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Abstract: Low-level lead exposure in children is a major public health issue. Higher-resolution
spatial targeting would significantly improve county and state-wide policies and programs for lead
exposure prevention that generally intervene across large geographic areas. We use stack-ensemble
machine learning, including an elastic net generalized linear model, gradient-boosted machine, and
deep neural network, to predict the number of children with venous blood lead levels (BLLs) ≥2 to
<5 µg/dL and ≥5 µg/dL in ~1 km2 raster cells in the metro Atlanta region using a sample of
92,792 children ≤5 years old screened between 2010 and 2018. Permutation-based predictor impor-
tance and partial dependence plots were used for interpretation. Maps of predicted vs. observed
values were generated to compare model performance. According to the EPA Toxic Release Inventory
for air-based toxic release facility density, the percentage of the population below the poverty thresh-
old, crime, and road network density was positively associated with the number of children with
low-level lead exposure, whereas the percentage of the white population was inversely associated.
While predictions generally matched observed values, cells with high counts of lead exposure were
underestimated. High-resolution geographic prediction of lead-exposed children using ensemble
machine learning is a promising approach to enhance lead prevention efforts.

Keywords: lead exposure; machine learning; geographic prediction; primary prevention

1. Introduction

Significant neurocognitive deficits occur at blood lead levels (BLLs) <5 µg/dL [1–3],
and there is no known safe threshold for lead exposure [4]. As early as 2006, Gilbert
and Weiss argued to lower the actionable threshold to 2 µg/dL [5]. In 2021, the Centers
for Disease Control and Prevention (CDC) lowered the threshold from 5 to 3.5 µg/dL
(the 97.5%ile of the general pediatric population in the U.S.) [6]. While mean BLLs have
dropped significantly among U.S. children, from 13.7 µg/dL in 1976–1980 [7] to 0.80 µg/dL
in 2011–2016 [8], the 97.5 percentile BLL has not changed in over a decade [9]. Between
2007 and 2010, over 500,000 U.S. children aged 1–5 years [10] had BLLs ≥5 µg/dL, and
an estimated 2 million children ≤5 years had BLLs ≥2.98 µg/dL [11]. As the effects of
lead are often irreversible [12], exposure prevention continues to be an important public
health goal.

No standard lead screening or testing policies exist across the U.S. [13,14]. In New
York State (NYS), an environmental assessment of the home is not required until BLL
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≥5 µg/dL [15]. In contrast, Georgia requires a home inspection if a child’s BLL is
≥3.5 µg/dL [16]. Preventive programs such as the Erie County Childhood Lead Poisoning
Primary Prevention Program in NYS provide community resources for lead remediation.
However, these resources are limited to zip codes with high numbers of children with
elevated BLLs (≥5 µg/dL) [17], potentially missing children at lower levels of exposure.
Furthermore, allocating limited resources to large geographic areas, such as zip codes, is
inefficient. We suggest a predictive approach using a high-resolution raster grid may help
allocate limited resources to smaller geographic areas for exposure prevention.

Geographic-based predictive models of lead-exposed children have faced numerous
challenges. In 2020 Potash and colleagues created a random forest model to identify
locations of Chicago children with BLL of ≥6 µg/dL enrolled in the Women, Infants, and
Children (WIC) program. Their model performed well, but they used a high threshold
(6 µg/dL) and a sample of children at high risk for lead exposure, thus potentially limiting
the generalizability [18]. In 2021, Liu and colleagues used a stacked ensemble to predict
BLLs at the individual level using a dataset of children monitored for lead exposure in
Broken Hill, Australia. This was another well-performing model, but the dataset included
children from 1991–2015. Sources of lead exposure have changed significantly since the
1990s, and updated models are needed to better predict the changing landscape of exposure
sources [19]. Lastly, Lobo and colleagues predicted the presence of children with BLLs
≥5 µg/dL within specific zip codes [20]; however, zip code classifications are too large to
implement targeted preventative measures with limited resources. In sum, it is necessary
to develop updated models using a greater geographic resolution to minimize the time and
costs associated with zip code-level intervention.

