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Abstract: Regional eco-efficiency affects local public health through intermediaries such as economic
and environmental impacts. Considering multiple factors, the implicit and uncertain relationship
with regional characteristics, and the limited data availability, this paper investigated the forecasting
of changes in local public health—including the number of visits to hospitals (VTH), outpatients with
emergency treatment (OWET), number of inpatients (NI), number of health examinations (NOHE),
and patients discharged (PD)—using calculated regional eco-efficiency with the Least Square-Support
Vector Machine-Forecasting Model and acquired empirical evidence, utilizing the province-level data
in China. Results: (1) regional eco-efficiency is a good predictor in both a single and multi-factor
situation; (2) the prediction accuracy for five dimensions of the changes in local public health was
relatively high, and the volatility was lower and more stable throughout the whole forecasting
period; and (3) regional heterogeneity, denoted by three economic and demographic factors and three
medical supply and technical level factors, improved the forecasting performance. The findings are
meaningful for provincial-level decision-makers in China in order for them to know the current status
or trends of medical needs, optimize the allocation of medical resources in advance, and enable ample
time to tackle urgent emergencies, and, finally, the findings can serve to evaluate the social effects
of improving regional eco-efficiency via local enterprises or individuals and adopting sustainable
development strategies.

Keywords: the changes in local public health; forecasting; multiple factors; regional characteristics;
statistical learning; regional eco-efficiency

1. Introduction

Economic and environmental factors affect local residents’ health, and environmental
and medical decision-makers attach importance to the trends of changes in local public
health (CLPH) [1]. Early prediction of the changes in local public health can provide suffi-
cient time to balance the supply and demand of medical resources such as by making people
prepared to respond to medical emergencies [2] and optimizing the resource allocation
of medical materials in advance, thereby dynamically promoting a local medical service
level [3]. Regional eco-efficiency can serve as a flexible indicator that integrates the relevant
economic or environmental factors, those which scholars indicate can be chosen as good
exogenous predictors for public health. Based on the organic performance of input and
output factors [4], regional eco-efficiency (REE) has been treated as an explicitly important
indicator due to it integrating both economic and environmental impacts and being closely
related to healthcare sustainability [5]. Therefore, is there any empirical evidence to show
REE can forecast CLPH with acceptable accuracy?
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This problem arouses many scholars’ interests in these interdisciplinary issues [6],
but the literature rarely shows adequate quantitative evidence. There are three main
reasons for this. First, the factors that affect residents’ health are multi-scale and multi-
dimensional, including micro-level factors in individual health, macroeconomic factors,
and environmental factors. Second, the description of a nonlinear relationship is uncertain,
and simple linear regression cannot meet the needs of prediction. Third, the influence and
heterogeneity of regional differences lead to the complexity of modeling. In the process
of empirical operation, the above problems are transformed into one forecasting method
with multiple factors, an implicit and uncertain relationship, regional characteristics, and
limited data availability.

In the following literature review section, relevant studies have recognized and calcu-
lated the correlation between the two and the feasibility of prediction. This paper aimed to
investigate this problem by building a new forecasting model based on statistical learning
and obtain empirical evidence with Chinese regional data. This study can provide a new
perspective and method to predict regional CLPH. In addition, in the collaborative pro-
cess of promoting sustainable economic development by improving the REE, the related
findings can strengthen inter- or intra-province cooperation with medical resources and
improve risk management levels across different regions.

Relevant concepts about REE show that it is equipped with the capability and feasibil-
ity to forecast CLPH. As an instrument for sustainability analysis, it can reflect and judge
the effectiveness of local economic activity, taking the nature of their goods or services into
account [7]. Its definition, measurement, and main factors are closely associated with two
kinds of forecasting variables: environmental change and economic factors. The former
consists of the living conditions that directly affect the health levels of local inhabitants by
impacting the air quality, water safety, solid waste disposal, and so on [8], and especially the
energy efficiency and the accompanying pollutants [9]. The latter comprises the economic
costs and individual financial capacities and determines the disease treatment of regional
residents by impacting employment opportunities and disposable incomes. Therefore, in
the economic, environmental, and medical health sciences and their intersectional fields
there is inherent theoretical research or a basis to support that REE can act as one of the
best leading indicators for CLPH.

Identifying what the implicit interaction between CLPH and spatial REE is is an impor-
tant prerequisite for making predictions; however, there is not a linear or convertible linear
relationship because of outlier data, regional heterogeneity, the interactions of multiple
influencing factors, etc. In view of the advantages of the Support Vector Machine (SVM),
with its powerful identification ability within multi-dimensional complex data, it is a good
choice to quickly identify the implicit relationship and accurately make predictions using
the limited data sources and multiple factors.

Considering that alongside REE there are multiple factors affecting CLPH, such as
an implicit and uncertain relationship, regional characteristics, and limited data avail-
ability, this paper investigated how to forecast CLPH using REE by building the Least
Square-Support Vector Machine-Forecasting Model (LS-SVM-FM) and acquiring empirical
evidence utilizing regional province-level data in China. Furthermore, on the bases of three
forecasting error indicators, we measured the prediction accuracy for each region, such that
we (1) chose VTH, OWET, NI, NOHE, and PD as proxy variables for CLPH, respectively;
(2) calculated eco-efficiency with commonly required variables and collected data; (3) to
reflect spatial heterogeneity, incorporated six control variables including economic and
demographic factors [10] and medical supply and technical level factors; (4) compared the
LS-SVM-FM without or with each control variable, respectively, and obtained the best fore-
casting model with a higher accuracy; (5) analyzed regional characteristics and forecasting
variation in China with a comparison analysis; and (6) discussed the policy implications.

In Section 2, we conduct a literature review to have a clear understanding of existing
problems for forecasting CLPH using REE. In Section 3, we present the model specification
and the empirical setting of the LS-SVM-FM. Section 4 provides quantitative evidence
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for forecasting CLPH using REE with Chinese provincial data, and a further comparison
analysis of forecasting performance is conducted. Sections 5 and 6 show the summary
and conclusion.

2. Literature Review
2.1. The Inner Relationship between CLPH and REE

The inner relationship between CLPH and REE originates from their basic concepts.
REE is a concise and simplified comprehensive index and emphasizes the monetary costs
of various resources and the environmental changes required for economic development.
Meanwhile, CLPH is also closely and directly associated with this kind of economic and
environmental change, with regards to the requirement of maximum profits and minimum
pollution. In addition, a variety of factors, such as the consumption of energy, pollutant
emissions in waste gas, pollutant emissions in waste water, industrial solid wastes, the in-
creased value of industrial development, and so on [11,12], originate from the measurement
of REE and impact CLPH simultaneously. The above internal connection is an important
foundation for building a predictive model, and the related literatures provide a basis for
theoretical feasibility.

(1) In the economic dimension [13–17], scholars have investigated how economic
activities embedded in REE affect CLPH [18]. As the most basic and critical requirements,
the physical health of residents necessitates food, exercise, spiritual guarantee, and so on,
which are achieved under one important premise: that personal income level and economic
development trends provide the fundamental roles [19]. Residents earn income through
employment to purchase energy and nutrition, for continuous life and education services,
etc. [20], and to afford the expenditure for necessary medical supplies, equipment, and
services [21]. Macroeconomic trends serve as leading indicators for residents’ disposable
incomes on the micro-level, especially for healthcare [22–24]. In addition, many other
social or economic activities, such as city planning [25,26], immigration [27], aging [23],
or housing [28], affect the changes in local public health too. In addition, REE includes
the continuing impact of economic activities, and it reflects the quantitative effects from
the input–output perspective. For example, producers can optimize the decision-making
process of resource allocation.

