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Abstract: Mine tailings are a source of potentially toxic metals (PTMs) worldwide. Phytoremediation
is a low-cost green technology that uses metal-tolerant plants to extract these contaminants and
rehabilitate the soil. In mine tailing restoration efforts, it can be beneficial to introduce species that
can facilitate the colonization of other plants (i.e., nurse plant syndrome). In this study, the phytore-
mediation and nursing potential of two species adapted to metalliferous soil, Aloe burgersfortensis
and A. castanea, were evaluated for the first time. An experiment was performed with aloe plants
grown in pots containing potting soil, platinum tailings, and gold tailings. Leaves were assessed for
bioaccumulation of PTMs. Seeds of Bermuda grass and African daisy, two successional pioneers, were
planted with the aloes and had their developmental parameters evaluated after 30 days. Allelopathic
effects were also assessed, with seeds of the pioneer plants infused with root extracts of the aloes
from the different soil treatments. A. castanea demonstrated greater potential for the bioaccumulation
of Cd, Co, Mn, Ni, and Zn in the tailings. The presence of aloes benefited germination rates, leaf
count, length, and plant biomass of grasses and daisies in the mine tailings, without significant allelo-
pathic effects. Therefore, aloes—especially A. castanea—should be employed in the rehabilitation of
metal-contaminated soils to extract metals and to aid the establishment of other species to enhance
the phytoremediation processes.

Keywords: restoration; phytoextraction; metals; facilitation

1. Introduction

The restoration of degraded soils can greatly benefit from the use of nursing plants.
These plants (also known as facilitators), are especially important when severe abiotic
conditions prevent vegetation establishment [1,2]. They can positively affect the restoration
process in several ways—from improving the nutrient cycling in the soil to providing
a suitable habitat for seed dispersers [3]. Their application in the rehabilitation of con-
taminated soils, however, remains to be fully understood [4]. Potentially toxic metals
(PTMs), for instance, are abiotic constrains to pioneer plants. These plants could benefit
from the presence of species that are not only able to tolerate high metal concentrations
(i.e., metallophytes), but also to attenuate the soil conditions, in a facilitative process [5].

South Africa (SA) is currently subjected to intense mining activity, and the mining
companies are compelled by law to rehabilitate the resultant degraded environments [6].
Like elsewhere in the world, SA mine tailings are enriched with PTMs from the extraction of
minerals and represent a long-term risk for the environment [7]. The rehabilitation of soils
contaminated by PTMs has proven to be successful when recognized phytoremediators are
employed [8]. These plants can extract metals from the soil and bioaccumulate them in their
tissues, with no apparent consequence to their survival [9]. Among candidates, species
from the genus Aloe have demonstrated potential for phytoextraction of PTMs [10–12] and
for facilitation of growth of other plants [3]. Some species, such as A. cryptopoda Baker, are
often transplanted on mine tailings in the Steelpoort region of SA [12].
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In this study, we evaluated the potential for phytoremediation and facilitation by
Aloe burgersfortensis Reynolds and A. castanea Schönland grown in mine tailings. There are
no reports on such a use for these species to date. They are both edaphic endemic species
of SA [13] and commonly used for gardening and medicinal and cosmetic purposes, like
most aloes [14]. As for the target species, Bermuda grass (Cynodon dactylon (L.) Pers.) and
the endemic African daisy (Dimorphotheca aurantiaca D.C.) were assessed in terms of early
establishment. As pioneers, they are known to rapidly colonize disturbed substrate, pro-
moting soil formation and stabilization [15]. While the impact of PTMs on the development
of Bermuda grass is well reported (e.g., [16–18]), there are no assessments on the African
daisy to date. We consider it essential to investigate the potential of aloes as models for the
phytoremediation of contaminated soils and to evaluate the nursing effect that these aloes
have on pioneer species.

2. Materials and Methods
2.1. Soil and Plant Material

Commercially available potting soil mix for succulent plants was used for the con-
trol treatment. The treatments containing contaminated soils were composed of tailings
from platinum and gold mines, collected in 2018 at the Impala Platinum Mine (25◦32.1′′ S;
27◦10.1′′ E) and the Ashanti Gold Mine (26◦53.3′′ S; 26◦52.3′′ E), respectively, in the North-
West Province, SA. As nursing plants, adult individuals of A. burgersfortensis and A. castanea
were first cultivated from seed in the North-West University Botanical Garden and trans-
planted to pots containing the control soil and the mine tailings in 2020. They were,
therefore, well adapted to the soil conditions after 24 months and suitable for phytoextrac-
tion assays. Seeds of Bermuda grass and African daisy, the pioneer species, were acquired
from a local gardening store and selected for this study due to their fast growth rates and
role as pioneers in natural successional processes.