Previously, we identified individual- and community-level factors that distinguished
children with BLLs <2, 2–5, and ≥5 µg/dL [21]. As we previously showed [21], metro
Atlanta has a significant number of children exposed to both lower and higher levels of
lead within the Healthy Homes for Lead Prevention Program database. We concluded that
a greater number of U.S. children aged 2–6 years were at risk for low-level lead exposure
than the previously estimated [22] 500,000 children. We now propose an ensemble machine
learning approach to predict the number of children with BLLs 2–5 µg/dL and ≥5 µg/dL
in a high-resolution geographic raster grid of the metro-Atlanta area to further refine
our ability to predict, down to a small geographic area, where at-risk children reside.
Our goals were two-fold: (i) to create and evaluate a predictive model of the number
of children with BLLs ≥2 to <5 µg/dL and ≥5 µg/dL using 1 × 1 km raster cells in
metro-Atlanta, (ii) identify differences in global variable importance when predicting the
number of children with BLLs ≥2 to <5 µg/dL and ≥5 µg/dL. Successful prediction in a
high-resolution geographic space with different levels of lead exposure will help identify
smaller geographic areas for targeted intervention.

2. Materials and Methods
2.1. Study Sample

The initial sample comprised surveillance data of 491,973 children aged <19 years
with geocoded addresses from the Georgia Department of Public Health’s Healthy Homes
for Lead Prevention Program (GDPH-HHLP) [22]. Surveillance data were collected from
multiple healthcare providers and laboratories throughout the 20-county metro Atlanta
region between 2010 and 2018. In the rural U.S., sources and prevalence of lead exposure
can differ [23], and children are often under-tested [24,25]. Furthermore, our raster cells
would include vastly different population sizes between urban and rural areas. Therefore,
we restricted our sample to children from metro Atlanta’s urban and suburban zip codes.
We excluded children if they did not have a venous blood draw, were >72 months, did not
have a complete residential address, or were duplicated within the same calendar year.
Our final sample included 92,792 children.
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2.2. Study Sample Raster Grid Creation and Outcomes

First, the area, including 20 counties surrounding metro Atlanta (henceforth ‘20-counties’),
was converted into a high-resolution raster grid using the 1984 World Geodetic System
(WGS84). We wanted our raster cells to represent a large enough sample of children in each
cell. No prior literature exists to establish raster cell size for predicting the number of children
with lead exposure. Therefore, we used a 0.001 × 0.001-degree resolution (~1 × 1 km cells) a
priori. Our primary outcomes were the number of children in each raster cell testing at each
threshold (≥2–<5 µg/dL and ≥5 µg/dL). We only included raster cells from which a child
was tested for lead. Children were sampled from 6591 1 km2 raster cells, each containing our
primary outcome and predictor attributes. The number of children sampled from each raster
ranged from 1 (true for 1593 cells) to 750 (1 cell) (Q1 = 2, Median = 4, Q3 = 12).

2.3. Study Sample Raster Grid Creation and Outcomes

We chose 13 predictors commonly associated with lead exposure in the literature.
Because we hope to validate our model in other cities, we chose predictors that could be
readily extracted for many U.S. cities. Furthermore, we did not exclusively include causal
predictors of lead exposure, as our purpose was primarily predictive, not causal.

2.3.1. Predictors from the U.S. Census

We used 2010 census data because sample collection began in 2010, and census data
collection was challenging during the beginning of the 2020 COVID-19 pandemic [26].
Demographic characteristics from census blocks within the 20 counties were assigned
to raster cells whose centroid fell within the census block. Rasterization of census area
data is common, and applications include predicting the spatial distribution of the Aedes
albopictus [27], understanding the population road use [28], and identifying inequitable
geographic distributions of toxic exposures [29].