(2) In the environmental dimension [29,30], there is a variety of related literature
that have probed and shown evidence that the surrounding environments incorporated
into local eco-efficiency have impacted local public health. Calculations of REE already
encompass environmental input–output factors, including both the BADS and GOODS [4],
which have led to changes in local public health to some extent. For example, beyond a
certain concentration range, the BADS, such as particulate matter (PM2.5) or sulfur dioxide
(SO2), deteriorate the living environments of residents and pose a great hidden danger
to public health. In particular, excessive PM2.5 or SO2 have caused many diseases of the
respiratory and nervous system with both short-term and long-term damage.

Firstly, as a hot topic, public health has also been suffering from the air pollutant
emissions of the manufacturing industry [31–35]. The highly frequent appearance of haze
episodes has brought huge stress to physical and psychological health and social daily
operations. Yu, Wang [36] assessed this kind of negative impact in China by using satellite
observations, and Gao, Woodward [37] conducted a review of the changes in haze pollution
and local public health. There are many potential risks when the concentrations are big
enough. PM10, NO2, O3, and CO are bad for CLPH [31,38–40].

Secondly, solid or plastic waste is resistant to degradation, has low costs, and is rapidly
growing, which squeezes living space and keeps deteriorating sanitary conditions [41–44]
no matter what kind of waste, from economic activities or daily life. Using modified
eco-efficiency indicators, Woon and Lo [45] focused on the public health and solid waste
management of Hong Kong. Langdon, Chandra [46] pointed out that solid or plastic waste
has led to contaminants entering the living environment. Solid or plastic waste has also
caused public health to be exposed to heavy metals such as lead, mercury, cadmium, and
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arsenic [47,48]. Moreover, solid or plastic waste affects the growth of plants and changes
in local public health [49,50], and it is not conducive to the effective prevention of toxic
substances and infectious diseases and weakens the effects of health work on medical
institutions and CLPH [41,51].

Thirdly, excessive water pollution is another important derivative that affects changes
in local public health during social or economic progress [52], and, although wastewater
has been purified to be utilized again [53,54], chemical compounds—toxic micropollutants—
hidden in the water pollutants have gradually evolved into a huge health risk [55,56]. Saha,
Rahman [57] pointed out that through ingestion or dermal contact, local residents are likely
to be diseased. CLPH have continued to deteriorate and have caused various diseases due
to the pesticides or toxic metals in both the irrigation and drinking water systems [58].

2.2. The Keys to Forecast CLPH with REE

When forecasting CLPH using REE, there are the following issues that need to be
settled. (1) There are many factors that make the relationship so complex. It is necessary
to adopt a new technique (SVM) to map the linear, nonlinear, or some complex implicit
relationship because CLPH are influenced by economic, environmental, and individual
factors, as well as others (as discussed in the last section). Simultaneously, REE with six
control variables works to add to the practical interpretability. (2) There is an implicit
and uncertain relationship description when using REE to forecast CLPH, especially as
this paper applied five indicators as proxy variables for CLPH and six control variables.
Whether they are positive or negative impacts and linear or nonlinear, this needs more
quantitative evidence. (3) Different regional characteristics require a quantitative compari-
son of prediction performances. Considering the regional heterogeneity, it is necessary to
build or estimate a model for a single region. Moreover, since there are five proxy variables
for residents’ health status, there is a question worth discussing about the relatively higher
prediction accuracy obtained via eco-efficiency and six other control variables. (4) There
are limited sample data, and how to obtain better prediction accuracy with limited data is
another question. Multiple factors and regions generally require more data to complete the
fitting, obtain the optimal parameters, and further predict the data within or outside the
sample on a secondary basis. It needs a strong learning ability and effective use of a small
sample of information.

3. Data and Methods
3.1. Data and Variables

Considering the data availability of and lack of data on Tibet, Hong Kong, Macao,
and Taiwan, in the empirical Section 3, all provinces or cities in China were taken into
account. The time period is from 2002 to 2016. This paper adopted “SBM (Slacks-Based
Measure)” [59] and DEA-SOLVER Pro 5.0 [60] to measure the REEs. The descriptive
statistics of the main variables to calculate the REEs are listed in Table S1 and Figure 1. The
results are consistent with most other studies [61]. The eastern values of REE are higher
than the western values. The value of the eco-efficiency of the whole nation is up to 0.51
in 2016.

The data of VTH, OWET, NI, NOHE, and PD (mainly from hospitals) are from the Chi-
nese Medical Health Statistics Yearbooks from 2003 to 2017. The main statistics descriptions
can be obtained from Figure 2. Indicators related to REE and all the control variables were
mainly collected from the China Statistical Yearbooks from 2002 to 2017. All the indicators
related to value were excluded because of the effect of inflation on the prices in 1998.
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In addition, due to the limitation in the same frequency processing of the data collection
of the other variables in the forecasting model, the eco-efficiency calculation period is 2002–
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2016 [62]. First of all, it was difficult to obtain the energy-related/CO2-related input
and output indicators (shown in Supplementary Materials: Table S1, including the main
variables of the SBM to calculate the regional eco-efficiency) in some provinces and cities,
such as Tibet, which limited our sample range. Secondly, there were many independent
variables and dependent variables in the prediction model. This paper applied 5 indicators
as proxy variables for CLPH and 6 control variables, including the development level of
regional GDP, urbanization, population, and the number of local medical personnel, local
licensed (assistant) doctors, and local health care institutions. In order to keep the time
range of all the variables used consistent, we had to choose all data from 2002 to 2016.
Although the eco-efficiency in 2017–2019 can be calculated, statistical data such as basic
medical conditions (the statistical data of medical personnel, licensed doctors, or health
care institutions) were scarce or had different statistical calibers, and we were limited to
unifying the range of selected years. In addition, the impact of COVID-19 after 2019 can be
seen as an uncertain external impact, which may need to be the focus of future research.

Figure 2 displays the regional average levels of all the used indicators in China. It can
be seen that CLPH maintained a more moderate growth trend and so did the REE. However,
from the theoretical explanation, they cannot be arbitrarily predicted using linear methods
because there are many factors that determine the health levels of residents, for example,
physical fitness, wealth, psychological factors, exercise methods, etc., which is consistent
with the view in Section 2. Considering the implicit and uncertain relationship between
REE and CLPH, regional characteristics, and low data availability, the following section
draws on the advantages of the LS-SVM-FM in mapping and identifying the relationship
(even if non-linear), which can ensure the fitting effect and prediction accuracy.

3.2. Method Design

SVM performs well in building models when there are many factors or a nonlinear
data pattern with small samples in many literatures, including [63–67]. Based on these, this
paper utilized its relevant methods to ensure the fitting effect and prediction accuracy.

(1) The implicit relationship could have a much clearer mapping in the high-dimensional
hyper feature space by constructing a hyper plane and finding support vectors to represent
all the information, which allowed us to predict with a small sample of data.

