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Abstract: Due to the threats posed by many volatile organic compounds (VOCs) to human health in
indoor spaces via air, the mass transfer characteristics of VOCs are of critical importance to the study
of their mechanism and control. As a significant part of the mass transfer process, diffusion widely
exists in emissions from floors (e.g., PVC floors) and in sorption in porous materials. Molecular
simulation studies by can provide unparalleled insights into the molecular mechanisms of VOCs.
We construct the detailed atomistic structures of PVC blend membranes to investigate the diffusion
behavior of VOC molecules (n-hexane) in PVC by molecular dynamics (MD). The variation in the
diffusion coefficient of n-hexane in PVC with respect to temperature is in line with Arrhenius’ law.
The effect of temperature on the diffusion mechanism was investigated from the perspectives of free
volume, cavity distribution and polymer chain mobility. It was found that the relationships between
the diffusion coefficients of n-hexane in the polymer and the inverse fractional free volume are
exponential and agree well with the free volume theory. Hopefully, this study will offer quantitative
insights into the mass transport phenomena of VOCs within polymeric materials.

Keywords: VOC; diffusion coefficients; molecular dynamics simulation; polymer

1. Introduction

Volatile organic compounds (VOCs) are a group of compounds widely distributed
in indoor environments and can be easily found in various types of sources such as
polyvinylchloride (PVC) plastic products with plasticizers, house furnishings with fire
retardants, and personal care products [1]. These materials significantly contribute to
indoor air pollution during the first six months after houses are furnished. This kind of
indoor pollution persists for more than one year and a continuous, steady concentration
higher than the outdoor concentration has been measured [2]. As widely used decorating
materials and artificial product constituents, polymeric materials are important contribu-
tors of VOCs to the indoor air and pose a persistent health risk to humans. Taking PVC
polymeric materials as an example, it is reported that VOCs are emitted at a rate as high
as 120 µg/m2/h from carpets with PVC fibers, and at a rate of 22,280 µg/m2/h from PVC
flooring [3]. The mass transfer process of VOCs from polymeric materials in the indoor
environment is therefore a significant issue affecting indoor air quality.

A great number of VOCs can be emitted from indoor building materials, and some of
them can be adsorbed on indoor surfaces [4]. Diffusion is involved in both the emission
and sorption processes. The material-phase diffusion coefficient (D) is a key parameter
that influences the mass transfer characteristics of emission from furnishings [4] and also
influences those of adsorption in porous materials in an indoor environment [5]. However,
the mechanism of diffusion in the mass transfer model of VOCs has not been deeply
studied [6]. For example, the influences of ambient temperature and humidity on the VOC
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diffusion coefficient in building materials are ignored without any explanations. Due to
technical difficulties in experiments, it is difficult to understand the diffusion mechanism
through conventional experiments. Cox et al. (2001) [7] used a microbalance test system
to measure the diffusion coefficient of VOCs, though it cost them several hundred hours
to complete a full experiment. They only compared the diffusion coefficients of different
VOCs, but no theoretical explanations on a diffusion mechanism were given. Therefore, a
new method is urgently needed to investigate the diffusion mechanism.

Molecular simulation can provide a general method to explore various natural pro-
cesses at the molecular level [8] based on the assumptions that the motions of atoms follow
Newton’s first law and interactions among atoms are described by empirical potential
functions. In principle, molecular simulation can provide unparalleled insights into the
molecular mechanisms that govern the emission and sorption processes, often in ways that
experiments cannot emulate [9]. It represents an interface between laboratory experiments
and theories, which can be understood as a “virtual experiment” [10]. A few studies have
applied molecular dynamics (MD) simulations in studying diffusion behaviors [11–13].
Kucukpinar and Doruker [14] calculated the diffusion and solubility coefficients of pene-
trants in nitrile rubber (NBR) and styrene butadiene rubber (SBR). They found that small
gas diffusion in the polar matrix of NBR was significantly lower than that of SBR. Müller-
Plathe [15] investigated the diffusion of water in poly(vinyl alcohol) (PVA) over a wide
range of compositions using MD simulations, and found that the pattern of water diffusion
changed pronouncedly with temperature. The hopping mechanism was applied to analyze
this diffusion behavior. Noorjahan and Choi [16] also studied the diffusions of water and
benzene in PVA, and they further investigated the effect of free volume on the diffusion of
free volume redistribution. Calculations of free volume and its distribution were used to
explain the mechanism of diffusion, and the calculated free volume results were compared
with the results from positron annihilation experiments [17].