Of the 12 study predictors, six were census-based. Lead exposure is often concentrated
in poor areas of high disadvantage, among older housing stock containing lead paint,
and in areas with a high percentage of persons of the color [30–33]. Thus, our chosen
predictors were the percentage below poverty, the percentage black, the percentage white,
the percentage of houses built before 1980, the percentage of >25-year-olds without a
high school diploma, and the Gini index. The Gini index is a measure of census block
income inequality. The index ranges from 0 to 1, with 0 indicating high equality and
1 extreme inequality. High inequality occurs when most of the income in a census block is
concentrated among a few individuals [34]. The total housing units by census block were
also included to account for differences in population density.

2.3.2. Environmental Protection Agency (EPA) Toxics Release Inventory (TRI)

The EPA toxics release inventory (TRI) contains point locations of larger industries
that manage and release toxic chemicals into the environment (via air, water, or landfill).
There are 770 toxic chemicals in the TRI program, including lead [35]. These point locations
were converted into a density raster grid using a kernel density function. A raster cell
with a higher number of nearby industry locations received a higher TRI score. We created
kernel density plots for the raster grid using point locations of (i) all facilities included
in the TRI [Total TRI], (ii) facilities that release toxic chemicals into nearby water [Water
TRI], (iii) facilities that release toxic chemicals into the air [Air TRI], and (iv) geographic
areas where facilities release toxic chemicals on land [Land TRI]. Separating industries by
location of toxic chemical release helps fine-tune potential sources of lead exposure for
children with ≥2–<5 µg/dL and ≥5 µg/dL.

2.3.3. Crime Index and Road Network Density

As lead exposure is often found in high-crime areas [36] and our previous publication
demonstrated a relationship between crime and lead exposure, we also included our
previously constructed 2019 crime index as a predictor [21]. Briefly, this crime density
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index is compiled by ArcGIS using the FBI Uniform Crime Report at the census block level.
Higher crime index values indicate greater crime compared to a national average. Raster
cells were assigned the crime index value of the census block they fell within based on
the centroid of the raster cell. As lead exposure is common in high-trafficked areas [37,38],
we also included road network density as a predictor. A road shapefile was downloaded
from the Georgia Department of Transportation (GDOT), and a kernel density function
calculated the density of roads in each raster cell. The final dataset contained 6591 rows of
data representing a ~1 × 1 km raster cell, each with 13 predictors.

2.4. Study Sample

Following Ahmed et al.’s (2021) approach using explainable artificial intelligence
(XAI), our predictive model was a stacked ensemble of three base learners: an elastic net
generalized linear model (GLM), a gradient-boosted machine (GBM), and a deep neural
network (DNN) [39]. The elastic net GLM is a regression classifier that finds the optimal
penalties to shrink the beta coefficients of variables not predictive of the outcome. GBM is
a type of random forest model that aggregates predictions from generated decision trees.
GBM differs from a random forest by giving additional weight to high-performing decision
trees. DNN is a neural network that uses forward and backward propagation to create
notes using given predictors to optimize performance. These base learners were chosen
because they allowed for the specification of a highly skewed count distribution. Ahmed
et al. (2021) also demonstrated the predictive power of a stacked ensemble approach
compared to geographically weighted techniques in a geographic space, supporting our
decision to use a stacked ensemble with XAI. A stacked ensemble (or super learner) uses a
meta-learner to combine predictions of base learners into a meta-prediction [40,41]. Model
agnostic methods were subsequently applied to explain the relationship between the top
four predictors and our outcomes using partial dependence plots (PD). A flow chart of data
processing and model training is found in Figure 1.
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2.4.1. Training, Validation, and Test Datasets

To prevent overfitting, our sample was randomly split into 50% training, 25% val-
idation, and 25% test datasets [39,40], with 10-fold cross-validation on the training set.
While there is no gold standard for data splitting, especially for count data, we chose
this percentage partitioning because we wanted many non-zero counts represented in the
training and validation sets for hyperparameter tuning. A test dataset was used to evaluate
model performance on an unbiased hold-out dataset [41–43].

