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Abstract: The Advanced REACH Tool (ART) is the most detailed exposure model currently available
for estimating inhalation exposures to dusts, vapours, and aerosols under a broad range of exposure
scenarios. The ART follows a Bayesian approach, making use of a calibrated source–receptor model to
provide central estimates of exposures and information on exposure variability from meta-analyses in
the literature. Uniquely amongst exposure models, the ART provides a facility to update the baseline
estimates from the mechanistic model and variance components using measurement data collected
on the exposure scenario; however, in practical use, this facility is little used. In this paper, the full
capability of the ART tool is demonstrated using a small number of carefully chosen case studies that
each had a sufficient breadth of personal exposure measurement data to support a measurement-led
exposure assessment. In total, six cases studies are documented, three where the estimate from
the source–receptor model of the ART was consistent with measurement data, and a further three
case studies where the source–receptor model of the ART was inconsistent with measurement data,
resulting in a prior-data conflict. A simulation study was designed that involved drawing subsets
of between two and ten measurements from the available measurement dataset, with estimates of
the geometric mean (GM) and 90th percentile of exposures from the posterior distribution of ART
compared against measurement-based estimates of these summaries. Results from this work indicate
that very substantial reductions in the uncertainty associated with estimates of the GM and 90th
percentile could be achieved with as few as two measurements, with results in detail sensitive to both
the measurements themselves and worker and company labels associated with the measurements.
For case studies involving prior-data conflicts, the estimates of the GM and 90th percentile rapidly
changed as measurement data were used to update the prior. However, results suggest that the
current statistical model of the ART does not allow a complete resolution of a prior-data conflict.

Keywords: Bayesian exposure assessment; occupational exposure; chemical regulation; validation

1. Introduction

Datasets of representative exposure measurements are widely considered to provide
the gold standard for estimating inhalation exposures to workers in the occupational setting.
The guidance for supporting occupational exposure assessments using measurement data
under the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
legislation is documented in part R.14 of the guidance document [1]. The guidance doc-
ument notes that a measured dataset supporting an exposure scenario must describe the
conditions of use at a specific site or a range of very similar sites and be representative of
the operational conditions (OC) and risk management measures (RMM) described in the
exposure scenario. The task (or combination of tasks) that the dataset represents should
be clearly documented, including non-exposure periods. There needs to be sufficient in-
formation to satisfactorily support the suitability and representativeness of measurement
data. Some of the key requirements on data adequacy set out in [1] are that: sampling and
measurement techniques should be appropriate; a clear textual description of activities
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and monitored tasks should be documented; information on OC and RMM in place at the
time of sampling should be provided; the date(s) when sampling was undertaken should
be provided (to indicate whether data are current or historic); and summary statistics
based upon measurement data should be available. The EN689-2018 European standard [2]
(EN689, 2018) covers similar ground for conducting measurement campaigns, although
with a focus on establishing workplace compliance with occupational exposure limit values
(OELVs) and thus has direct relevance to workplace health and safety.

In terms of a translation to practical guidance for measurement campaigns, [1] notes
that at least six measurements are required to adequately quantify the exposures of a
single work activity within one company. There is a recognition that exposure assessments
for broader exposure scenarios require larger measurement datasets to ensure sufficient
coverage and to identify potentially relevant subsets, but this does not neatly translate
into hard requirements for numbers of measurements. However, variability and estimated
proximity to a risk characterisation ratio (RCR) of unity are noted as considerations when
designing a measurement campaign.

The R.14 guidance document [1] further notes that measured datasets with only partial
information on context available will usually not be suitable for an assessment under
REACH. Although the guidance does contain provisions for read-across from ‘analogous
situations’ (for one substance to another or for the use of a substance within a broadly
similar work environment), there has been only limited progress into the development of a
framework to support read-across in practice [3].

Perhaps unsurprisingly given the cost of taking measurements, the fairly limited
support for read-across, the requirement for collaboration over companies and sites, and
the fairly opaque guidance on requirements for the design of measurement campaigns,
fewer than 5% of registration dossiers submitted under REACH are supported, at least
partially, by measurement data (personal communication with Celia Tanarro (ECHA)).
Practical exposure assessment under REACH has a heavy reliance on exposure models.