(2) Its diverse kernel functions (linear and nonlinear) could meet the need for complex
forecasting alongside the commonly used linear models, which allowed us to predict with
the complex or uncertain relationship of the forecasting model. In the high-dimensional
feature space, the proposed method adopted the nonlinear kernel to map the non-linear
function learned by a linear learning machine, the process of which is not limited to spatial
dimensionality.

(3) Compared with other methods, taking the “Structural Risk Minimization Principle”
as the principle, SVM enabled our method to be equipped with an improved classification
power [68], which allowed us to acquire a better forecasting accuracy for each region in
China with a good fitting [67].

(4) Most forecasting based on SVM such as the Least Square-Support Vector Machine
(LS-SVM) has already been applied to time series data, and this study extended it to regional
panel data by constructing the LS-SVM-FM.

Based on the classic LS-SVM, LS-SVR, and LS-SVR-DS, this paper built the LS-SVM-FM
with different regions and multiple factors.

With the dependence on the two parameters σ and γ, the solution of the LS-SVR can
be modified as the following equation:

y(X;σ,γ) =
m

∑
i=1
αi(σ,γ)K

(
xj, xi

)
+ b(σ,γ) (1)

It is better to apply the optimal method to obtain what are the true values of those
main parameters by minimizing the average of squared errors. It can be displayed as
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min
σ,γ

G(σ,γ) =
1
m

m

∑
j=1

[
yj − y

(
xj;σ,γ

)]2
=

1
m

m

∑
j=1

[
yj −

m

∑
i=1
αi(σ,γ)K

(
xj, xi

)
− b(σ,γ)

]2

(2)

In the empirical parts, the proposed LS-SVM-FM took the CLPH as Y, whose proxy
variables are, separately, the VTH, OWET, NI, NOHE, and PD. x1, x2, x3, . . . , and x7
represent variable values of REE, and all 6 of the control variables are represented as X. The
next section introduces the relevant data and variables in detail. The continued LS-SVM-FM
is written as the following:

Fp(X|W) = Yp(X) =
7

∑
q=1

N

∑
k=1

αpqkKp
(
xq, xk

)
+ bp (3)

It rewrites as

Yp(X) =
7

∑
q=1

[
αp1Kp

(
xq, x1

)
+ αp2Kp

(
xq, x2

)
+ αp3Kp

(
xq, x3

)
+ · · ·+ αpNKp

(
xq, xN

)]
+ bp (4)

p = 1, . . . , P, where P denotes the number of regions or province or cites. Here, P
is 30 and stands for the 30 provinces or cities in China. p = 1, . . . , Q, where Q denotes
the number of variables. Here, Q is 7 and stands for the 7 different variables including
REE and the control variables in China. k = 1, 2, · · ·N, where N is equal to 15, and k
stands for the specific year from 2002 to 2016. There are four kinds of kernels. The Radial
Basis Function (RBF) kernels K(x, xk) = exp

(
− ‖ x− xk ‖2 /2σ2) were chosen as the

specific form, which has been unanimously recognized by scholars with the most frequent
application, relatively [69].

3.3. Main Steps

Without an explicit close form on σ and γ of G, here, we provide the following
algorithm of the search procedure [69].

Step 1. Initialize a search point B0 = (σ0,γ0) and k = 1.
Step 2. Let the point, B1 = (σ0 + λσ,γ0 + λγ), be alternative, in which λσ and λγ

denote the random step sizes generated from the (0, 1) uniform distribution.
Step 3. Calculate G(σ0,γ0) and G(σ0 + λσ,γ0 + λγ) simultaneously by applying (2).
Step 4. Replace σ0 with σ0 + λσ and γ0 with γ0 + λγ, if G(σ0 + λσ,γ0 + λγ) ≤

G(σ0,γ0). Otherwise, σ0 = σ0 and γ0 = γ0.
Step 5. When G(σ0,γ0) ≤ ε or k ≥ N, the iteration can stop. Otherwise, set k ≥ k + 1

and return to Step 2. The iteration can stop either when the forecasting accuracy can
be achieved or the computation is finished within an exogenously prespecified iteration
number N. When the algorithm stops, it finds the ‘optimal’ pair of (σ0,γ0) for the LS-SVM-
FM, which minimizes the training error.

The main procedures are described as follows: (1) We applied each of the 30 province-
level datasets in China to the LS-SVM-FM and performed in-sample learning and fitting to
determine the parameter value and out-of-sample prediction and comparison to determine
the prediction accuracy; (2) mean percentage error (MPE) and mean square or standard
deviation of prediction error (MSE or SDE) were chosen to judge the prediction accuracy;
(3) the VTH, OWET, NI, NOHE, and PD for CLPH were respectively taken as Y; (4) REE
and the control variables in China were adopted as X, and the LS-SVM-FM without or
with each of the 6 control variables were compared, respectively, and we obtained the best
forecasting model with a lower prediction error; and (5) the forecasting accuracy with the
single factor and multiple factors in China was drawn from the comparison analysis [69].

(1) MPE =
∑T

t=1
yt−ŷt

yt
T .

(2) MSE = ∑T
t=1(yt−ŷt)

2

T ; SDE =

√
∑T

t=1(yt−ŷt)
2

T .
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yT and yt denote the known sample values of the year t. ŷT and ŷt denote the predicted
sample values of the last year and the year of t using the LS-SVM-FM. t = 1, 2, · · · , T.

4. Results
4.1. Forecasting Accuracy with the Single Factor and Multiple Factors

Chinese data were applied to the LS-SVM-FM to obtain empirical evidence. To un-
derstand the prediction better and keep a reasonable explanation, each of the five proxy
indicators of CLPH for the thirty different provinces and cities in China were forecasted,
and we compared the prediction errors from the following three aspects: (I) utilizing
the single-factor-REE to forecast the CLPH in China, naming the model LS-SVM-FM (1);
(II) adopting the multi-factors-REE and three more economic and demographic factors,
naming the model LS-SVM-FM (2); and (III) based on the LS-SVM-FM (2), incorporating
three more medical supply and technical level factors, naming the model LS-SVM-FM (3).

The three models obviously showed whether the forecasting accuracy changed sig-
nificantly when applied to more control variables and which model gained the lowest
prediction errors of each selected region in China. Tables 1–6 display detailed correspond-
ing information about the forecasting performances of LS-SVM-FM (1), LS-SVM-FM (2),
and LS-SVM-FM (3).

Table 1. The First Part of Forecasting performance of LS-SVM-FM (1).