2.4.2. Base Learners and Stacked Ensemble Model

All model training and interpretation methods were implemented using the h2o
package in R [44]. The non-normal distribution for counts of BLLs ≥2 to <5 µg/dL and
counts of BLLs ≥5 µg/dL warranted the specification of a Tweedie distribution, allowing
for inflated zeros and count data. Hyperparameters for each base learner (GLM, GBM,
DNN) were tuned with 10-fold cross-validation in the training dataset and tested against
the validation dataset. We used a Random Grid Search (RGS) to maximize efficiency to
find optimal hyperparameters in all base learners. RGS samples from all combinations of
hyperparameters rather than testing all possible hyperparameter combinations. The base
learner hyperparameter combination with the lowest root mean squared error (RMSE) in
the training dataset was selected. Stopping rules were specified to indicate when the RGS
has reached an optimal hyperparameter combination. Following Ahmed et al. (2021) [39],
we used 0.001 as our stopping tolerance and 2 as our stopping rounds, as a <0.001 change
in RMSE would not be a meaningful model improvement. Using a stopping tolerance
also limits the number of generated models at each iteration and prevents overfitting. All
final hyperparameters for the base learners are provided in the results. We used a GLM
meta-learner for our ensemble with 10-fold cross-validation using the predictions from our
best-performing base learners.

2.4.3. Model Performance, Predictor Importance, and Partial Dependence Plots

Both RMSE and mean absolute error (MAE) were reported across all learners to
evaluate model performance. Using the test dataset, we present the ensemble permutation-
based importance and model agnostic importance and partial dependence (PD) plots for
the top 4 predictors. Permutation-based importance represents how important a variable
is for prediction by reporting the RMSE loss if the variable were to be removed. PD plots
show the global model-predicted number of children with BLLs ≥2 to <5 µg/dL and
≥5 µg/dL across different predictor values controlling for all other predictors in the model.
These plots help interpret the relationship between each predictor and outcome. A final
model-predicted geographic map of percent BLLs ≥2 to <5 µg/dL and ≥5 µg/dL is also
presented alongside maps of observed values. Lastly, we included a simple median of the
count data to examine if our model outperforms an educated guess.

3. Results

Descriptive statistics for the analytical sample are presented in Table 1 by BLL thresh-
old. There were slightly fewer females (48.4% female) for the full sample, and children
were about 2 years of age on average (mean = 25.9 months, SD = 14.8). A large propor-
tion did not disclose race (43.5%) or identified as Black (33.9%). A moderate percentage
were from urban zip codes (22.5%), and a large majority received Medicaid (73.4%). Most
sampled children had BLLs ≥2–<5 µg/dL (n = 52,522, 56.3%), followed by <2 µg/dL
(n = 38,124, 40.9%) and ≥5 µg/dL (n = 2146, 2.3%). Among those with BLLs ≥2–<5 µg/dL
and ≥5 µg/dL, a large proportion did not report race (61.2% and 43.2%, respectively) or
reported black race (22.9% and 28.1%, respectively).
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Table 1. Sample demographic characteristics of the 92,792 urban and suburban children 0–72 months
of age with a valid venous blood lead test (2010–2018) in the Atlanta metro area.

<2 µg/dL
(N = 38,124)

≥2 to <5 µg/dL
(N = 52,522)

≥5 µg/dL
(N = 2146)

Overall
(N = 92,792)

Child age in months
Mean (SD) 24.5 (14.0) 26.7 (15.3) 29.4 (16.3) 25.9 (14.8)
Median [Min, Max] 24.0 [0, 72.0] 24.0 [0, 72.0] 25.0 [0, 72.0] 24.0 [0, 72.0]

Child Sex
Female 18,600 (48.8%) 25,468 (48.5%) 1020 (47.5%) 45,088 (48.4%)
Missing 36 (0.1%) 69 (0.1%) 6 (0.3%) 545 (0.6%)

Child Race
Black 18,985 (49.8%) 12,006 (22.9%) 604 (28.1%) 31,595 (33.9%)
White 5272 (13.8%) 3507 (6.7%) 189 (8.8%) 8968 (9.6%)
Other 6288 (16.5%) 3536 (6.7%) 403 (18.8%) 10,227 (11.0%)
Not Reported 7491 (19.6%) 32,122 (61.2%) 927 (43.2%) 40,540 (43.5%)
Missing 88 (0.2%) 1351 (2.6%) 23 (1.1%) 1896 (2.0%)

Receiving Medicaid
Yes 27,526 (72.2%) 39,413 (75.0%) 1456 (67.8%) 68,395 (73.4%)

Urban Zip Code
Yes 7944 (20.8%) 12,519 (23.8%) 387 (18.0%) 20,957 (22.5%)

Note: SD—standard deviation; µg/dL—micrograms per deciliter.