Conceptual models that estimate occupational exposures based upon information
about substances and their conditions of use have been under development for almost
30 years, with the first such broad scope model for regulatory risk assessment being the
Estimation and Assessment of Substance Exposure (EASE) model [4,5]. There have been
substantial improvements in the precision and reliability of more recent exposure models
compared to EASE [5]. Exposure models such as the Targeted Risk Assessment (TRA) [6],
Stoffenmanager® [7], and the Advanced REACH Tool (ART) [8], are now widely used
in regulatory risk assessments for industrial chemicals as well as in the management of
these and other processes that generate hazardous substances in workplaces [5]. There has
been a recent challenge to the theoretical basis of commonly used exposure models under
REACH [9,10] and a robust defence from model authors [5,11]. Recent work suggests that a
weighted average of predictions from the TRA, Stoffenmanager® and ART is more reliable
than any one model [12].

The Advanced REACH Tool (ART) is the most detailed exposure model currently
available for estimating inhalation exposures to dusts, vapours, and aerosols under a broad
range of exposure scenarios. A Bayesian statistical model underpins the ART. In the absence
of measurements, estimates for a given exposure scenario are derived from the calibrated
mechanistic model and information on within-worker, between-worker, and between-
company variability from meta-analyses in the literature [13,14]. These information sources
specify informative prior distributions for parameters in the statistical exposure model.
Quantities of interest such as the geometric mean (GM), which are functions of model
parameters, have implied prior distributions. Henceforth, the suite of directly specified and
implied prior distributions corresponding to a particular exposure scenario will be referred
to as the prior distribution of the ART (specific to a particular exposure scenario). Uniquely
amongst the reviewed exposure models, the ART provides a facility to update the baseline
estimates using measurement data collected on the exposure scenario. For consistency
with [15] and the ART webtool, such data are referred to as being fully analogous. In
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contrast to the careful consideration of data requirements required for measurement-based
submissions, the fully analogous measurement data need not be from a representative
sample of companies and workers: the underpinning exposure model of the ART accounts
for the context of measurements through company and worker labels and has no lower
limit on the number of measurements. However, the technical requirements on data quality
still have to be met.

In a recent review, summarise the findings from a decade of validation studies and
other applications of the ART model in terms of model reliability and bias are sum-
marised [16]. Strikingly, outside the testing of the Bayesian model [15] (McNally et al., 2014)
only a single publication [17] utilised the Bayesian module of the software to update the
mechanistic model estimate. This is consistent with user statistics collected from the ART
software application, which indicate only a small fraction of visits to the ART homepage
result in the Bayesian module being invoked: exposure assessments using the ART are
almost entirely based upon the prior distribution of the ART (which is fully defined by user
input when constructing an exposure scenario).

In this novel study, the full capability of the ART tool is demonstrated using a small
number of carefully chosen case studies. Initially the performance of the Bayesian module
of the ART is studied in cases where summary statistics derived from measurement data
are consistent with estimates from the prior distribution of the ART. Three case studies
are developed to demonstrate how central estimates and uncertainty (represented by the
bounds of a 90% credible interval) evolve as the prior distribution of the ART is updated
using small measurement datasets. In a further three case studies, the performance of the
ART is studied in instances where there is a significant inconsistency between estimates
of exposure from the mechanistic model and measurement datasets, respectively (a prior-
data conflict). These examples study how the prior is updated as progressively larger
measurement datasets are utilised to update the prior. The ultimate aims of this original
work are to demonstrate the value of small measurement datasets (of between two and
ten measurements) in rapidly reducing the uncertainty in estimates of exposure, and in
resolving an inconsistency between the ART mechanistic model and measurement data,
thus demonstrating the significant value that is added through utilising even small (and
potentially non-representative) measurements datasets.

2. Materials and Methods
2.1. Overview of Approach

A high-level conceptual overview of the modelling approach is briefly described below
with further technical details described in subsequent sub-sections. The aim of this work
was to develop a series of case studies, with variations in substance and exposure scenario
characteristics, in order to study how estimates from the prior distributions that underpin
the ART model updated as progressively larger measurement datasets were utilised.

Two summary statistics were selected for this purpose: the GM and the 90th percentile
of exposures. These quantities were initially calculated based upon the ART mechanistic
model and variance components. Datasets of between 2 and 10 measurements were
subsequently used to update the estimates from the prior. The benchmark for comparisons
was the posterior distribution derived using the complete measurement dataset. However,
a minor adaption of the ART exposure model was first implemented (as described below)
to completely remove the influence of the mechanistic model of the ART. The overall
convergence towards this ‘full’ posterior was studied as the size of the measurement
dataset increased. Furthermore, the variability in results from different measurement
subsets was also studied.

