point.
The choice of non-parametric criteria was justified by the small size of the subsamples,
which were suitable for the selected statistical methods.

3. Results
3.1. General Data Description

Out of 32 participants, 24 were females. The detailed age–sex distribution of partici-
pants is presented in Table 1.
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Table 1. Age and sex distribution of the dataset.

Age Sex N

<25
male 9

female 2

<35
male 9

female 2

35 and more
male 6

female 4

Despite the fact that the sample was not balanced by age and sex, this did not contradict
the purpose of the study as we wanted to examine some general effects of subjective
sleepiness on heart rate data.

Figure 2 demonstrates the distribution of KSS and SSS scores in the dataset (N = 160).
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To examine the heart rate metrics associated with different scores on the KSS and the
SSS, the following data sampling approach was employed. For the KSS, observations with
less than 5 points (indicating ‘low’ sleepiness, N = 49) and more than 6 points (indicating
‘high’ sleepiness, N = 43) were compared. For the SSS, observations with less than 3 points
(indicating ‘low’ sleepiness, N = 39) and more than 3 points (indicating ‘high’ sleepiness,
N = 57) were compared. Observations with scores of 5–6 on the KSS (N = 68) and 3 on the
SSS (N = 64) were excluded from the analysis, as they represented the category of ‘medium
sleepiness’. The resulting distribution is presented in Table 2.

Table 2. The distribution of selected observations according to time points and sleepiness levels.

Time Point
KSS SSS

‘Low’ Sleepiness ‘High’ Sleepiness ‘Low’ Sleepiness ‘High’ Sleepiness

20:00:00 13 4 15 7
20:30:00 13 5 10 8
21:00:00 9 7 6 9
21:30:00 8 13 5 16
22:00:00 6 14 3 17

Total 49 43 39 57

3.2. Heart Rate Metrics Comparison in Different Levels of Subjective Sleepiness

First, we analyzed the difference in HRV metrics between ‘low’ and ‘high’ sleepiness,
independent of time. These data were subsequently compared with the time-associated
data.

Tables 3 and 4 represent significant differences and trends found for heart rate metrics
for the KSS and SSS, respectively.



Int. J. Environ. Res. Public Health 2023, 20, 6641 7 of 14

Table 3. Heart rate metrics mean values in different levels of subjective sleepiness, as measured by
the KSS (t—the value of independent t-test, p—p-value).

Domain Metric KSS Score < 5
(N = 49)

KSS Score > 5
(N = 43) t p

Time
nni_50 46.41 33.26 1.68 0.097
nni_20 140.71 115.47 2.37 0.020

pnni_20 47.94 40.6 1.71 0.091
Frequency lf_hf_ratio 3.8 4.9 1.69 0.094

Table 4. Heart rate metrics mean values in different levels of subjective sleepiness, as measured by
the SSS (t—the value of independent t-test, p—p-value).

Domain Metric SSS Score < 3
(N = 39)

SSS Score > 3
(N = 57) t p

Time nni_20 134.26 114.33 1.89 0.062
Frequency lf_hf_ratio 3.75 5.47 2.03 0.045

The data presented in Table 3 indicate that there was a significant difference in nni_20
between ‘high’ and ‘low’ sleepiness (t = 2.37; p = 0.020), as assessed by the KSS. Additionally,
certain trends were observed: nni_50 (t = 1.68; p = 0.097) and pnni_20 (t = 1.71; p = 0.091)
showed lower values, while lf_hf_ratio (t = 1.69; p = 0.094) exhibited higher values in ‘high’
sleepiness compared to ‘low’ sleepiness.

The data presented in Table 4 indicate that the lf_hf_ratio was found to be higher in
‘high’ sleepiness compared to ‘low’ sleepiness (t = 2.03; p = 0.045), as measured by the SSS.
Additionally, a trend towards lower nni_20 was observed for ‘high’ sleepiness compared to
‘low’ sleepiness (t = 1.89; p = 0.062).