To our knowledge, no atomistic-level study on the diffusion of VOCs in PVC, present
in typical indoor materials such as vinyl flooring, has been reported. N-hexane was chosen
as a kind of VOC due to it posing less harm to human beings, so it is convenient to test
its physical properties (such as its diffusion coefficient) in PVC materials. Hexane can
be easily found in rubber flooring and nylon carpets and emits at a rate of ~3.5 mg/m3

from these materials [18]. The objective of this paper is to study the diffusion process
of n-hexane in PVC at different temperatures by explaining the mechanism in terms of
penetrant movement, PVC chain mobility, and the free volume.

2. Molecular Modelling

MD simulations were carried out using the discover and amorphous cell module of
the Materials Studio package of Accelrys and the COMPASS force field (condensed-phase
optimized molecular potentials for atomistic simulation studies).

2.1. Force Field

The COMPASS force field [19] was employed in this study. The force field was
parameterized and validated using condensed-phase properties, including various ab
initio and empirical data for molecules in isolation. The COMPASS force field has been
successfully used for a long time in predicting various properties of the materials in the
references [20–22]. It is a general force field for molecular dynamics simulation of common
organic molecules, inorganic small molecules, and polymers such as polyethylene (PE) and
polyvinyl alcohol (PVA). All the interaction potentials in the study were computed based
on the COMPASS force field. The functional forms used in this force are the same as those
used in CFF-type fields [23], which are described as follows [19]:

Etotal = Eb + Eθ + Eφ + Eχ + Ebb′ + Ebθ + Ebφ + Eθθ′ + Eθθ′φ + Eelec + ELJ (1)

where Etotal represents the total energy function in the COMPASS force field, which can
be decomposed into 12 valence and non-bonded interaction terms. Specifically, they are
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the bonding stretch Eb, bending Eθ , torsion Eφ, and out-of-plane Eχ potentials. In addition,
Ebb′ , Ebθ , Ebφ, Eθθ′ and Eθθ′φ are off-diagonal cross-coupling terms used for describing the
interactions between diagonal terms. ELJ and Eelec are the short-range van der Waal and the
long-range electrostatic interactions described by Lennard-Jones (L-J) 9-6 and Coulombic
functions, respectively.

2.2. Generation of the Polymer Structure

The PVC chain was constructed with polyvinyl monomers directly utilizing the Poly-
merizer and Amorphous cell modules of MS 7.0. In this work, one polymer chain consisting
of 200 repeat units was employed in the simulation cell so as to minimize the chain ends
effect. The periodic boundary condition was used to eliminate the boundary effect. A
Maxwell–Boltzmann distribution at the target temperature was used to assign the initial
velocity of the polymer atoms, and then the cell was equilibrated to obtain a more realistic
configuration. To make sure the simulated system was well equilibrated before the produc-
tion, the generated cells were subsequently optimized by various steps. The energy of each
constructed cell was minimized to a convergence value of 0.01 (kcal/mol)/Å. In order to
well relax the system to a local state of minimal potential energy, two different methods
were used. Firstly, the method of steepest descent was used to accelerate the calculation,
and then the method of conjugate gradient further minimized the potential energy. After
minimization, the conformation with the lowest energy was chosen. To prevent the system
from being trapped at a local high energy, the cells were heated by 25 K from 300 K to
600 K, which is well above the glass transition temperature. Subsequently, 1 ns of NVT-MD
simulation was performed at 600 K, and then cooled back to the desired temperature at
25 K increments. The timestep is 1 fs in the whole work. The density as a volumetric
quantity was compared with the experimental data. In order to obtain the density, several
NPT cycles were performed by increasing the pressure. In addition, NVT simulations were
also performed at high temperature to relax the polymer chain and then the cell was cooled
down to the target temperature. Finally, 10 ns NVT-MD dynamic simulations were run at
the target temperature.