2.2. Case Studies

An exposure measurement library comprising of 1944 measurements associated with
117 exposure scenarios was included in version 1.5 of the ART webtool [18]. The exposure
scenarios from an augmented dataset (covering 121 exposure scenarios) were recently used
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in the development of a read-across approach [3]. A summary spreadsheet was available
from this work, which contained a textual description of the scenario, an empirically
calculated GM, an estimate of the GM from ART, the total number of measurements, and
the numbers of unique companies and workers covered by the data, for each exposure
scenario. A consistency score (Equation (1)) between ART and empirical estimates of the
GM was calculated for each scenario, where GMART and GMEmp denote ART and empirical
estimates of the GM, respectively, and θµ denotes the mechanistic model standard deviation
appropriate to the substance class (dust, aerosol, vapour, solid objects) for the particular
exposure scenario.

Consistency Score =

∣∣∣∣∣ ln(GMART)− ln
(
GMEmp

)
θµ

∣∣∣∣∣ (1)

A key requirement in the selection of case studies was that datasets should be of
sufficient breadth to support a measurement-data based exposure assessment. For the
‘normal use’ case studies, the three measurement datasets with best measurement coverage
(number of measurements and unique companies and workers) were selected from the
subset of scenarios where the consistency score (Equation (1)) was less than 2. For the prior-
data conflicts, a similar selection was made; however, the appropriate exposure scenario
subset was from scenarios where the consistency score (Equation (1)) was greater than 2.
This latter subset of case studies was particularly challenging for the ART.

A textual description of each selected exposure scenario (as provided in the ART mea-
surement database) is given below, with summary information of these studies provided
in Table 1. ART reports, following coding of these scenarios using the ART webtool, are
provided in Supplementary Material.

Table 1. Summary data on the six case studies.

Scenario Activity Class Substance Class Setting Measurements,
Companies, Workers

Spreading glue Spreading of liquid products Vapour Indoors 85 14 14

Plastering walls Handling of contaminated solid objects
or paste Dust Indoors 21 7 21

Electroplating Activities with agitated surfaces Aerosol Indoors 24 6 24

Mixing drugs Movement and agitation of powders,
granules and pelletised products Dust Indoors 41 9 13

Sawing wood Fracturing and abrasion of solid objects Solid object Indoors 17 7 17
Pumping gasoline Falling liquids Vapour Indoors 36 7 36

2.2.1. Case Study (a): Spreading of Glue

This scenario describes the spreading of solvent-containing products during several
cobbling processes. Operators were sampled for between 240 and 750 min and used
solvents for one to two hours within the measurement period. The products were applied
with an application rate of 0.3–1 m2/h. Fixed capturing hoods were used for localized
control. Various products were used with a mean vapour pressure for analytes within
the products of 6900 (range of 20–11,500) Pa. The products used contained a mean of 80%
solvents (range 37–100%). The activities were performed in rooms of 50–450 m3 with a
range of ventilation configurations (without ventilation, mechanical or natural ventilation).
The exposure measurements reflect exposure levels to total hydrocarbon vapours.

2.2.2. Case Study (b): Plastering of Walls

The scenario describes the plastering of walls in new buildings and during renova-
tions. Operators were sampled for between 202 and 286 min and were working for the
full sampling period. The measured exposure was the result of near field handling of
substantially and visibly contaminated objects. No localized controls were provided. The
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exposure was to a fine powder (plaster dust). The plastering was performed in rooms of
30–1000 m3 including both mechanical and natural ventilation. A co-worker was present
performing the same task. The exposure measurements reflect exposure to inhalable dust.

2.2.3. Case Study (c): Electroplating

This scenario describes the work of operators in the galvanizing industry. The opera-
tors were measured between 40 and 240 min. The operators were exposed to chromium
released from galvanizing baths. More than one galvanizing bath (containing chromium)
was present in the workplace. The total surface area of galvanizing baths ranged between
0.3 and 1 m2. The operators performed manual work and semi-automated processes (using
hoists), so both near-field and far-field exposures occurred during the activities. The baths
were provided with local exhaust ventilation on the edges of the baths. The concentra-
tion of chromium in the baths was approximately 20%. The activities were performed in
rooms of 300–3000 m3 with either no ventilation or mechanical ventilation. The exposure
measurements reflect exposure levels to aerosolised chromium.