3.3. Heart Rate Metrics Comparison in Different Levels of Subjective Sleepiness within Different
Time Points

To further specify the characteristics of HRV metrics during ‘low’ and ‘high’ sleepiness,
we conducted a comparative analysis taking into account the factor of time (at each time
point: 08:00 p.m., 08:30 p.m., 09:00 p.m., 09:30 p.m., and 10:00 p.m.).

Significant differences and trends in heart rate metrics between ‘low’ and ‘high’ sleepi-
ness were observed specifically at the 08:30 p.m. and 09:00 p.m. time points. Tables 5
and 6 present the significant differences and trends identified for heart rate metrics at these
specific time points for the KSS and SSS, respectively.

Table 5. Heart rate metrics mean values in different levels of subjective sleepiness within time point
08:30 p.m., as measured by the KSS (U—the value of Mann-Whitney criterion, p—p-value).

Domain Metric ‘Low’
Sleepiness (N = 13)

‘High’ Sleepiness
(N = 5) U p

Time

sdnn 68.86 38.21 7 0.010
sdsd 37.2 24.27 11 0.035

rmssd 37.2 24.27 11 0.035
range_nni 358.92 205.2 4.5 0.007

cvsd 0.05 0.03 13 0.059
cvnni 0.09 0.05 6 0.007

min_hr 63.32 71.22 12 0.049
std_hr 7.21 4.21 8 0.014

Frequency

lf 1364.96 487.1 5 0.004
lf_hf_ratio 4.27 2.82 15 0.095

lfnu 78.21 70.5 15 0.095
hfnu 21.79 29.5 15 0.095



Int. J. Environ. Res. Public Health 2023, 20, 6641 8 of 14

Table 5. Cont.

Domain Metric ‘Low’
Sleepiness (N = 13)

‘High’ Sleepiness
(N = 5) U p

total_power 3106.39 968 2 0.001
vlf 1303.23 291.76 2 0.001

Non-
Linear

cvi 4.55 4.12 9 0.019
Modified_csi 1446.96 619.03 6 0.007

sampen 1.21 1.56 5 0.004

Table 6. Heart rate metrics in different levels of subjective sleepiness within time points 08:00 p.m.
and 08:30 p.m., as measured by the SSS (U—the value of Mann-Whitney criterion, p—p-value).

Domain Metric ‘Low’
Sleepiness (N = 15)

‘High’ Sleepiness
(N = 7) U p

08:00 p.m.

Frequency
lf_hf_ratio 4.13 9.31 28 0.091

lfnu 77.82 84.44 28 0.091
hfnu 22.18 15.56 28 0.091

Domain Metric ‘Low’
Sleepiness (N = 10)

‘High’ Sleepiness
(N = 8) U p

08:30 p.m.

Time

sdsd 36.97 24.88 14 0.021
nni_50 39.8 17.38 18.5 0.062

pnni_50 15.48 5.7 20 0.083
pnni_20 47.97 32.86 19 0.068
rmssd 36.97 24.88 14 0.021

range_nni 321.7 236.25 15.5 0.033
cvnni 0.07 0.06 20 0.083

Frequency total_power 2545.7 1390.07 15 0.027
vlf 841 526.46 18 0.055

Non-
Linear cvi 4.49 4.2 17 0.043

The data presented in Table 5 indicate that at the 08:30 p.m. time point, heart rate
variability metrics were lower in ‘high’ sleepiness, as measured by the KSS. Specifically,
the minimum heart rate (min_hr) was higher in ‘high’ sleepiness (U = 12; p = 0.049). As
for frequency domain metrics, lf (U = 5; p = 0.004), total_power (U = 2; p = 0.001), and vlf
(U = 2; p = 0.001) appeared to be significantly lower in ‘high’ sleepiness. Additionally, the
following trends were observed: lf_hf_ratio and lfnu were lower (U = 15; p = 0.095 for
both), while hfnu was higher (U = 50; p = 0.095) in ‘high’ sleepiness. Significant differences
were also found for non-linear domain metrics, with modified_csi and cvi being lower
(U = 6; p = 0.007 for modified_csi, U = 9; p = 0.019 for cvi), and samplen being higher (U = 5;
p = 0.004) in ‘high’ sleepiness.