2.2. Pot Experiment

Three individuals each of A. burgersfortensis and A. castanea were planted in individ-
ual trays (10 cm × 28 cm × 54 cm) either containing the control soil, platinum, or gold
tailings. Trays were placed in a completely random design (∑naloes = 3 plants × 2 species
× 3 treatments = 18 plants) in a greenhouse located at the North-West University,
Potchefstroom campus, South Africa. Each pot also received ten seeds each of Bermuda
grass and African daisy, planted alternately 20 cm from the base of the aloe plant
(∑nseeds = 10 seeds × 2 species × 18 trays = 360 seeds; Figure 1). Germination rate,
mortality rate, leaf count, and leaf length were assessed weekly for grasses and daisies.
Total biomass (shoots and roots) of the seeded plants was assessed by the end of the experi-
ment. The experiment lasted 30 days, and the trays were exposed to controlled temperature
(25 ◦C), photosynthetically active radiation between 600 and 800 µmol m−2 s−1, and daily
watering of 60 s from a sprinkler system.

2.3. Allelopathy Experiment

Extracts of A. burgersfortensis and A. castanea were obtained by grinding and diluting
the roots in distilled water, followed by sieving in a 0.5 mm mesh. Bermuda grass and
African daisy seeds were germinated in Petri dishes with filter paper and irrigated daily
with either distilled water, 50 or 100 mg mL−1 root extract taken from A. burgersfortensis or
A. castanea grown in the control soil, platinum tailings, or gold tailings (∑nseeds = 6 seeds
× 3 Petri dishes × 2 target species × 2 aloe species × 2 concentrations × 3 soil treatments
+ 6 seeds × 3 Petri dishes (distilled water) × 2 target species = 468 seeds). The experiment
was also conducted in the greenhouse, with the same time duration and light conditions as
the pot experiment.
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Figure 1. Schematic of seeding placement in a tray used in the pot experiment. Stars = Bermuda 
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grinding the leaves and weighing approximately 50 mg of each, followed by acid diges-
tion with HNO3 (9 mL, 65%) and HCl (3 mL, 32%), and finally 15 min in a 200 °C micro-
wave (Milestone, Ethos UP, Maxi 44, Bumby, Denmark). 
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Figure 1. Schematic of seeding placement in a tray used in the pot experiment. Stars = Bermuda
grass seeds, circles = African daisy seeds.

2.4. PTM Analyses

Soils samples (∑nsoil = 3 composite samples× 3 treatments = 9 samples) were analyzed
with a Thermo Scientific Niton XL3t GOLDD+ handheld X-ray fluorescence spectrometer
for the following: As, Cd, Co, Cr, Cu, Mn, Mo, Ni, and Zn. Leaves from each aloe in each
treatment were harvested at 5 cm from the apex (∑nleaves = 3 leaves × 3 plants × 2 species
× 3 treatments = 54 leaves), oven-dried at 40 ◦C, and assessed for the same PTMs as in
the soils with an ICP-MS (Agilent 7500 series, Santa Clara, CA, USA) calibrated with a
multielement solution (PerkenElmer Pure). The sample preparation method consisted of
grinding the leaves and weighing approximately 50 mg of each, followed by acid digestion
with HNO3 (9 mL, 65%) and HCl (3 mL, 32%), and finally 15 min in a 200 ◦C microwave
(Milestone, Ethos UP, Maxi 44, Bumby, Denmark).