2.2.4. Case Study (d): Mixing Drugs

This scenario describes the mixing of drugs in pharmacies resulting in exposure to
a coarse dust. Operators were sampled for 50–55 min and were involved in mixing for
the entire sampling period. The product used was Pyridoxine. Mixing the product was
performed at a use rate of <10 g to 1 kg with careful handling. No localized controls
were provided. The activity was performed in a room of 30–100 m3 with mechanical
ventilation. Demonstrable and effective housekeeping was in practice. The exposure
measurements reflect exposure levels to the ingredient in the inhalable dust measured
(pyridoxine hydrochloride).

2.2.5. Case Study (e): Sawing of Wood

This scenario describes the work of circular saw operators in wood-working premises.
Operators were measured between 233 and 512 min. Operators were exposed to wood
dust during the entire measurement period. The task involved directing wood towards the
spinning circular saw protruding through the work surface. The task may be classified as
mechanical handling of wood resulting in large amounts of dust. The source was in the
near-field of the worker. The blade guard partially enclosed the source. LEV was applied
through on tool extraction. The activity was performed in large rooms in excess of 3000 m3

volume with general or natural ventilation. The exposure measurements reflect exposure
to inhalable dust.

2.2.6. Case Study (f): Pumping Gasoline

This scenario describes the work of operators in the car recycling industry. The
operators were measured between 15 and 277 min. Operators were exposed to benzene
from gasoline during the whole measurement period. Before cars were dismantled, workers
drained fuel out of the fuel tanks using a closed system with a pump. The gasoline was
pumped away and collected in a vessel. During 50% of the sampling period the worker
was located in the near-field of the pump and the remaining time was spent in the vicinity
of the pumping process. No localized controls were provided. The gasoline contained
approximately 1% benzene. The activity was performed in rooms of 300–3000 m3 with
natural ventilation. The exposure measurements reflect exposure levels to benzene vapour.

2.3. Statistical Modelling
2.3.1. ART Exposure Model

The underlying statistical model of the ART assumes that every relevant exposure
scenario has a distinct exposure distribution that is adequately represented by a lognormal
mixed effects model, with random-effects representing between-company and between-
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worker variability, and a residual error representing within-worker variability. The model,
as applied to a given exposure scenario of interest, can be written

ln
(

Yijk

)
= µ+ ci + wij + εijk (2)

ci ∼ N
(

0, σ2
bc

)
(3)

wij ∼ N
(

0, σ2
bw

)
(4)

εijk ∼ N
(

0, σ2
ww

)
(5)

In Equation (2), Yijk represents measurement k on worker j within company i. Parame-
ter µ denotes the natural log of the geometric mean exposure associated with the exposure
scenario, σbc and σbw denote between-company and between-worker standard deviations,
respectively, and σww represents the within-worker standard deviation.

In practical use of the ART, estimates of exposures are achieved through a two-
stage process. In the first stage, estimates are based upon informative prior distribu-
tions for model parameters µ (Equation (6)) and the standard deviations σbc, σbw and
σww, (Equations (7)–(9)), where the hyper-parameters of the priors are based upon the
substance class and some characteristics of the exposure scenario (Table 2). Parameter µ
in Equation (6) denotes the natural log of the mechanistic model estimate from the ART
and is estimated based upon user input [19], whereas θµ characterises uncertainty in the
mechanistic model estimate, with substance-class specific standard deviations estimated
during model calibration [20].

µ ∼ N
(
µ, θ2

µ

)
(6)

ln(σbc) ∼ N(ln(GMbc), ln(GSDbc)) (7)

ln(σbw) ∼ N(ln(GMbw), ln(GSDbw)) (8)

ln(σww) ∼ N(ln(GMww), ln(GSDww)) (9)

Table 2. Hyper-parameters of the ART mechanistic model for four different substance classifications
and two exposure scenario settings.

Substance Class Setting θµ
1

σbc
2 σbw σww

GM GSD GM GSD GM GSD

Dusts
Indoors 0.89 0.44 1.29 0.32 2.82 0.65 1.64
Outdoors 0.89 0.44 1.29 0.32 2.82 1.57 1.64

Vapours Indoors 0.97 0.44 1.29 0.26 2.82 0.48 1.64
Outdoors 0.97 0.44 1.29 0.26 2.82 1.16 1.64

Mists
(low-volatiles)

Indoors 1.06 0.44 1.29 0.32 2.82 0.65 1.64
Outdoors 1.06 0.44 1.29 0.32 2.82 1.57 1.64

Solid
object/abraision

Indoors 0.46 0.44 1.29 0.32 2.82 0.65 1.64
Outdoors 0.46 0.44 1.29 0.32 2.82 1.57 1.64

1 This parameter denotes the standard deviation associated with the mechanistic model estimate. 2 The GM and
GSD parameterise log-normal distributions for between-company, between-worker and within-worker sources
of variability.