Visits (100 Million) Outpatients with Emergency Treatment
(100 Million) Number of Inpatients (10,000 Persons)

MPE MSE SDE MPE MSE SDE MPE MSE SDE

China 0.00192 0.91664 0.95741 0.00203 0.90207 0.94977 0.00377 405,619.57361 2466.63609
Beijing 0.00593 0.00166 0.04068 0.00413 0.00138 0.03716 0.00641 55.98069 28.97776
Tianjin 0.00347 0.00059 0.02431 0.00370 0.00060 0.02449 0.00429 23.26127 18.67937
Hebei 0.00621 0.00550 0.07414 0.00684 0.00532 0.07292 0.00596 1922.83207 169.83074
Shanxi 0.03625 0.00497 0.07052 0.03664 0.00439 0.06627 0.08777 4054.84798 246.62263

Inner Mongolia 0.01775 0.00161 0.04012 0.01747 0.00149 0.03857 0.01914 540.89685 90.07471
Liaoning 0.01685 0.00877 0.09366 0.01881 0.00904 0.09510 0.04576 7055.55512 325.32034

Jilin 0.00218 0.00019 0.01373 0.00178 0.00016 0.01264 0.00206 76.35504 33.84266
Heilongjiang 0.05188 0.01065 0.10321 0.05657 0.01089 0.10435 0.14120 10,230.06615 391.72821

Shanghai 0.00971 0.00575 0.07583 0.01049 0.00576 0.07593 0.00921 310.72021 68.27007
Jiangsu 0.00149 0.00193 0.04392 0.00248 0.00196 0.04428 0.00294 265.18282 63.06935

Zhejiang 0.00311 0.00343 0.05856 0.00330 0.00342 0.05845 0.00457 409.03585 78.32967
Anhui 0.00299 0.00124 0.03519 0.00207 0.00112 0.03340 0.00349 662.15291 99.66089
Fujian 0.00818 0.00237 0.04869 0.01005 0.00244 0.04940 0.01062 710.07202 103.20407
Jiangxi 0.00194 0.00036 0.01898 0.00191 0.00034 0.01834 0.00432 327.05850 70.04197

Shandong 0.00302 0.00569 0.07545 0.00382 0.00554 0.07442 0.00569 3580.87560 231.76094
Henan 0.00197 0.00172 0.04151 0.00126 0.00154 0.03920 0.00328 985.31963 121.57218
Hubei 0.00218 0.00055 0.02341 0.00158 0.00040 0.02000 0.00338 233.81192 59.22144
Hunan 0.00112 0.00053 0.02300 0.00111 0.00048 0.02195 0.00459 492.60320 85.95957

Guangdong 0.00243 0.01016 0.10081 0.00249 0.00987 0.09933 0.00309 1056.46133 125.88455
Guangxi 0.00156 0.00039 0.01964 0.00093 0.00031 0.01770 0.00610 299.17792 66.99006
Hainan 0.05362 0.00068 0.02611 0.05283 0.00066 0.02564 0.11745 292.27729 66.21298

Chongqing 0.00259 0.00033 0.01826 0.00177 0.00026 0.01622 0.00927 272.60830 63.94626
Sichuan 0.00290 0.00081 0.02839 0.00303 0.00076 0.02759 0.00086 520.90749 88.39464
Guizhou 0.00306 0.00011 0.01027 0.00587 0.00030 0.01744 0.01692 471.29101 84.07952
Yunnan 0.01100 0.00542 0.07364 0.01093 0.00509 0.07136 0.01956 3485.27203 228.64619
Shaanxi 0.01456 0.00387 0.06220 0.01480 0.00382 0.06181 0.03167 3495.36887 228.97715
Gansu 0.02359 0.00188 0.04336 0.02318 0.00164 0.04048 0.10303 3128.21615 216.61773

Qinghai 0.02693 0.00019 0.01381 0.03077 0.00017 0.01296 0.06899 148.65021 47.22026
Ningxia 0.00420 0.00006 0.00765 0.00435 0.00005 0.00731 0.00751 20.19197 17.40344
Xinjiang 0.04769 0.00653 0.08080 0.05348 0.00660 0.08124 0.13928 8130.00502 349.21351
Average 0.01235 0.00293 0.04633 0.01295 0.00286 0.04553 0.02961 1775.23518 128.99176
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Table 2. The Second Part of Forecasting performance of LS-SVM-FM (1).

Number of Health Examinations (10,000 Persons) Patients Discharged (10,000 Persons)

MPE MSE SDE MPE MSE SDE

China 0.05315 1,738,096.51187 1318.36888 0.00379 468,007.97061 684.11108
Beijing 0.05275 2321.08266 48.17762 0.00584 56.57502 7.52164
Tianjin 0.00583 54.18368 7.36096 0.00440 23.06877 4.80300
Hebei 0.10931 4276.50913 65.39502 0.00584 1830.36096 42.78272
Shanxi 1.16767 277,966.67011 527.22545 0.08932 3988.56250 63.15507

Inner Mongolia 0.09933 298.63334 17.28101 0.01811 510.15312 22.58657
Liaoning 0.03394 2655.96989 51.53610 0.04458 6920.06978 83.18696

Jilin 0.00325 21.97031 4.68725 0.00128 69.38246 8.32961
Heilongjiang 0.34022 6837.08484 82.68667 0.14290 10,187.72469 100.93426

Shanghai 0.35247 5197.56606 72.09415 0.00811 301.01225 17.34970
Jiangsu 0.54699 17,129.53347 130.87984 0.00296 281.25033 16.77052

Zhejiang 0.58323 20,354.73403 142.67002 0.00292 311.05583 17.63677
Anhui 0.09713 2662.96101 51.60389 0.00470 682.88916 26.13215
Fujian 0.11796 2643.99917 51.41983 0.01340 669.29284 25.87069
Jiangxi 0.00329 83.20221 9.12152 0.00469 329.00479 18.13849

Shandong 0.05606 10,654.74975 103.22185 0.00566 3597.07065 59.97558
Henan 0.08149 5035.28206 70.95972 0.00371 1019.82336 31.93467
Hubei 0.02445 1362.81613 36.91634 0.00401 247.69873 15.73845
Hunan 0.00602 433.10634 20.81121 0.00443 477.56503 21.85326

Guangdong 0.17755 75,738.38389 275.20608 0.00369 1185.90951 34.43704
Guangxi 0.02221 959.26509 30.97200 0.00543 292.49687 17.10254
Hainan 0.23382 79.71844 8.92852 0.11625 291.26718 17.06655

Chongqing 0.01628 300.69067 17.34043 0.00860 258.00590 16.06256
Sichuan 0.00255 198.86296 14.10188 0.00544 378.55165 19.45640
Guizhou 0.03541 727.41516 26.97064 0.01709 455.62373 21.34534
Yunnan 0.01910 1054.97890 32.48044 0.01991 3483.63044 59.02229
Shaanxi 0.15467 3689.90557 60.74459 0.03075 3476.96806 58.96582
Gansu 0.03230 649.66192 25.48847 0.10175 3061.53453 55.33114

Qinghai 0.10173 63.68169 7.98008 0.07157 152.00172 12.32890
Ningxia 0.02544 48.12243 6.93703 0.00763 19.27320 4.39013
Xinjiang 0.30604 13,059.15345 114.27665 0.14053 8078.00936 89.87775
Average 0.16028 15,218.66314 70.51584 0.02985 1754.52775 33.00289

Table 3. The First Part of Forecasting performance of LS-SVM-FM (2).