Descriptive statistics of the raster cells are presented in Table 2. Two observations
among children ≥5 µg/dL were >42 standard deviations above the mean (SD = 2.56; count
observations = 109,145). Therefore, we truncated these two observations to the next highest
count value (count observation = 36). Across the 6591 cells, the number of children with
BLLs ≥2–<5 µg/dL and ≥5 µg/dL ranged from 0 to 63 and 0 to 36, respectively. The mean
number of children in a raster cell with BLLs ≥2–<5 µg/dL was 7.2 with a median of 2.
The mean number of children with BLLs ≥5 µg/dL was 0.29 with a median of 0.

Table 2. Descriptive statistics of predictors and outcomes: 6591 raster cells in the Atlanta metro area.

Predictors Mean, Median (Min–Max)

Number of children with BLLs >= 5 µg/dL 0.29, 0.0 (0.0–36)
Number of children with BLLs >2 to <5 µg/dL 7.2, 2.0 (0.0–63)
Percentage of the population below the poverty threshold 0.14, 0.11 (0.0–1.0)
Percentage of the population that is Black 0.36, 0.27 (0.0–1.0)
Percentage of the population that is White 0.55, 0.59 (0–1.0)
Percentage of houses built before 1980 0.31, 0.24 (0–1.0)
Percentage of the population >25 years old without an HS diploma 0.12, 0.10 (0–0.74)
Gini index 0.41, 0.41 (0.30–0.66)
Crime index 120, 98 (5.0–710)
Road network density 470, 470 (31–1600)
EPA TRI density 840, 380 (0–7100)
EPA Water TRI density 46,000, 32,000 (0–400,000)
EPA Air TRI density 2800, 1700 (0–18,000)
EPA Land TRI density 8200, 3000 (0–100,000)
Total Housing Units 1100, 980 (94–4200)

Note: TRI—Toxic release inventory; µg/dL—micrograms per deciliter; HS—high school.

3.1. Model Building, Performance, and Interpretation

RMSE and MAE across training, validation, and test datasets of the base learn-
ers (predicting BLLs ≥2–<5 µg/dL and BLL ≥5 µg/dL) are presented in Table 3 us-
ing the full variable set and top five predictors. Based on the lowest RMSE in the test
dataset, the ensemble performed equally or better than all base models for predicting
BLLs ≥2–<5 µg/dL and BLL ≥5 µg/dL. The ensemble model outperformed the simple
median for both BLLs ≥2–<5 µg/dL and BLL ≥5 µg/dL on RMSE. However, it was close
to the median MAE for BLL ≥5 µg/dL.
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Table 3. Model performance when predicting the number of BLLs ≥2–<5 µg/dL and ≥5 µg/dL
across base models for training, validation, and test data.

BLLs ≥2–<5 µg/dL BLL ≥5 µg/dL
RMSE MAE RMSE MAE

Gradient Boosting Machine (GBM)
Training 8.55 2.92 0.38 0.19
Validation 13.04 5.48 1.32 0.42
Test 15.51 6.03 1.57 0.46

Elastic Net Generalized Linear Model (GLM)
Training 15.81 7.41 1.21 0.43
Validation 13.79 7.20 1.48 0.45
Test 17.07 7.60 1.65 0.45

Deep Neural Network (DNN)
Training 11.32 5.42 1.19 0.37
Validation 12.96 5.62 1.44 0.39
Test 16.00 6.05 1.66 0.40