2.3. Diffusion in the Polymer

A total of 10 penetrant molecules were randomly inserted at the free volume sites of
the cells to avoid interatomic overlapping. The conformation with penetrant molecules
separated from each other was chosen to disperse the molecules in the unit cell. Then, the
system (the polymer plus the penetrant molecules) was relaxed through a series of 50 ns
NVT and NPT runs at the target temperature and 1 bar of pressure before using them for
data production. After half of the runs, the equilibrium density and energy for the desired
temperature and pressure were judged to be attained by observing the energy fluctuating
around a mean value along with the running time. At the end, the system was found to be
in the most probable configuration (Figure 1).
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2.4. Pore Size Distribution

The pore size distribution (PSD) provides a means of quantifying the distribution of
sizes. A fast method developed by Battacharya and Gubbins [24] was used for computing
pore size distribution. In brief, the simulation box in this work was divided into three-
dimensional (3-D) fine grids with a size of approximately 0.1 Å. Some points were selected
to be randomly and uniformly distributed in the simulation box. The void size at each of
the selected points is determined as the size of the maximum cavity that could enclose the
given point, without additional atoms overlapping with any polymer atom. The SOLVOPT
program [25] was used to optimize non-smooth objective functions to obtain the maximum
cavity. A cumulative histogram H(D) is obtained, which represents the probability of
finding a point in the model space with a pore diameter greater than or equal to D. The
pore size distribution P(D) is defined as [25]:

P(D) = −dH(D)/dD (2)

3. Results and Discussion
3.1. Diffusion Coefficients

The interest of this work is to analyze diffusion coefficients of VOCs in PVC and
the diffusion mechanism contributed by both the PVC free volume and the sizes of the
penetrants. A convenient and widely accepted way to validate the packing models obtained
is to compare the predicted data with the experimental results. According to the kinetic
uptake curves [26,27], the diffusion coefficient of n-hexane in the PVC sample can be
estimated based on the uptake amount. However, the uptake amounts at high temperatures
are too small to accurately determine the diffusion coefficients. So, in this work we validate
the packing model by comparing our simulated PVC density with the data by Sacristan
and Mijangos [28], as summarized in Table 1. From Table 1, the predicted PVC densities
are very close to the experimental data offered by Sacristan and Mijangos, and both follow
the same trend in that the PVC densities decrease slightly with the rising temperature.

Table 1. Experimental and calculated densities of PVC at different temperatures.

Van Krevelen and TeNijenhuis [29]
K. Bierbrauer, et al. [30]

300 K 373 K 393 K
1.387 1.352 1.334

Sacristan and Migangos [28] 300 K 375 K 400 K 425 K 450 K
1.382 1.328 1.301 1.277 1.258

Calculated results
298 K 318 K 348 K 408 K 468 K
1.401 1.387 1.338 1.307 1.273

As for diffusivity, the mean square displacement (MSD) obtained from the simulations
was used in analyzing the diffusion coefficients with the Einstein equation [15]:

D =
1
6

lim
t→∞

d
dt

Na

∑
i=1

〈
(ri(t)− ri(0))

2
〉

(3)

where <(ri(t)-ri(0))2> and D are the MSD of the penetrant and the diffusion coefficient, re-
spectively. The results for the mean square displacement (MSD) of the penetrant molecules
were calculated over a wide range of temperatures, from 298 to 468 K. To smooth the curves,
averaging of MSDs was conducted over all the n-hexane molecules. The linear parts of the
MSD curve in Figure 2 were least-squares fitted to calculate the diffusion coefficient.
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Figure 2. MSDs of n-hexane diffusion in PVC change with time at different temperatures.

Figure 2 demonstrates that a time scale in nanoseconds (ns) is long enough for this
system to calculate the diffusion coefficient. From the center-of-mass mean square dis-
placement of n-hexane at 298 K (in black color), we found that the n-hexane molecules
are fairly localized, which could be attributed to the absence of large voids in the PVC
or to the strong interactions between n-hexane molecules and the PVC chains, which are
stronger than those between the n-hexane molecules themselves. Both reasons could cause
the n-hexane to have difficulty in moving from site to site within PVC cavities. The rest of
the lines are the center-of-mass mean square displacements of n-hexane in PVC at other
temperatures, which are used to calculate the diffusion coefficients. From the slope of the
lines, we could qualitatively compare the diffusion coefficients of different temperatures
and found that the diffusion coefficients increase with temperature.