Visits (100 Million) Outpatients with Emergency Treatment
(100 Million) Number of Inpatients (10,000 Persons)

MPE MSE SDE MPE MSE SDE MPE MSE SDE

China 0.00035 0.03927 0.19816 0.00034 0.03387 0.18404 0.00048 18,889.43367 137.43884
Beijing 0.00338 0.00092 0.11736 0.00212 0.00058 0.02415 0.00240 32.24121 5.67813
Tianjin 0.00039 0.00002 0.01598 0.00038 0.00002 0.00399 0.00000 0.00000 0.00003
Hebei 0.00003 0.00000 0.00344 0.00000 0.00000 0.00017 0.00072 91.60878 9.57125
Shanxi 0.00148 0.00010 0.03899 0.00133 0.00009 0.00935 0.00013 1.21191 1.10087

Inner Mongolia 0.00114 0.00003 0.02198 0.00090 0.00002 0.00470 0.00079 13.90730 3.72925
Liaoning 0.00001 0.00000 0.00209 0.00000 0.00000 0.00002 0.00000 0.00000 0.00020

Jilin 0.00006 0.00000 0.00601 0.00068 0.00004 0.00641 0.00059 11.04432 3.32330
Heilongjiang 0.00000 0.00000 0.00000 0.00017 0.00002 0.00421 0.00039 21.98675 4.68900

Shanghai 0.00020 0.00005 0.02828 0.00023 0.00005 0.00740 0.00022 3.04555 1.74515
Jiangsu 0.00043 0.00057 0.09235 0.00072 0.00071 0.02667 0.00006 15.07263 3.88235

Zhejiang 0.00188 0.00136 0.14269 0.00218 0.00143 0.03786 0.00161 158.65937 12.59601
Anhui 0.00093 0.00009 0.03632 0.00063 0.00005 0.00690 0.00011 15.50991 3.93826
Fujian 0.00024 0.00004 0.02592 0.00022 0.00002 0.00499 0.00222 42.85782 6.54659
Jiangxi 0.00095 0.00007 0.03204 0.00085 0.00006 0.00758 0.00000 0.00000 0.00010

Shandong 0.00106 0.00086 0.11340 0.00126 0.00074 0.02718 0.00110 409.18927 20.22843
Henan 0.00031 0.00016 0.04969 0.00000 0.00000 0.00063 0.00105 189.65446 13.77151
Hubei 0.00114 0.00027 0.06360 0.00114 0.00026 0.01603 0.00293 196.14484 14.00517
Hunan 0.00004 0.00000 0.00752 0.00000 0.00000 0.00000 0.00022 23.05697 4.80177
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Table 3. Cont.

Visits (100 Million) Outpatients with Emergency Treatment
(100 Million) Number of Inpatients (10,000 Persons)

MPE MSE SDE MPE MSE SDE MPE MSE SDE

Guangdong 0.00064 0.00265 0.19935 0.00061 0.00258 0.05083 0.00029 506.50071 22.50557
Guangxi 0.00000 0.00000 0.00000 0.00085 0.00013 0.01125 0.00042 45.89589 6.77465
Hainan 0.00010 0.00000 0.00300 0.00008 0.00000 0.00087 0.00081 0.72074 0.84896

Chongqing 0.00032 0.00001 0.01292 0.00102 0.00003 0.00591 0.00124 8.16018 2.85660
Sichuan 0.00076 0.00034 0.07123 0.00073 0.00030 0.01718 0.00094 240.77377 15.51689
Guizhou 0.00213 0.00009 0.03756 0.00124 0.00005 0.00681 0.00862 178.35468 13.35495
Yunnan 0.00015 0.00003 0.01959 0.00020 0.00003 0.00566 0.00065 46.15658 6.79386
Shaanxi 0.00026 0.00003 0.02008 0.00020 0.00002 0.00396 0.00013 1.56745 1.25198
Gansu 0.00025 0.00001 0.01051 0.00023 0.00001 0.00258 0.00286 19.70234 4.43873

Qinghai 0.00217 0.00001 0.00961 0.00340 0.00001 0.00295 0.00988 6.72635 2.59352
Ningxia 0.00064 0.00000 0.00833 0.00042 0.00000 0.00154 0.00027 0.18873 0.43443
Xinjiang 0.00016 0.00000 0.00800 0.00026 0.00002 0.00428 0.00006 0.16210 0.40262
Average 0.00071 0.00026 0.03993 0.00074 0.00024 0.01007 0.00136 76.00335 6.24600

Table 4. The Second Part of Forecasting performance of LS-SVM-FM (2).

Number of Health Examinations (10,000 Persons) Patients Discharged (10,000 Persons)

MPE MSE SDE MPE MSE SDE

China 0.05708 1,675,850.37137 1294.54640 0.00054 21,295.74204 145.93061
Beijing 0.05268 2135.02766 46.20636 0.00242 24.89391 4.98938
Tianjin 0.00233 9.22267 3.03688 0.00000 0.00000 0.00001
Hebei 0.10389 3419.73632 58.47851 0.00096 99.69114 9.98455
Shanxi 0.98408 262,613.20253 512.45800 0.00009 0.65840 0.81142

Inner Mongolia 0.22479 701.77480 26.49103 0.00062 9.30115 3.04978
Liaoning 0.01316 1020.55332 31.94610 0.00000 0.00000 0.00003

Jilin 0.05828 302.46745 17.39159 0.00039 9.07593 3.01263
Heilongjiang 0.15970 1494.46364 38.65829 0.00028 18.70821 4.32530

Shanghai 0.33256 4048.37308 63.62683 0.00028 3.82234 1.95508
Jiangsu 0.57970 18,005.27888 134.18375 0.00010 21.60201 4.64780

Zhejiang 0.58310 18,751.62824 136.93658 0.00155 98.13550 9.90634
Anhui 0.10308 2622.21053 51.20752 0.00015 23.27889 4.82482
Fujian 0.09563 1881.63866 43.37786 0.00155 39.77409 6.30667
Jiangxi 0.02288 406.57600 20.16373 0.00094 18.46146 4.29668

Shandong 0.05166 8354.16534 91.40112 0.00063 407.54852 20.18783
Henan 0.01490 627.91876 25.05831 0.00107 183.87315 13.55998
Hubei 0.02629 1359.24663 36.86796 0.00332 218.08177 14.76759
Hunan 0.00733 371.56303 19.27597 0.00021 22.10366 4.70145

Guangdong 0.19417 83,228.00416 288.49264 0.00112 348.43544 18.66643
Guangxi 0.01360 526.90583 22.95443 0.00000 0.00000 0.00009
Hainan 0.22777 46.11755 6.79099 0.00078 0.74638 0.86393

Chongqing 0.02990 475.66845 21.80982 0.00103 7.68410 2.77202
Sichuan 0.02201 1746.69817 41.79352 0.00093 226.88005 15.06254
Guizhou 0.02494 450.87739 21.23387 0.00813 168.95577 12.99830
Yunnan 0.00770 345.33049 18.58307 0.00084 55.21420 7.43063
Shaanxi 0.00000 0.00000 0.00057 0.00013 1.65379 1.28600
Gansu 0.01446 173.65754 13.17792 0.00294 22.16623 4.70810

Qinghai 0.07494 26.13551 5.11229 0.00587 2.30415 1.51794
Ningxia 0.00038 0.26050 0.51040 0.00028 0.21509 0.46378
Xinjiang 0.05055 1352.35582 36.77439 0.00000 0.00000 0.00014
Average 0.13588 13,883.23530 61.13334 0.00122 67.77551 5.90324
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Table 5. The First Part of Forecasting performance of LS-SVM-FM (3).