2.5. Data Analysis

To test the hypotheses of variation in PTM concentration in aloe leaves and variation of
developmental parameters in pioneer species, data were submitted to Permutational Multi-
variate Analyses of Variances (Permanova; Euclidian distance; 5% significance). This non-
parametric method, although somewhat limited in detecting significant differences, allowed
to counter possible effects of the small sample sizes and non-normality of data distribution
(Shapiro–Wilks, 5% significance; [19]). PTM concentration in the leaves of aloes grown in the
different soil treatments had their values evaluated individually, as variables, in 2-way Per-
manova analyses using as factors “treatments” (3 levels: control, platinum tailings, and gold
tailings) and “species” (2 levels: A. burgersfortensis and A. castanea). The early development
of Bermuda grass and African daisy was evaluated individually in terms of germination
and mortality rates, leaf count, leaf length, and plant biomass. The design was the same
as for the metals in aloes, where the levels in the “species” factor were now the nursing
plants. Pairwise comparisons were applied between and within treatments in both PTM
and developmental designs, with Monte Carlo tests when permutations were fewer than
100 [19]. Regression curves were calculated in the search of trends among treatments when
the presence of aloes was not considered. The germination rates from the allelopathy experi-
ment were tested in a 1-way Permanova design, for each of the target species, using the root
extracts of the aloe species from different soils as the factor “treatments” (13 levels: control
soil/platinum/gold tailings×A. burgersfortensis 50 and 100 mg mL−1 and A. castanea 50 and
100 mg mL−1 and distilled water). The bioaccumulation factor (BAF) was calculated as a
measure of the average of PTMs in the leaves of the aloes divided by the average of the
PTMs in the soils from each treatment. Ratios above 1 were considered as bioconcentration
(i.e., phytoextraction) of PTMs [20].
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3. Results

Soils had different degrees of contamination (Appendix A) and influenced the con-
centration and bioaccumulation of PTMs in leaves of the aloes (Figure 2; Table 1). The
contaminated soils also contributed to a decreasing trend in most of the developmental
parameters of Bermuda grass and African daisy over time.
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Figure 2. Mean values (± std) of significantly different PTMs in leaves of A. burgersfortensis and
A. castanea. Different upper-case letters: significant difference (p < 5%) for a PTM in the same aloe
species in different soil treatments. CT = control, PT = platinum tailings, and GT = gold tailings.
Different lower-case letters: significant difference for a PTM between aloe species in the same
soil treatment.

Table 1. Bioaccumulation factors for the aloe plants in the different soil treatments. Bold values: BAF > 1.

As Zn Cu Ni Co Fe Mn Cr Cd

A. burgersfortensis
Control 0.1 1.3 0.1 0.4 0.0 0.0 2.0 0.0 2.2

Platinum tailings 0.0 1.2 0.1 0.1 0.0 0.0 0.7 0.0 >1 *
Gold tailings 0.0 1.7 0.1 0.1 0.0 0.0 0.9 0.0 1.5

A. castanea
Control 0.1 0.6 0.1 0.1 0.0 0.0 0.8 0.0 0.4

Platinum tailings 0.1 3.0 0.6 1.3 0.0 0.0 2.6 0.0 >1 *
Gold tailings 0.1 3.5 0.6 0.9 0.2 0.0 1.8 0.0 0.4

* Concentration below limit of detection in the soil.

3.1. PTM Concentration and Metal Transfer Factors in Aloes

Ni, Zn, Co, and Cd differed significantly in the leaves of aloes from the different soil
treatments (Figure 2). By observing the metal uptake in each species separately, it was noted
that A. castanea had higher levels of Ni in both platinum and gold tailings, when compared
to the control soil (t = 0.10; p = 0.039 and t = 0.10; p = 0.028, respectively). In addition,
Co and Cd were also significantly higher in A. castanea leaves from the platinum tailings
compared to the control (t = 0.10; p = 0.004 and t = 0.10; p = 0.021, respectively). Comparing
the two species with one another per soil treatment revealed that the Zn concentrations
were significantly higher in A. burgersfortensis than in A. castanea only in the platinum
tailings (t = 0.10; p = 0.039), whereas the same was found for Cd only in the gold tailings
(t = 0.10; p = 0.025). A. burgersfortensis bioaccumulated Cd and Zn in all soil types and Mn
only in the control soil (Table 1), whereas A. castanea bioaccumulated Cd, Mn, Ni, and Zn
only in the contaminated soils.