3.2. Temperature Dependence of the Diffusion Coefficients

As early as in 1937, Barrer [31] showed that the diffusion of molecules in rubbery
polymers was a thermally activated process, and pointed out that diffusion in the polymer
obeyed Arrhenius’ law:

D = D0e−
Ed
Rt (4)

where Ed is the apparent activation energy, T is the temperature and R is the gas constant.
Various data in the literature suggest that the transport coefficients (namely perme-

ation, diffusion and solubility) depend on temperature for a given pressure, via Arrhenius’
law [32]. Some researchers [33,34] studied self-diffusion coefficients by MD simulation, and
found that the self-diffusion coefficients were a function of temperature via Arrhenius’ law.
In this work, we used Arrhenius’ law to figure out the relationship between the diffusion
coefficients and temperature for n-hexane. The results are diagramed in Figure 3, which
indicates the log diffusion coefficient vs reciprocal temperature for n-hexane in PVC.
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Figure 3 clearly shows that penetrant diffusivities are strongly dependent on tem-
perature and increase with temperature. A slower penetrant mobility occurs at a lower
temperature (298 K) compared with the mobility at a higher temperature (468 K). At low
temperature, the penetrant spends more time trapped in a cage which is formed by the
surrounding polymer chains, while at higher temperatures the jumps between neighboring
sites become easier and more frequent. Compared with some studies on the diffusion of
gases such as N2, CO2 and CH4 in polymers [35,36], n-hexane molecules have a larger
size, leading to a more difficult diffusion in materials. Sacristanand Mijangos [30] noted
that for the diffusion behaviors of larger molecules, larger cavities were required in the
polymers. Therefore, greater energy for the formation of larger cavities is needed. In
addition, a large activation energy is also required for the diffusion of larger molecules.
Further examination of the plot in Figure 3 reveals a similarly linear relationship below the
glass transition temperature (Tg), with an abrupt, slight change in slope at the Tg of PVC
(354 K). From that we can deduce that the activation energy for diffusion is lower below
Tg than it is above. At temperatures above Tg, the activation energy was calculated to be
24 kJ/mol, while below Tg it was 8 kJ/mol. These different activation energies suggest
that the mechanism for n-hexane diffusion in PVC changes above and below Tg. This
difference actually results from the change in free volume in PVC and the mobility of PVC
chains caused by temperature variation. Further explanations regarding these aspects are
presented in the following sections.

3.3. Analysis of the Diffusion Mechanism
3.3.1. Mobility in PVC

The displacements of an n-hexane molecule in the first 1000 ps were chosen to quali-
tatively reveal the diffusion behavior of n-hexane in the PVC. As illustrated in Figures 4
and 5, three types of molecule movements in the PVC can be clearly identified [32]: firstly,
the rise of the curve in the beginning indicates diffusion through channels; secondly, the
intermediate segment represents the penetrant jumping between polymer voids; and the
third segment represents the n-hexane being stuck in the polymer void. Note that the back
“jump” exists, but only the forth “jump” does favor to the diffusion process [33]. These
three types of movements are hard to obtain by experimental methods. To investigate and
compare the movements of penetrants at different temperatures, we present part of the
trajectories of n-hexane molecules in PVC at 298 K and 468 K in Figure 4, and the total
displacement |r(t)-r(0)| of the center of mass of n-hexane molecules in PVC at 298 K and
468 K in Figure 5.
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In Figure 4, a wider movement of penetrants can be found at T = 468 K than at
T = 298 K, which indicates that at higher temperatures the free volume of the holes in
PVC can be redistributed to make it easier for penetrant molecules to overcome the activa-
tion energy that is required to jump into new voids. There exist three kinds of movements
of n-hexane molecules in PVC, as labeled in Figure 5. N-hexane molecules frequently jump
back and forth between two neighboring holes. This may be due to the existence of tempo-
rary channels between different parts of the free volume that are short-lived with respect to
the time that the penetrant molecules spend inside the cavity [37,38]. Penetrant molecules
also dwell in the voids by performing oscillatory motions around their equilibrium positions,
which does not contribute to the net motion, and hence does not contribute to diffusion. The
amplitude of oscillations depends on the size of holes, and a larger increase in amplitude
indicates a jump between two adjacent holes. N-hexane molecules oscillate in the voids and
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try to escape from these voids in an easy configuration. These molecules will succeed in
escaping if the PVC chain moves to create a larger channel between holes, and if penetrant
molecules can avoid the interruption from the PVC side chain.