Based upon the prior specification alone, point-estimates and probability distributions
that capture the uncertainty in the model parameters are available. Furthermore, summary
statistics based upon the model parameters also have implied prior distributions.
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In the (optional) second phase of analysis, estimates for model parameters (and
summary statistics calculated from model parameters) are updated based upon personal
exposure measurements related to the exposure scenario. Each row of data contains a
measurement and company and worker labels so that measurements may be associated
with given companies and workers.

In instances where measurement data are used to update the prior distribution of the
ART, statistical inference for model parameters is made using Markov Chain Monte Carlo
(MCMC). In the ART webtool, the OpenBugs software [21] is used for MCMC sampling.

2.3.2. Initial Runs

The ART webtool was used to code each of the six case studies described above and
the model was run. The natural log of the central estimate of the GM was taken from
output to provide the central estimate of µ. The four standard deviations required for the
simulations were based on contextual information relating to substance class and setting
(Table 2). A local WinBugs [21] implementation of the statistical model was used to draw
samples from the prior distributions of the GM and 90th percentile. The median and a
lower (LCL) and upper confidence limit (UCL), corresponding to 5th and 95th percentiles,
respectively, were extracted from output on these two summary statistics.

In the second run, all available measurements associated with the exposure scenario
were used to update the prior distribution and derive data-led estimates. The prior distri-
bution for µ was adapted in order to completely remove the influence of the mechanistic
model estimate through setting θµ = 1000 in Equation (6); however, the prior distributions
for variance components (6–8) were identical under the two runs. The results from this
analysis are referred to henceforth as the adapted ART posterior distribution. Data-led
estimates for the GM and 90th percentiles, summarised through posterior medians, LCL
and UCL were obtained.

2.3.3. Simulation Framework and Analysis

Measurement data subsets were sampled from the full measurement dataset and used
to update the prior distributions. One thousand replicates were obtained for data samples
of two through to ten measurements. For each replicate, sampling without replacement
from the full measurement dataset was used to generate the measurement subset, with
each subset differing not only in the measurements themselves, but also in contextual
information associated with the measurements (i.e., company and worker labels). For
each replicate, the posterior median, LCL and UCL for the GM and 90th percentiles were
calculated from the model output and stored.

Two measures were computed from simulation output in order to summarise the
results. The first measure focussed on the central estimates of the GM and 90th percentile.
The posterior medians from the 1000 simulations at each sample size were ordered by
magnitude and the 50th, 500th and 950th values, corresponding to the 5th, 50th and 95th
percentiles of ordered output, were extracted. The 50th percentile may be interpreted as the
behaviour of the average update at a given sample size. The 5th and 95th percentiles define
an interval which contains 90% of the posterior medians corresponding to a given sample
size: this 90% interval thus provides information on the variability in the posterior median
as a consequence of the composition of the measurement subset. The second measure was
the ratio of the UCL to LCL, which characterises the uncertainty associated with estimates
of the GM and 90th percentile. This ratio was calculated for each replicate at each sample
size. The ratios for 1000 replicates at a given sample size were ordered with the 50th, 500th
and 950th values extracted as summaries. From these summaries, the average reduction
and variability in the reduction in uncertainty, relative to the prior, could be studied.

A third measure was exclusively used to study the three case studies with prior-data
conflicts to assess the variability in convergence as a consequence of updating using differ-
ent measurement data subsets. This was done through assessing the consistency of results
between an update with a given measurement dataset compared with results obtained
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from the adapted ART posterior. The initial measure of consistency between estimates
of the GM and 90th percentile from a given measurement subset and the adapted ART
posterior was to ascribe them as being consistent if the two credible intervals overlapped. A
second—stronger—measure of consistency was also investigated, whereby consistency was
only achieved if the adapted ART posterior median for the summary statistic (GM or 90th
percentile) was within the 90% credible interval based on a given measurement dataset.

2.3.4. Computational Framework

The ART webtool was used in order to derive µ since this offers an efficient and
robust (to user-error) method for stepping through the underpinning source–receptor
model; however, once this estimate was available all simulations were run using a WinBugs
implementation of the statistical model. A computationally efficient workflow was devised
through interfacing the R software [22] with Winbugs using the R2WinBugs package [23].
Specifically, a script was written in R for sampling a dataset which was passed alongside
model parameters to Winbugs using the R2WinBugs package, the simulation was run in
Winbugs, and simulation results were returned back into the R operating environment
following completion of the simulation. Summary data were extracted from MCMC
output and stored. The workflow described above took approximately two seconds for
each replicate.