Ensemble Learner [Final Model]
Training 9.11 3.93 0.62 0.23
Validation 12.74 5.53 1.33 0.38
Test 15.51 6.08 1.59 0.41

Simple Median [Comparison]
Training 19.63 7.32 1.31 0.29
Validation 17.70 6.83 1.58 0.31
Test 20.29 6.93 1.72 0.30

3.1.1. Predicting BLLs ≥2–<5 µg/dL

The hyperparameters for the base learners in the BLLs ≥2–<5 µg/dL ensemble in-
cluded: (GBM: 563 trees, column sample rate of 0.95, max depth of 15, a minimum of
five rows, and a Tweedie power of 1.4; GLM: alpha of 0.5, lambda of 0.1, and a Tweedie
variance power of 1.05; DNN: 3 hidden layers each with 50 units, a “Rectifier” activation
function, and a Tweedie variance power of 1.95). Variable importance for the number of
children with BLL ≥2–<5 µg/dL is presented in Figure 2. In order of importance, the top
four predictors were: EPA Air TRI density, Percent of the population below the poverty
threshold, percent White, and the crime index.
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Figure 2. Predictor importance for ensemble learners predicting the number of children in a raster
cell with BLLs ≥2–<5 µg/dL.

Partial dependence plots for the ensemble are presented in Figure 3. This figure also
provides a histogram for the predictor and data density shown with vertical tick marks
(“data rug”) in the figure background. The most important variable, EPA Air TRI density,
had a positive relationship with the number of children with BLLs ≥2–<5 µg/dL. The
percent of the population below the poverty threshold was also positively related to the
number of children with BLLs ≥2–<5 µg/dL. The percentage of the population that is
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White was inversely related to the number of children with BLLs ≥2–<5 µg/dL. Crime
index appeared to have a threshold effect, with greater numbers of children with BLLs
≥2–<5 µg/dL after an index value of ~300.

Int. J. Environ. Res. Public Health 2023, 20, 4477 8 of 15 
 

 

Figure 2. Predictor importance for ensemble learners predicting the number of children in a raster 

cell with BLLs ≥2–<5 µg/dL. 

Partial dependence plots for the ensemble are presented in Figure 3. This figure also 

provides a histogram for the predictor and data density shown with vertical tick marks 

(“data rug”) in the figure background. The most important variable, EPA Air TRI density, 

had a positive relationship with the number of children with BLLs ≥2–<5 µg/dL. The 

percent of the population below the poverty threshold was also positively related to the 

number of children with BLLs ≥2–<5 µg/dL. The percentage of the population that is White 

was inversely related to the number of children with BLLs ≥2–<5 µg/dL. Crime index 

appeared to have a threshold effect, with greater numbers of children with BLLs ≥2–<5 

µg/dL after an index value of ~300. 

 

Figure 3. Partial dependence plots for top four ensemble predictors of the number of children in a 

raster cell with BLLs ≥2–<5 µg/dL. 
Figure 3. Partial dependence plots for top four ensemble predictors of the number of children in a
raster cell with BLLs ≥2–<5 µg/dL.

To demonstrate our model geographically, we plotted the observed and predicted
values of all raster cells in Figure 4. The model-predicted counts largely mapped onto
the observed counts, predicting generally high and low numbers of children with BLLs
≥2–<5 µg/dL. However, our predicted counts were generally lower than the observed
counts. This was especially true for counts above the >95%ile in the observed data, which
were predicted lower than reality (i.e., the maximum predicted number ≥5 µg/dL was 227
vs. the observed maximum of 522).
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3.1.2. Predicting BLLs ≥5 µg/dL