Visits (100 Million) Outpatients with Emergency Treatment
(100 Million) Number of Inpatients (10,000 Persons)

MPE MSE SDE MPE MSE SDE MPE MSE SDE

China 0.00008 0.01127 0.10614 0.00005 0.00699 0.08359 0.00027 28,446.81852 168.66185
Beijing 0.00338 0.00086 0.02939 0.00256 0.00056 0.02358 0.00208 26.96360 5.19265
Tianjin 0.00055 0.00004 0.00655 0.00047 0.00003 0.00576 0.00025 1.61696 1.27160
Hebei 0.00080 0.00017 0.01313 0.00024 0.00005 0.00674 0.00119 106.43587 10.31678
Shanxi 0.00003 0.00000 0.00023 0.00012 0.00000 0.00072 0.00012 28.64374 5.35198

Inner Mongolia 0.00148 0.00004 0.00592 0.00129 0.00003 0.00512 0.00059 11.76455 3.42995
Liaoning 0.00036 0.00009 0.00928 0.00030 0.00010 0.01004 0.00030 40.62011 6.37339

Jilin 0.00061 0.00003 0.00555 0.00136 0.00006 0.00795 0.00113 14.20003 3.76829
Heilongjiang 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00226 86.19048 9.28388

Shanghai 0.00006 0.00003 0.00564 0.00005 0.00003 0.00535 0.00006 2.09720 1.44817
Jiangsu 0.00000 0.00000 0.00000 0.00000 0.00000 0.00021 0.00010 2.58493 1.60777

Zhejiang 0.00009 0.00008 0.00867 0.00011 0.00009 0.00944 0.00019 13.05925 3.61376
Anhui 0.00016 0.00002 0.00451 0.00015 0.00002 0.00450 0.00014 19.53235 4.41954
Fujian 0.00045 0.00006 0.00755 0.00051 0.00005 0.00691 0.00178 23.29297 4.82628
Jiangxi 0.00022 0.00002 0.00388 0.00021 0.00001 0.00355 0.00212 25.25358 5.02529

Shandong 0.00082 0.00073 0.02710 0.00039 0.00022 0.01474 0.00073 357.04299 18.89558
Henan 0.00013 0.00006 0.00777 0.00010 0.00005 0.00676 0.00052 76.89721 8.76911
Hubei 0.00066 0.00009 0.00961 0.00064 0.00007 0.00852 0.00061 40.09426 6.33200
Hunan 0.00127 0.00011 0.01051 0.00139 0.00011 0.01031 0.00172 103.22381 10.15991

Guangdong 0.00045 0.00181 0.04251 0.00045 0.00174 0.04169 0.00053 129.27407 11.36988
Guangxi 0.00040 0.00007 0.00836 0.00025 0.00004 0.00611 −0.00003 17.86174 4.22632
Hainan 0.00000 0.00000 0.00000 0.00016 0.00000 0.00089 0.00005 0.08138 0.28527

Chongqing 0.00007 0.00000 0.00109 0.00001 0.00000 0.00024 0.00059 2.22248 1.49080
Sichuan 0.00035 0.00017 0.01307 0.00036 0.00015 0.01243 0.00056 149.20399 12.21491
Guizhou 0.00186 0.00006 0.00762 0.00031 0.00001 0.00301 0.00084 25.19384 5.01935
Yunnan 0.00007 0.00001 0.00342 0.00010 0.00001 0.00352 −0.00002 42.26552 6.50119
Shaanxi 0.00024 0.00001 0.00372 0.00019 0.00001 0.00333 0.00073 8.27122 2.87597
Gansu 0.00200 0.00007 0.00817 0.00017 0.00000 0.00171 0.00001 0.02165 0.14714

Qinghai 0.00007 0.00000 0.00060 0.00183 0.00000 0.00205 0.01404 5.48537 2.34209
Ningxia 0.00151 0.00001 0.00283 0.00139 0.00001 0.00251 0.00146 2.26042 1.50347
Xinjiang 0.00000 0.00000 0.00000 0.00051 0.00002 0.00492 0.00116 31.90758 5.64868
Average 0.00060 0.00015 0.00822 0.00052 0.00012 0.00709 0.00119 46.45210 5.45703

When only using the REE to forecast the CLPH in China, performance comparisons
within Tables 1 and 2 provide more information. Firstly, overall, REE can better predict the
health status of regional residents of the five proxy variables in China. The MPE values all
fall within the acceptable interval, and in particular, the average MPE values of the CLPH
are 1.295%, 1.235%, 2.961%, 16.028%, and 2.985%, although the NOHE is bigger than 10%,
and 12 of the 30 regions show a bigger than 10% prediction error. As with the literature
mentioned above, REE owned the impacts from both economic and environmental aspects
at the same time, and it is crucial and well-behaved for describing the health conditions of
residents. Change in eco-efficiency affect living conditions and thus the changes in local
public health. Therefore, it can be regarded as a good predictor, helping decision-makers to
quantify future changes in residents’ health in advance and, finally, adjust various medical
supplies and technical preparations.

Secondly, the volatility of the forecasting error appears quite differently in each
province or city, as represented by the bigger values of MSE and SDE for NI, NOHE,
and PD compared with the other indicators. Their bigger MSE values are in part due to a
smaller statistical unit, but SDE is much more convincing, with values of 128.99, 70.52, and
33.00. Another possibility is whether the model ignores important explanatory variables or
other observed factors because local public health can actually be impacted by a number of
factors no matter if on the individual or environmental level, as analyzed in the previous
literature review.

Thirdly, regardless of the vertical comparison of a resident’s health status or the hori-
zontal comparison of different indicators, significant differences in forecasting accuracy
between provinces and cities also exist, or the influence of regional heterogeneity on pre-
diction accuracy is very obvious. Regional decision-makers should notice the phenomenon.
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The specific situations of different provinces or cities are important clues for analyzing the
above differences of LS-SVM-FM (1).

Table 6. The Second Part of Forecasting performance of LS-SVM-FM (3).

Number of Health Examinations (10,000 persons) Patients Discharged (10,000 persons)

MPE MSE SDE MPE MSE SDE

China 0.05829 1,574,796.96650 1254.90915 0.00024 29,753.99626 172.49347
Beijing 0.05383 2194.24540 46.84277 0.00205 26.98889 5.19508
Tianjin 0.00539 44.62784 6.68041 0.00024 1.53127 1.23745
Hebei 0.10162 3338.60733 57.78068 0.00107 98.52758 9.92611
Shanxi 0.93100 264,433.55297 514.23103 0.00011 24.02664 4.90170

Inner Mongolia 0.00000 0.00000 0.00016 0.00037 6.94152 2.63468
Liaoning 0.01432 879.38933 29.65450 0.00036 43.02915 6.55966

Jilin 0.08450 532.94037 23.08550 0.00120 15.60832 3.95074
Heilongjiang 0.15653 1442.59133 37.98146 0.00212 77.74058 8.81706

Shanghai 0.35348 4291.54063 65.50985 0.00007 2.18768 1.47908
Jiangsu 0.58290 18,198.78578 134.90288 0.00000 0.00001 0.00307

Zhejiang 0.56100 17,154.77353 130.97623 0.00022 21.99573 4.68996
Anhui 0.10377 2265.71143 47.59949 0.00016 22.42324 4.73532
Fujian 0.09960 1620.21954 40.25195 0.00111 23.02546 4.79849
Jiangxi 0.02990 418.17833 20.44941 0.00379 87.44515 9.35121