Regarding the SSS, significant differences or trends were observed at two time points
(08:00 p.m. and 08:30 p.m.), as shown in Table 6. At 08:00 p.m., only frequency domain
metrics were found to be sensitive to the level of sleepiness: lf_hf_ratio (U = 28; p = 0.091)
and lfnu (U = 28; p = 0.091) were higher, while hfnu (U = 28; p = 0.091) was lower in ‘high’
sleepiness. At 08:30 p.m., various domain metrics were identified as sensitive to the level
of sleepiness. Total_power (U = 15; p = 0.027) and cvi (U = 4.49; p = 4.2) were lower in ‘high’
sleepiness. There was also a trend towards lower vlf values in ‘high’ sleepiness.

3.4. Heart Rate Metrics Correlations with Sleepiness Scores within Different Time Points

To conduct a more detailed analysis of the relationship between HRV metrics and
subjective sleepiness, we performed a correlation analysis between them. No significant
correlations were found for the whole dataset.
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For a more in-depth exploration of the relationship between HRV metrics and subjec-
tive sleepiness, we examined their correlations at each of the time points. The results of
correlation analysis within different time points are presented in Table 7.

Table 7. Heart rate metrics significant correlations with KSS and SSS scores within different time
points (p—p-value).

Time Point Domain Metric
KSS Score SSS Score

Pearson R p Pearson R p

08:30 p.m.

Time range_nni −0.392 0.027

Frequency
lf −0.350 0.049 −0.382 0.031

total_power −0.357 0.045
vlf −0.385 0.029

09:00 p.m. Frequency hf 0.394 0.026

Thus, significant correlations were found only at 08:30 p.m. and at 09:00 p.m. At
08:30 p.m., range_nni was negatively correlated with KSS score (R = −0.392; p = 0.027)
and with SSS score (R = −0.382; p = 0.031). KSS score was negatively correlated with lf
(R = −0.350; p = 0.049), total_power (R = −0.357; p = 0.045), and vlf (R = −0.385; p = 0.029).
At 09:00 p.m., hf was positively correlated with KSS score (R = 0.394; p = 0.026).

4. Discussion

Our data analysis revealed that during the biological evening (8 p.m.), only frequency
domain metrics showed a tendency to differ between levels of subjective sleepiness. Specif-
ically, lf and lfnu tended to be higher, while hfnu tended to be lower in ‘high’ sleepiness
compared to ‘low’ sleepiness. In the introduction, we hypothesized that high subjective
sleepiness during the biological evening would activate a ‘stressed’ condition because the
body perceives this time as being awake. Resisting sleepiness at 8 p.m. would require
self-control. The fact that only frequency domain metrics were correlated with sleepiness
can be explained by previous findings that fMRI activity in brain regions, including the
dorsolateral prefrontal cortex, is correlated with cardiovagal activity (HF) [45], and that
stimulation of the dorsolateral prefrontal cortex affects muscle sympathetic nerve activ-
ity [46]. Moreover, the dorsolateral prefrontal cortex is involved in self-control [47]. Thus,
our results indirectly support the idea that resisting sleepiness at 8 p.m. requires self-control.
In ‘high’ sleepiness at 8 p.m., sympathetic activation (lhnu) increased, parasympathetic ac-
tivation (fhnu) decreased, and the sympatho-vagal index (lf_hf_ratio) increased, indicating
a ‘stressed’ condition [23].