3.2. Early Development and Allelopathic Effects on Bermuda Grass and African Daisy

The biomass of African daisy was the only parameter affected by the different soil
treatments, despite the presence of aloes, with each soil reflecting a distinct effect on
the plants (control × platinum: t = 4.10; p = 0.012; control × gold: t = 3.34; p = 0.029;
platinum × gold: t = 2.97; p = 0.043). All other parameters only presented nonsignificant
trends for reduction in both Bermuda grass and African daisy parameters, while the
opposite was observed for the mortality rates (Figures 3A and 4A). When the presence of
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A. burgersfortensis was considered, the trend for a reduction in parameters for Bermuda
grass in contaminated soil was not observed, except for germination. Nevertheless, the
biomass was significantly reduced only in the gold tailings, for grasses with A. castanea
(t = 4.34; p = 0.013). For the daisies, the trend for a decrease in the leaf count was reversed
when planted with A. burgersfortensis. In addition, the biomass increased significantly from
the control soil to the platinum tailings in the presence of A. castanea (t = 10.75; p = 0.001;
Figure 4H).
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Figure 3. Mean values (± sd) and regression curves for developmental parameters of Bermuda
grass considering only the soil treatments (A,C,E,G) and the soil treatments in the presence of aloes
(B,D,F,H). Different upper-case letters: significant differences (p < 5%) among individuals in different
soil treatments in the presence of the same aloe species. Different lower-case letters: significant
differences among individuals grown with different aloe species, in the same soil treatment.
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Figure 4. Mean values (± sd) and regression curves for developmental parameters of African daisy
considering only the soil treatments (A,C,E,G) and the soil treatments in the presence of aloes
(B,D,F,H). Different upper-case letters: significant differences (p < 5%) among individuals in different
soil treatments in the presence of the same aloe species. Different lower-case letters: significant
differences among individuals grown with different aloe species, in the same soil treatment.

There were no significant differences in seed germination for grasses or daisies with
the application of different root extracts of aloes from different soils (Figure 5). However,
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concentrations of 100 mg mL−1 of A. burgersfortensis grown in platinum tailings and
A. castanea grown in gold tailings resulted in germination averages below 40% for both
target species.
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Figure 5. Germination rates (mean ± sd) of seeds from the target species treated with different
concentrations of roots extracts of aloes from different soil treatments.

4. Discussion

Studies on the phytoextraction of PTMs by aloes have demonstrated their potential
for phytoremediation [12,21,22]. The uptake and the bioaccumulation in leaves, however,
depend on the aloe species, the type and concentration of PTMs available in the soil, and
the geographical conditions [10,23]. Although the evidence for phytoextraction of PTMs by
aloes has been increasing, their use in phytoremediation or restoration of degraded areas is
still far from being a thematic research domain for the genus [24]. This is the first study
to evaluate the concentrations of PTMs and bioaccumulation in A. burgersfortensis and
A. castanea (both metallophytes from harsh ultramafic soil), and it is reasonable to assume
that they are influenced by the same factors mentioned above. Between these species,
A. castanea would be a better option for phytoremediation given its bioaccumulation of
Cd, Mn, Ni, and Zn in contaminated soils. It is important to note that soil modifiers
(e.g., calcium carbonate and mushroom residues) can improve the phytoremediation poten-
tial of plants and should also be considered [25].

Aloes are also drought -tolerant and are able to create beneficial microhabitats [26,27]
and act as nurse plants [3] for the establishment of other species, which are not metal-
tolerant. The contaminated soils of this study negatively influenced the development of
Bermuda grass, and this is in accordance with previous reports (e.g., [18,28,29]). Never-
theless, the fact that the biomass was the only parameter to significantly decrease under
contamination points to the tolerance of this grass to PTMs in the soil and reinforces its
recommendation for rehabilitation and phytostabilization of contaminated areas [30–32].
The development of the African daisy was also compromised in the contaminated soils,
especially in the gold tailings, where all seedlings died before full development of the
first leaves, in the treatment with A. castanea. The increase in biomass of the daisy in the
platinum tailings with A. castanea, however, suggests that the tolerance might be dependent
on both the soil features and the nursing plant. There are no records of development
evaluation of the African daisy grown in contaminated soils. However, the closely related
Cape marguerite (D. eckloni DC.), also an endemic South African species, showed potential
for phytoextraction and an increase in growth parameters under Cd contamination [33].
Many members of the Asteraceae are known to be suitable for the phytoremediation of
contaminated areas [34].