The hyperparameters for the base learners in the BLLs ≥ 5 µg/dL ensemble included:
(GBM: 567 trees, column sample rate of 0.7, max depth of 11, 1 minimum number of
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rows, and a Tweedie power of 1.05; GLM: alpha of 0.25, lambda of 0.1, and a Tweedie
variance power of 1.05; DNN: 4 hidden layers each with 10 units, a “Rectifier” activation
function, and a Tweedie variance power of 1.15). Variable importance for the number of
BLLs ≥5 µg/dL is presented in Figure 5. In order of importance, the top four predictors
were: EPA Air TRI density, percent White, road network density, and the crime index.
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Partial dependence plots for the ensemble are presented in Figure 6. The most im-
portant variable, the EPA Air TRI density, had a positive relationship with the number of
children with BLLs ≥5 µg/dL. The percentage of the population that is white was slightly
negatively related to the number of children with BLLs ≥5 µg/dL. The greatest decline
occurred in the <25% white population. Road network density was positively related to
the number of children with BLLs ≥5 µg/dL. Lastly, the crime index appeared to have
a threshold effect, with greater numbers of children with BLLs ≥5 µg/dL after an index
value of ~300. However, this occurred in a sparse area of the observed data. The crime
index pattern was similar for BLLs ≥2–<5 µg/dL.
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We plotted predicted counts alongside the observed counts for BLLs ≥5 µg/dL in
Figure 7. The predicted and observed counts were similar; however, high observed counts
(>95%ile) were predicted lower by the model (i.e., a maximum predicted number≥5 µg/dL
was 18 vs. an observed maximum of 36).
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4. Discussion

As there is no safe threshold of lead exposure, predicting which geographic areas
contain children with low BLLs is of public health concern. Our goal was to create a
predictive model of the number of children with BLLs ≥2–<5 µg/dL and BLLs ≥5 µg/dL
in the metro-Atlanta area with recent BLL data (2010–2018). Using a high-resolution raster
grid with counts of exposed children, our predictive model yielded promising predictive
potential. Using smaller geographic units to predict where children may be exposed can
support primary prevention efforts. To date, this is the first published attempt at the
prediction of child lead exposure using a high-resolution raster grid.

4.1. Model Performance: Strengths and Limitations

This represents a first attempt at predicting the number of children with
BLLs ≥2–<5 µg/dL and BLLs ≥5 µg/dL in a high-resolution raster grid. In general,
the model characterized raster cell counts well, as demonstrated in Figures 4 and 7. Down-
town and northeast Atlanta, identified by the ensemble learner, have been previously
identified as hot spots for lead exposure, including DeKalb, Gwinnett, and Cobb coun-
ties [21]. The ensemble learner also predicted more precise geographic locations. In metro
Atlanta, Cobb, Fulton, DeKalb, Hall, and Gwinnett counties have been identified as “high
risk” for lead poisoning [45]. Our model confirmed these counties as high-risk, finding
hotspots in each county. However, our model provides a more precise geographic estimate
than a county-wide classification of “high risk.” For example, our model revealed that
Gwinnett’s northern and southern areas have higher counts than central Gwinnett. Also,
only southern areas of Hall County contained high counts of lead-exposed children. This is
promising for future implementation of similar predictive models.

Our ensemble model performed well overall. First, there was no evidence of over-
fitting or underfitting. The difference between RMSE and MAE in the training, test and
validation datasets were similar for the ensemble model. Second, the ensemble model
had equal or lower RMSE and MAE values compared to the base learners. Third, our
model outperformed an educated guess about the number of children in a raster cell with
BLL ≥5 µg/dL and BLLs ≥2–<5 µg/dL. The RMSE demonstrated a much better perfor-
mance of the ensemble compared to a simple median. However, for BLLs ≥5 µg/dL, the
MAE for the simple median was close to the ensemble. In this case, the RMSE is a better
indicator of model performance. RMSE penalizes the difference between observed and
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predicted values more than MAE. Given the skewness of our count data, RMSE is a better
indicator. We also note that the simple median is informed by pre-existing knowledge of the
distribution of the counts in each raster cell. Our ensemble model only uses environmental
predictors to determine the counts in each cell and knows nothing about the location or
number of children with BLLs ≥5 µg/dL or BLLs ≥2–<5 µg/dL. A simple median may
perform better than random guessing.