Shandong 0.05872 8440.11959 91.87012 0.00079 390.75954 19.76764
Henan 0.09288 5285.62259 72.70229 0.00044 71.24126 8.44045
Hubei 0.02366 925.55176 30.42288 0.00067 47.80071 6.91381
Hunan 0.02203 868.42598 29.46907 0.00159 102.13969 10.10642

Guangdong 0.18586 78,816.83292 280.74336 0.00051 175.82555 13.25992
Guangxi 0.02157 688.26442 26.23479 −0.00005 24.98931 4.99893
Hainan 0.26425 53.91894 7.34295 0.00006 0.07449 0.27293

Chongqing 0.02812 453.15321 21.28740 0.00070 2.61682 1.61766
Sichuan 0.02669 2253.60230 47.47212 0.00064 151.31722 12.30111
Guizhou 0.00000 0.00000 0.00001 0.00078 25.06643 5.00664
Yunnan 0.00858 350.20840 18.71386 0.00005 48.79165 6.98510
Shaanxi 0.13403 1985.82231 44.56257 0.00071 8.36057 2.89147
Gansu 0.01780 182.81707 13.52099 0.00009 0.46562 0.68236

Qinghai 0.08828 25.76667 5.07609 0.00148 0.73092 0.85494
Ningxia 0.01259 13.25353 3.64054 0.00149 2.46583 1.57030
Xinjiang 0.05300 1411.59057 37.57114 0.00126 33.53680 5.79110
Average 0.13720 13,952.33714 62.88588 0.00080 51.25512 5.65801

By adding the relevant control variables to consider the multiple factors of the LS-
SVM-FM at two times, it helps to understand the aspects confirmed in the above analysis.
Tables 3 and 4 shows the forecasting performance of LS-SVM-FM (2), with REE and GDP
per capita, urbanization level, population density; Tables 5 and 6 shows the forecasting
performance of LS-SVM-FM (3), with medical supply and technical level factors, based on
the former one. As presented in Tables 3–6, other information on economic population
and supplementary information on medical supply and technical level helps to better
understand the potential relationship between CLPH and REE in China when constructing
an empirical forecasting model.

Firstly, incorporating the six control variables enables the model to obtain better results.
LS-SVM-FM (3) and LS-SVM-FM (2) show better or higher forecasting accuracies than
LS-SVM-FM (1). LS-SVM-FM (3) is the best one based on all the values of MPE, MSE,
and SDE for CLPH in most provinces or cities in China. For example, the minimum
averages of MPE are 0.06%, 0.05% 0.12%, 13.72%, and 0.08% and as are the values of MSE
and SDE. This can be attributed to the control variables to provide better information for
machine learning methods in order to identify more realistic mapping relationships in
high-dimensional spaces.
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Secondly, the main findings in Tables 3–6 present similar results as those in Tables 1 and 2.
The other reason for the overall continuously improved prediction effect is that the radial
basis kernel function better describes the above relationship, and it can take into account the
linear and nonlinear relationships between multiple explanatory variables to the greatest
possible extent. The 7 explanatory variables (eco-efficiency and 6 control variables) and the
one-to-one regression for the 30 selected regions of China established high requirements
for the sample size. Because there are only 15 years of data, the traditional panel model
fitting and prediction effects were limited. However, the method proposed in this paper
only needs to find the support vectors due to the advantage of the conversion of the high-
dimensional space, but with extra data or information still needed. At the same time, the
powerful calculation and learning capabilities make up for the limited data.

Thirdly, the NOHE of CLPH owns the bigger prediction errors for MPE, MSE, and
DSE in the three models than the other four. Some points can explain some of the reasons.
For example, the raw data of health examinations fluctuated greatly in 2007, especially
in the Shaanxi Province. In addition, as well as the factors already considered, the health
examinations may be related to the medical insurance system in China and medical process
of medical and health institutions, and further research is required.

4.2. Forecasting Variation with the Single Factor and Multiple Factors

The previous section gave specific prediction accuracies and a corresponding direct
analysis. However, when actually predicting the CLPH, in addition to the annual forecast
performance and change, scholars also arouse attention to how the changes in forecast
errors shift across the time dimension, including changes in averages (average degree) and
changes in variance (variation degree), that is to say, how the MPE, MSE, and SDE change
according to time. At the province level, it was shown that the values of the averages
and standard deviations of MPE, MSE, and SDE for each of the five proxy variables of
the changes in local public health levels in China. Furthermore, it can be learned that the
concentration trend and degree of dispersion of the forecast error change, based on which
the reliability and robustness of the models can be analyzed.

As is shown in Tables 5 and 6, for the forecasting variation of the LS-SVM-FM in
China, LS-SVM-FM (3) outperformed LS-SVM-FM (1) and LS-SVM-FM (2) with the greatest
number of average degrees and variation degrees for all five variables of the CLPH. The
minimum value of each line is marked with bold font, which represents the overall variation
in the forecast error at the province or city level. The prediction accuracies of some provinces
or cities are very high, and for some others are very small, but the overall prediction
accuracy is acceptable for LS-SVM-FM (1), LS-SVM-FM (2), and LS-SVM-FM (3). Taking LS-
SVM-FM (3) as an example, the lowest value of average degree is about 0.00060 (change in
MPE) for VTH of CLPH, 0.00012 (change in MSE) for OWET, and 0.007099 (change in SDE)
for OWET, and the lowest values of variation degree are about 0.00061 (change in MPE) for
OWET, 0.00032 (change in MSE) for OWET, and 0.00808 (change in SDE) for OWET.

By comparing the average degrees and variation degrees of prediction errors such as
MPE, MSE, and SDE, from the global perspective, LS-SVM-FM (3), taking into account all
six control variables, was more reliable and has a higher relative robustness than LS-SVM-
FM (1) and LS-SVM-FM (2), although the other two models are also acceptable within a
certain range of prediction accuracy. Meanwhile, the forecast volatility of NI, NOHE, and
PD significantly expanded, so it is the best choice to make short-term or spot predictions
on the above three dimensions of the CLPH.

5. Discussion
5.1. Main Revelation

REE affects the CLPH through intermediaries that are integrated and represented by
the economic and environmental impacts from the inputs or outputs of computing the REE
at the provincial level in China. Specifically speaking, green sustainable development is
to improve eco-efficiency and encourage consumers, producers, and managers to avoid
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excessive pollution [12]. The continuous increase in green behaviors in work and life
has improved the living environment on which residents depend. Under the premise of
ensuring environmental protection, economic achievements improve the disposable income
for living standards and medical conditions and reduce pollution in living environments
and guarantee a reduction in disease.

The calculated prediction results can be used as the basis for evaluating the specific
social effects of adopting sustainable development strategies by local enterprises or individ-
uals. Making residents’ living or health conditions better is one of the most fundamental
pursuits of a higher REE in each province or city. Local inhabitants are the ultimate main-
tainers and beneficiaries. Therefore, empirical findings by forecasting CLPH via REE could
serve as a tool to evaluate the performance of REE-related policy formulation and activity
implementation and find out the actual effects and deficiencies that need to be addressed
to guide sustainable development practices.