The facilitation process demonstrated here was dependent on the levels of soil con-
tamination, the type of nursing species (i.e., A. burgersfortensis or A. castanea), and the target
pioneer species (i.e., C. dactylon and D. aurantiaca). These and other environmental features
may define if the interaction between putative nurse and target plants will be facilitative
or competitive [1]. Our trials provided evidence that there was a negative influence of
contaminated soils on Bermuda grass and African daisy growth and development and
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that such an influence was attenuated by the presence of aloes. In addition, the absence
of allelopathic effects from the root extracts of the aloes on the seed germination of both
the grass and daisy showed that aloe roots do not exudate harmful components into the
substrate. In fact, the few reports of allelopathy on germination promoted by aloes are
mainly based on leaf extracts and give contradictory results [35–37], with concentrations
way lower than those used in this study.

5. Conclusions

Aloe burgersfortensis and A. castanea showed potential for the phytoextraction and
bioaccumulation of PTMs, especially in contaminated soils from platinum and gold tail-
ings. They also attenuated the negative impacts of these contaminated soils on the early
development of Bermuda grass and African daisy in pot experiments. The root extract of
aloes did not affect the germination of these target species. This is the first time that this
facilitation process has been demonstrated and must, therefore, be explored further in field
experiments, especially when aiming for the rehabilitation and restoration of contaminated
soils. These findings have a major application for the remediation of mine tailings of semi-
arid areas in Africa. Aloes are native, preadapted species that can be successfully included
into rehabilitation processes to not only extract PTMs from the soil, but also facilitate the
establishment and survival of critical pioneer species.
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Appendix A

Table A1. PTMs concentrations (Mean ± Std) in soil, A. Burgersfortensis and A. Castanea leaves under
the study treatments. Values in bold are above permissible limits [38].

Control Platinum Tailings Gold Tailings

Soil
As 2.24 ± 4.57 17.10 ± 4.87 16.98 ± 4.15
Cd 3.26 ± 8.07 <LOD 3.41 ± 9.93
Co 115.64 ± 103.9 413 ± 111.73 371.60 ± 119.39
Cr 3012 ± 36.23 11,756 ± 72.99 14,470.17 ± 87.24
Cu 111.18 ± 14.14 151.46 ± 16.99 137.37 ± 17.19
Mn 891.69 ± 73.80 1000.54 ± 117.65 1083.34 ± 134.11
Mo 1.69 ± 3.23 6.32 ± 3.57 <LOD
Ni 56.05 ± 17.59 204.87 ± 22.91 230.53 ± 41.15
Zn 235.01 ± 12.30 161.42 ± 11.60 134.34 ± 11.26
pH 7.24 6.70 7.21
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Table A1. Cont.

Control Platinum Tailings Gold Tailings

A. burgersfortensis
As 0.25 ± 0.02 0.34 ± 0.06 0.25 ± 0.05
Cd 7.17 ± 4.81 3.88 ± 0.56 5.10 ± 1.76
Co 4.16 ± 4.95 2.51 ± 0.85 5.04 ± 4.28
Cr 9.47 ± 4.89 12.76 ± 14.51 3.74 ± 0.98
Cu 15.32 ± 2.87 18.17 ± 7.61 16.19 ± 1.77
Mn 1399.30 ± 604.86 681.83 ± 235.03 650.65 ± 5.04
Mo 0.06 ± 0.00 0.09 ± 0.13 0.05 ± 0.05
Ni 33.50 ± 15.45 14.51 ± 2.62 25.33 ± 12.97

A. castanea
As 0.26 ± 0.06 0.19 ± 0.02 0.27 ± 0.06
Cd 1.18 ± 0.13 3.21 ± 0.96 1.49 ± 0.57
Co 1.24 ± 0.21 3.83 ± 0.76 11.93 ± 7.78
Cr 5.42 ± 2.41 3.94 ± 0.45 3.24 ± 0.42
Cu 13.93 ± 2.70 18.94 ± 9.24 15.24 ± 3.34
Mn 714.37 ± 400.89 519.73 ± 272.21 393.60 ± 252.94
Mo 0.08 ± 0.09 0.04 ± 0.07 0.05 ± 0.06
Ni 7.91 ± 2.40 52.94 ± 25.88 41.54 ± 17.26
Zn 147.23 ± 46.51 96.81 ± 46.79 92.71 ± 2.60
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