It should be noted that high counts were not predicted well. This is especially apparent
for BLLs ≥5 µg/dL. While a hot spot of children with BLLs ≥5 µg/dL is detected in
northeast Atlanta, the predicted counts underestimate the actual number of children with
BLLs ≥5 µg/dL in this area. Different predictors may be needed to improve predictive
performance for high-count raster cells. Perhaps alternative sources of exposure are present
that are not represented in our predictor set. We might improve future iterations of our
model by including alternative geographic predictors such as estimated soil lead, land use
change [46], or vacant properties [47].

4.2. Important Predictors among BLLs ≥2–<5 µg/dL vs. BLLs ≥5 µg/dL

Three common predictors were identified in both the BLLs ≥2–<5 µg/dL vs.
BLLs ≥5 µg/dL models: EPA air TRI, percent of the population that is White, and crime
index. Additionally, for BLLs ≥5 µg/dL, road network density was a top predictor, while
for BLLs ≥2–<5 µg/dL, percent below poverty was a top predictor. The direction of associ-
ations in the partial dependence plots also demonstrates that the model reflects previously
published observations of child lead exposure. Interestingly, the EPA air TRI was the
top predictor in both models. The EPA air TRI was created using the kernel density of
EPA-flagged facilities that release toxic chemicals into the air. An ecologic analysis of U.S.
counties (2000–2007) revealed that 1.24% of children had BLLs ≥10 µg/dL in counties with
high air lead levels compared to 0.36% in low air lead counties [25]. The high importance of
EPA air TRI may be unique to the metro Atlanta area, and further investigation is needed.
Crime index and percent of the population below poverty are proxies for socioeconomic
conditions that lead to exposure to lead sources, including lead paint, plumbing, contami-
nated soil, and other spatiotemporal variables for which there is limited data [1,2]. Finally,
a study leveraging ensemble machine learning to predict BLLs at the individual level also
found racial health disparities with higher levels in Aboriginal than in non-Aboriginal
populations [19].

While there are some differences in the rank order of importance for predictors between
the BLLs ≥2–<5 µg/dL and BLLs ≥5 µg/dL models, these differences were minimal.
Local interpretations of ensembles may reveal differences in predictor importance across
observations or geographic areas. For example, heterogeneity in risk factors for lung cancer
resulted in differences in predictor importance at the local level [39]. We presented global
importance measures, and future investigation of local importance measures may clarify
predictor importance across the Atlanta metro area.

4.3. Strengths and Limitations

In general, the transportability of our models to other U.S. cities warrants further
investigation, particularly in rural areas. This study only used urban and suburban areas in
the metro Atlanta region. Therefore, implementing our current model in rural areas would
be inappropriate, as rural areas likely contain fewer children than urban and suburban
areas in each raster cell. Furthermore, many children in rural areas are missed by current
BLL screening. In rural North Carolina, an estimated 30% of children > 30 months with
BLLs ≥3 µg/dL were missed by current screening practices [24]. A predictive model of
BLL counts specific to rural areas would be of significant public health interest.

Furthermore, our sample contained a large percentage of children on Medicaid (73.4%).
The percentage of the population on Medicaid in Fulton County was 16.1%, DeKalb 19.2%,
and Clayton 28.4% in 2015 [48]. It is possible that children on Medicaid were more likely to
be screened and included in the GDPH-HHLP database. Using an oversampling of children
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enrolled in Medicaid has both strengths and limitations. First, as children in poverty are
more likely to be exposed to lead, using a high Medicaid-enrolled sample might make
predictions more sensitive to children in poverty. However, the model’s generalization
to high-income areas may result in poorer model performance. We should also note
that we did not know the self-reported race for a large percentage of children. While
individual-level data were not part of our predictive model, this does make the assessment
of generalizability difficult. However, the known racial and socioeconomic distribution
suggests that our source data was diverse. Our model represents an important first step for
high-resolution lead prediction using a very large sample with specific address information.

5. Conclusions

To our knowledge, this is the first attempt to predict the number of children with
low-level lead exposure using a high-resolution raster grid. Future development of high-
resolution machine learning models can be implemented to prevent lead exposure within a
more refined geographic area.
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