Starting at 8:30 p.m. (after the biological evening), our analysis revealed that ‘high’
sleepiness was associated with a ‘drowsy’ condition [23]. Sympathetic activation (lf and
lfnu) decreased, as did parasympathetic activation (hf and hfnu). Additionally, our results
showed that at 8:30 p.m., ‘high’ subjective sleepiness was accompanied by lower time-
domain metrics, indicating a decrease in heart rate variability. This finding is consistent
with previous research linking reduced variability metrics to sleepiness, fatigue [33], and
lack of vigilance [31]. Moreover, non-linear domain metrics (cvi, Modified_csi, and sam-
plen) demonstrated sensitivity to the level of subjective sleepiness at 8:30 p.m., which is
noteworthy as these metrics are seldom calculated in fundamental sleepiness research.
For example, cvi has been observed to decrease during inhalant anesthesia and increase
upon regaining consciousness [48], suggesting its association with metabolic demands [49].
Therefore, in our study, a decrease in cvi in ‘high’ sleepiness after the biological evening
might indicate the unconscious body’s effort to perform vital functions. Similarly, Modi-
fied_csi, commonly used in detecting epileptic seizures [50,51], is considered an indicator of
sympathetic ‘overdrive’ [52]. In our study, Modified_csi was lower in ‘high’ sleepiness after
the biological evening, aligning with the decrease in lf. Furthermore, samplen, associated
with poor performance during PVT [53], was higher in ‘high’ sleepiness after the biological
evening, indicating reduced vigilance.
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At 9:00 p.m., only the correlation analysis yielded significant results. Parasympathetic
activation (hf) exhibited a positive correlation with the SSS score. This suggests that
sympathetic activation had already decreased, and the increase in the ‘drowsy’ condition
at 9:00 p.m. was primarily driven by an elevation in vagal activation. This finding can be
utilized to further refine approaches that differentiate types of ‘drowsy’ conditions based
on the level of parasympathetic activation, building upon Vincent et al.’s prior work [23].

After 9:00 p.m. until 10:00 p.m., no significant results were revealed, neither in
correlation nor in differences analysis. Perhaps after 9:00 p.m., the participants transitioned
to a nighttime regimen, and they were all sufficiently sleepy and prepared for falling
asleep. In our previous study [42], we demonstrated that starting at 9:00 p.m., there was a
significant increase in subjective sleepiness across all the SSDD. Other studies have reported
similar sleepiness dynamics. A study of sleepiness dynamics in helicopter pilots showed a
steady increase in subjective sleepiness after 8:00 p.m. (KSS) [13]. The level of subjective
sleepiness in fishermen of different vessel types increased towards the evening [3]. The
level of subjective sleepiness in fishermen of different types of vessels increased in the
evening [54]. Thus, our suggestions and results align with the findings of other studies.

Within the current study, high sleepiness at 08:00 p.m. was considered as a ‘stressed’
condition and ‘high’ sleepiness at 08:30 p.m. and at 09:00 p.m. as a ‘drowsy’ condition. In
Table 8, we accumulate the results of the current study by distinguishing heart rate metrics
associated with ‘high’ sleepiness in ‘stressed’ and ‘drowsy’ conditions. These results should
be taken into account while researching sleepiness, fatigue, or vigilance in shift workers.

Table 8. Heart rate metrics dynamics related to ‘high’ subjective sleepiness in ‘stressed’ and ‘drowsy’ conditions.

Domain Metrics
Condition

Stressed Drowsy

Frequency
lf/lhnu increase decrease
hf/hfnu decrease increase

lf_hf_ratio increase decrease
Time variability - decrease

Non-Linear
cvi - decrease

Modified_csi - decrease
sampen - increase

Additionally, it is necessary to discuss the results of comparing heart rate metrics
without considering the specific time points. The findings indicated a decrease in time-
domain variability metrics and an increase in the sympatho-vagal index (lf_hf_ratio) in
‘high’ sleepiness. The observed dynamics of time-domain variability metrics align with
those reported in other studies [31,33]. However, regarding the sympatho-vagal index,
our results contradict the findings in [22,24] but support the results reported in [25,26].
This suggests that subjective sleepiness alone cannot fully describe the condition, and
other domains, such as the circadian clock, should be considered in research on shift work
conditions. Such a conclusion is supported by the evidence that drowsiness-related brain
responses were affected by the time of the day [55]. For accurate and objective condition
detection in shift workers, it is crucial to take into account circadian rhythms.