3.3.2. Free Volume

Several factors determine the diffusion of penetrants in polymers, including tem-
perature, chain rigidity and free volume [28]. Among them, free volume, as well as its
distribution and topology, has been deemed to show complicated influences on the diffu-
sion behavior of penetrants [39,40]. However, current experimental techniques usually fail
to provide details of the structure of the free volume voids. Instead, molecular simulations
allow researchers to understand the diffusion of the desired penetrants at small costs with
high precision by providing the time evolution of a target system [34]. In this work, frac-
tional free volume (FFV) is chosen to evaluate the polymer void structure, which is defined
as the fraction of the volume not occupied by the polymer atoms. FFV can be calculated
from the following empirical equations [39]:

FFV =
V −V0

V
(5)

V0 = 1.3Vw (6)

where V is the cell volume, and Vw is the van der Waals volume. Due to the fact that V
and V0 depend on temperature for a given sample, FFV likewise varies with temperature,
according to Equation (5).

The FFVs at different temperatures were calculated according to Equations (5) and (6).
Table 2 lists the FFV values from our simulation results, and the data from references [28].
From Table 2, FFV strongly increases with temperature, which is consistent with the trend
of the other data. Apparently, the dependence of FFV on temperature is consistent with that
of the diffusion coefficients of n-hexane molecules. At 298 K, where n-hexane molecules
diffuse relatively slowly in the PVC polymer compared to the other studied temperatures,
FFV is only 0.15, less than half of that at 468 K. The specific calculated FFV values are
somewhat larger than those from Sacristan and Migangos [28] at 298 K, but the values are
very close, while the difference becomes larger at higher temperatures. Another study [41]
which analyzed the free volume of PVC by NPT Monte Carlo simulations, obtained even
larger FFVs (0.3 at 373 K and 0.4 at 456 K). The reason could be the differences in polymer
packing efficiency and density, respectively, between two simulations. Despite this, the
calculated diffusion coefficients in the two simulations follow the same tendency with
respect to temperature, and they are within a reasonable range.

Table 2. Fractional free volume in PVC as a function of temperature.

FFV [28]

300 K 375 K 400 K 425 K 450 K
0.12 0.15 0.18 0.19 0.21

FFV

298 K 318 K 348 K 408 K 468 K
0.14 0.18 0.21 0.28 0.35

To demonstrate the free volume distribution and its influences on the diffusion behav-
ior, the morphologies of the FFV for PVC at 298 K and 468 K are displayed in Figure 6. From
Figure 6, we can clearly see the change of the free volume distribution with temperature.
A high temperature would lead to a compact structure, providing less empty volume
available for penetrant transport. At higher temperatures, some small and dispersed free
volumes become more continuous.
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However, the FFV only gives the bulk property of free space in the polymer. The FFV
includes some “dead” volume that is not accessible to the penetrant molecules, and the
“dead” volume does not make a considerable contribution to the transport property of the
polymer. Instead, the fraction accessible free volume (FAV) is defined as the amount of
free volume that is accessible to the penetrant molecules relative to the total volume of
the model. FAV was obtained using various sizes of the (spherical) hard probe particle to
probe the available free volume of the polymer for a particle passing through with respect
to the size of the penetrant molecule. The accessible volume of the polymer can be obtained
from the Visualizer Module of the Materials Studio software. Hence, the FAV excludes the
volume that is inaccessible to the probe. The dependence of FAV on the probe radius (Rp) is
shown in Figure 7.
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Figure 7 clearly shows that the accessible volume in the PVC matrix follows the
same trend as the FFV. However, a higher percentage of FAV is probed with a smaller
probe radius, which indicates that the polymer matrix limits the movement of larger
molecules within it. Temperature strongly affects the FAV, especially at smaller probe radii.
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Nevertheless, the influence decreases as the probe radius increases. This indicated that the
temperature could not significantly improve the FAV for a larger probe radius, and as such
it could not improve the diffusion of large molecules.