The innate differences and respective characteristics between provinces in China are
an important material for explaining the imbalance of spatial medical demand and supply
distribution. For example, there are three economic and demographic factors and three
medical supply and technical level factors to reflect regional heterogeneity. These factors
show why the real situations of CLPH and the magnitudes of change are different across
different provinces, and the above six factors explain the different effects of increasing
REE promotion on local CLPH, although there are other individual, behavioral, climatic,
psychological, and even political factors for CLPH such as nutrition, climate change, noise,
institutional determinants, medical insurance, and so on. However, considering the quite
limited data availability from micro-individual statistics, it is necessary to investigate what
the interactions are between the economy, environment, and local public health at the
overall macro- and meso-levels.

5.2. Policy Implications

To be more specific, this study is very helpful for decision-makers in each province of
China to understand and optimize the allocation of medical resources. With the help of the
early information on CLPH obtained with the right proposed model, which can forecast
VTH, OWET, NI, NOHE, and PD with a high prediction accuracy in 30 provinces or cities
of China, decision-makers can take this as the quantization basis to confront some urgent
emergencies via a continuous supply of medical supplies. It is an important guarantee for
changes in local public health.

Taking VTH as an example, in addition to the general medical supplies, different
departments of VTH require independent professionals and medical resources, and more
advanced forecasts provide time and a quantitative basis for the production, purchase,
and storage of various medicines, disinfectants, or medical tools, from a general point of
view. Combining the whole forecast for VTH with the ratios of all the sub-departments
on average, there will be more evidence to distinguish the most important demand or
emergency, and the expensive medical supplies to be purchased from others. As it is
shown in Figures 3, S1 and S2, the Departments of Internal Medicine, Chinese Medicine,
Surgery, Obstetrics and Gynecology, and Pediatrics ranked in the top five, which reflects
the differentiated needs and the five most common problems in residents’ health. It seems
obvious that the medical resources required by the five departments vary greatly. The
treatment methods of the Department of Chinese Medicine have more Chinese characteris-
tics. The medicines are concentrated in Chinese herbal medicines. The production and use
of medicines and rehabilitation training require special medical equipment (acupuncture
equipment, medical Tuina, etc.). In addition, the requirements for medical equipment
for testing, diagnosis, or even treatment between Departments of Internal Medicine and
Surgery vary widely with a higher accuracy. The Department of Pediatrics have higher
requirements for the various ingredients of drugs, which are different from those for adults,
as are the mentioned medical staff and job requirements in different professional directions.
Therefore, these top five need to be given enough attention according to the real conditions
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of the 30 selected regions in China, and plans should be made about the following aspects,
including enough medical workers, prepared medical resources, and earlier cooperation
with upstream and downstream enterprises.
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From the perspective of risk and early warning, related forecasting results can be used
as an important reference for early warning and risk identification in public health. Taking
VTH as an example, more detailed comparisons of different sub-departments between
regions are attached in the Supplementary Material. Obtaining the regional heterogeneity
of CLPH in the figures through our predictions, based on the perspectives of local residents’
eating habits, disposable incomes, and population density, decision-makers can formulate
local medical material reserve methods and emergency medical incident response plans.
As the figures show, for the top five sub-departments with high numbers of visits that are
urgently needed in various regions, policy or tax support can be provided to promote the
healthy development of the related industries in the long run. For short-term fluctuations
in individual provinces or cities, certain consultation or coordination mechanisms can be
adopted between other regions to deploy medical personnel and materials to increase
efficiency and reduce the waste of resources, just as that in Guangdong, Shandong, and
Shanxi. As a whole, forecasting results from the other four indicators—OWET, NI, NOHE,
and PD—can also be utilized as with the above analysis with some specific auxiliary
information. Accurate predictions from the above five dimensions can help to detect
residents’ medical conditions. The primary advantage of the above results is that they can
optimize medical supplies and personnel in various regions in time and grasp the overall
situation of different types of medical needs. For example, according to the need changes in
OWET, inpatients, health examinations, and patients discharged, the medical industry can
dynamically adjust the supply and reserves of materials, reduce inventory, and minimize
waste and excessive use of medical resources, and especially important medicines and
instruments that are in short supply and have a long production cycle.

From the perspective of decision optimization, through findings on the control vari-
ables and how to calculate the required indicators of regional eco-efficiency, we can learn
a differentiated path to improve public health in different regions. When adopting eco-
nomic policies and measures for local sustainable development for improving the REE,
they should consider regional differences and be possible to adjust to the most urgent and
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corresponding factors that affect CLPH in real-time, according to their own economic de-
velopment level. Furthermore, it is helpful to strengthen regional cooperation to optimize
the allocation of medical resources. These main findings can guide the industry or the
government to strengthen the close cooperation between upstream and downstream enter-
prises in the medical industry. Accurate forecasting guarantees that there is enough time
to carry out the following work: technical cooperation that breaks through key technical
bottlenecks, resource coordination that reduces overall risks, and personnel exchanges that
share prevention experience.

6. Conclusions
6.1. Main Findings

REE is a highly synthetic indicator with integrated economic and environmental
impacts that is associated with local CLPH. Considering that there are multiple factors
affecting CLPH in addition to REE, such as the implicit and uncertain relationship between
the two, regional characteristics, and low data availability, this paper investigated how to
forecast CLPH using REE by utilizing the LR-SVM-FM and acquire empirical evidence
utilizing the regional province-level data in China.

Taking REE as the main predictor and province-level data in China, this paper investi-
gated how five proxy variables of CLPH were predicted, with different control variables
including more economic and demographic factors and three more medical supply and
technical level factors. Some interesting empirical findings were that (1) REE is a good
predictor for predicting residents’ health, whether in a single-factor situation or a multi-
factor situation. (2) The proxy indicators that measure the health status of residents have
different prediction effects. The prediction accuracy of VTH, OWET, and NI is relatively
high and the volatility is lower and more stable throughout the whole forecasting period.
(3) Utilizing three economic and demographic factors and three medical supply and tech-
nical level factors can improve forecasting performance. (4) The LR-SVM-FM based on
machine learning meets the forecasting needs: regional heterogeneity of provinces and
cities in China, limited samples, uncertain functional relationships, etc.

As explained and proposed earlier, the results show that (1) REE is a comprehensive
indicator that combines the dual impacts of the economy and the environment, which are
also important factors that affect residents’ health conditions. (2) The proposed prediction
model relying on the machine learning method can better characterize the uncertain and
complex relationship between different regions and multiple influencing factors with
limited samples. (3) Six control variables from economic factors, technical factors, and
demographic factors improve the model with a higher degree of explanation, which is
more in line with the real phenomenon.

6.2. Future Research

This article tried to conduct interdisciplinary research by forecasting CLPH using
regional eco-efficiency with integrated economic and environmental impacts. Future re-
search based on this could include searching for more micro-individuals and psychological
indicators, or happiness indexes, to improve prediction models; quantifying the impacts of
regional interactions on the prediction effect; and understanding how medical emergencies
and responses to them can be influenced by the prediction performance.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ijerph20021381/s1. Table S1: main variables of the SBM to calculate
the regional eco-efficiency; Figure S1: the number of visits of outpatient emergency departments by
sub-department in hospitals in China; and Figure S2: the number of visits of outpatient emergency
departments by sub-department in hospitals in China.
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