The obtained results could be utilized for the development of automated solutions to
monitor the condition of shift workers. For the creation of precise algorithms, it’s important
to take into account the biological time and the fact that high subjective sleepiness can be
associated with different conditions—both ‘stressed’ and ‘drowsy’. We demonstrated that
at 8 p.m., individuals are more resistant to sleepiness, and in such cases, high sleepiness is
accompanied by a ‘stressed’ condition. Later, high sleepiness leads to a ‘drowsy’ condition,
which involves different physiological correlates.
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5. Limitations

The primary limitation of this study is linked to the small sample sizes used for
comparative and correlational analysis within different time points. Nevertheless, we made
an effort to address this limitation by employing non-parametric statistics. This study was
exploratory, and in the future, we plan to incorporate a larger portion of data from the
dataset to facilitate a more complex analysis.

Additionally, we intend to apply machine learning methods to develop a heartbeat-
based drowsiness detector. We have not yet taken into account the types of professional
activities of the selected participants in the study. However, we focused on those whose
professional activities were similar in terms of activity levels.

Within our study, we divided our sample into sleepiness levels without relying on
any pre-established classification. However, the decision to divide sleepiness based on
KSS and SSS scores was made considering the distribution of the data. Our goal was to
ensure a relatively equal count of ‘low’ and ‘high’ sleepiness data that would be suitable
for analysis.

Another limitation is that we did not account for within-subject effects and instead
conducted independent tests during the comparison. However, our intention was to
capture general effects without considering individual variations.

The aim of the current study was to investigate sleepiness-related conditions in people
in general, but we are directing our findings towards shift workers. Of course, having
a separate sample of shift workers would be valuable, and we intend to do so in the
near future. However, considering that shift work itself does not influence the ‘internal
circadian machinery,’ we believe that our findings can be taken into account while studying
sleepiness-related conditions in shift workers.

6. Conclusions

Subjective sleepiness may be accompanied by different conditions. At the time of
biological evening, high sleepiness was associated with a ‘stressed’ condition with higher
sympathetic activation, while later, it was associated with a ‘drowsy’ condition with higher
parasympathetic activation and a decline in variability in heart rate. Our results provide
evidence that condition type in high sleepiness depends on biological time. This should be
taken into account in managing work regimes in shift work and while creating alertness
detectors.
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Appendix A

Table A1. The description of heart rate variability metrics (partially taken from [21]).

Domain Metrics Description

Time

mean_nni mean of the NN intervals
sdnn standard deviation of the NN intervals
sdsd standard deviation of differences between adjacent NN intervals

nni_50 intervals’ number differences of successive NN intervals greater than 50 ms
pnni_50 derived proportion by dividing nni_50 by the NN intervals’ total number.
nni_20 intervals’ number differences of successive NN intervals greater than 20 ms

pnni_20 derived proportion by dividing nni_20 by the r–r intervals’ total number

rmssd square root of the mean of the sum of the squares of differences between
adjacent NN intervals

median_nni median of the NN intervals
range_nni difference between the maximum and the minimum of the NN intervals

cvsd rmssd divided mean_nni
cvnni sdnn divided by mean_nni

mean_hr heart rate mean
max_hr heart rate maximum
min_hr heart rate minimum
std_hr standard deviation of the heart rate

Frequency

lf variance in hrv in the low-frequency band (0.03–0.15 Hz)
hf variance in hrv in the high-frequency band (0.18–0.45 Hz)

lf_hf_ratio lf to hf ratio, sympatho-vagal index
lfnu derived proportion by dividing lf by the sum of lf and hf
hfnu derived proportion by dividing hf by the sum of lf and hf

total_power total power density spectral
vlf variance in hrv in the very low-frequency band (0.00–0.03 Hz)

Non-Linear

csi cardiac sympathetic index
cvi cadiac vagal index

modified_csi modified csi
sampen sample entropy
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