Furthermore, some other factors beyond the overall free volume accessible to molecules
should be taken into account [28], and it has been suggested that the topology of free vol-
ume should be discussed. Chang et al. [42] pointed out that in addition to the free volume
size, the volume shape also controls the species transport, and it might dominate the trans-
port mechanism. Figure 8 gives the pore size distributions for the model PVC structure
at 298 K and 468 K, in which the PVC polymer exhibits a moderate range of void size
distributions. Comparing the pore size distributions at different temperatures, we found
that there is no apparent change in small voids, but the probability density of larger void
spaces increases with the rise in temperature. The larger voids contribute predominantly
to penetrant diffusion, and as we can see in Figure 2, the diffusion coefficient at 468 K is
greater than that at 298 K.
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3.3.3. Local Dynamics of Polymer Chains

Pant and Boyd [43] pointed out that polymer chain mobility plays a role in penetrant
diffusion. Kucukpinar and Doruker [44] also indicated that the relaxation of polymer chains
has great influence on penetrant diffusion in polymers. In order to investigate the role
played by polymer chain relationships, the local dynamics of the PVC matrices at different
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temperatures are compared here by calculating the MSDs of the polymer backbone carbon
atoms, as shown in Figure 9. This figure demonstrates that the slower motion of backbone
atoms could well explain the slower diffusion in this polymer at lower temperatures, as
obtained in Figure 1, and the higher temperature leads to faster motion of the backbone
atoms. When the polymer is more mobile, the penetrant is less “trapped” in voids. The
motion of backbone atoms hence creates some additional free volume available for the
diffusion of n-hexane molecules. More free volume in a polymer could give increased
segmental mobility, and result in a reduction in the energy that is required to overcome the
interaction between adjacent polymer chains for penetrant molecule diffusion. Actually, the
cooperative motion of a great many consecutive chain segments is easier above Tg, which
results in a greater activation energy (E). The greater temperature sensitivity of D above the
Tg might be thought of in terms of a greater thermal expansion coefficient of the fractional
free volume. The fractional free volume in Table 2 increases mildly with temperature at
temperatures lower than Tg, and only localized in-chain motions are active. Therefore, we
can conclude that the expansion of available free volume with temperature above the Tg
leads to the change in slope in Figure 3.
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4. Conclusions

We constructed the detailed atomistic structures of PVC blend membranes to in-
vestigate the diffusion behavior of VOC molecules (n-hexane) in it. Molecular dynamic
simulations were used to study diffusion in PVC in the temperature range of 298–468 K.
The numerical results were compared with the results for PVC densities at different tem-
peratures from references, with a good agreement achieved. The effect of temperature on
the diffusion mechanism was investigated in detail from the perspectives of free volume,
cavity distribution and polymer chain mobility. The simulated results give a detailed
determination of molecular diffusion and structural parameters such as fractional free
volume, fractional accessible volume and the distribution of fractional free volume, all of
which are difficult to obtain by experimental methods. These results highlight the validity
of MD simulations in calculating penetrant transport properties in PVC materials.

The chain packing structure of PVC at high temperatures becomes less structured than
that at low temperatures. Consequently, the diffusion coefficient of n-hexane changes with
temperature. In addition to accelerating the motion of penetrant molecules, temperature
affects the diffusion coefficients by changing the free volume, distributions of free volume
regions and pore size. High temperature increases the free volume as well as the probability
of large pore size. In addition, high temperature could change some small and dispersed
free volume regions into partly continuous free volume. The faster mobility of the backbone
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atoms, which resulted from higher temperatures, is also responsible for the higher diffusion
coefficients calculated in this work. All of the above factors facilitate the penetrants’ escape
from the trapped voids. Studies of diffusion mechanisms, which are a main part of VOC
emissions from and sorption in materials, will help in understanding and controlling VOC
pollution in indoor environments.
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