3. Results
3.1. Cases with Prior-Data Consistency

Panels (a) to (c) Figure 1 show the results for the GM and 90th percentile based
on posterior medians. In each panel, the series of points plotted for between two and
ten measurements correspond to 500th values of the ordered series of posterior medians
(computed from the 1000 replicates at that sample size), with the intervals corresponding to
the 50th and 950th values. Results from the prior and adapted ART posterior are shown for
comparison. To allow for a meaningful comparison over the case studies all the results are
normalised with respect to the median values from the priors. Panels (a) to (c) of Figure 2
show the results based upon the ratio of UCL to LCL. In each panel, the points correspond
to the 500th value of the ordered series of UCL:LCL ratios, with the intervals corresponding
to the 50th and 950th values. Results are all normalised with respect to the ratio of UCL to
LCL under the prior.

The appropriate benchmarks for assessing results against are the posterior medians
for the GM and 90th percentile corresponding to the adapted ART posterior. Results in
panels (a) to (c) of Figure 1 indicate that on average, the posterior median estimates of
both of these summaries were very close to the benchmark values when updating the prior
with as few as two measurements. However, at lower sample sizes there was considerable
variability (represented by the interval) in the posterior median estimates of the GM and
90th percentile, with results proving to be very sensitive to the sampled measurement data
subset. Updates with some small measurement subsets resulted in a posterior median that
was further away from the adapted ART posterior, relative to the prior—this was most
pronounced for the third case study.

Results in panels (a) to (c) of Figure 2 illustrate the reduction in uncertainty associated
with estimates of the GM and 90th percentile within the individual simulations. The very
rapid reduction in uncertainty after including only a few data points was apparent in all
three case studies. Relative uncertainty associated with the 90th percentile decreased at
a faster rate; however, this summary was more sensitive to the subset of data used in the
update, particularly for very small measurement subsets (Figure 2, panels (a)–(c)). All three
case studies showed a very substantial reduction in relative uncertainty with as few as two
measurements.
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3.2. Cases with Prior-Data Conflicts

Panels (d) to (f) Figure 1 show the results for the GM and 90th percentile based on
posterior medians. Panels (d) to (f) of Figure 2 show the results based upon the ratio of
UCL to LCL. The percentages of the 1000 simulations at each sample size that resulted in
posterior distributions for the GM and 90th percentile that were consistent with those from
the adapted ART posterior, under the two definitions of consistency described in methods,
are plotted in Figure 3.
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Figure 3. A comparison of consistency in case studies (a–f) (blue denotes results for GM, black
denotes results for 90th percentile of exposures). Upper panels show the percentages of simulations
where the 90% credible interval resulting from an update with a measurement subset and the adapted
ART posterior overlapped. Lower panels show the percentage of simulations where the posterior
median from the adapted ART posterior was contained within the 90% credible interval resulting
from an update with a measurement subset.

One finding that was replicated in each of these latter three case studies was that
the estimate of the GM from the prior was rapidly corrected after updating with as few
as two measurements, particularly so for case study (f). A further finding over these
three case studies was that the weaker measure of consistency (Figure 3, panels (a) to (c))
was quickly satisfied by almost all of the simulations, even at very small measurement
subsets. However, the more stringent measure of consistency (Figure 3, panels (d) to (f))
proved more difficult to achieve and generally required larger sample sizes. In general,
measurement datasets that covered the widest range of companies resulted in the greatest
changes to estimates of GM and 90th percentile, relative to the prior.

In case study (e), results were notably poorer with the posterior medians for the GM
and 90th percentile from the adapted ART posterior clearly offset from the posterior medi-
ans estimated using measurement data subsets. Furthermore, the uncertainty associated
with the estimate of the GM as characterised by the UCL to LCL ratio narrowed very slowly.
These results appear to be as a consequence of the much smaller standard deviation θµ

associated with a mechanistic model estimate for the abrasion of solid objects (Table 2),
which encodes a greater prior-data conflict that is difficult to resolve. The larger values of
θµ for dusts and in particular vapours (Table 2) encode a weaker prior-data conflict.
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Results were unusual for case study (d), particularly so for the 90th percentile. The
ratio of UCL to LCL was large in a subset of the simulations at each sample size, particularly
for very small measurement subsets. This behaviour was ultimately traced to updates
made with single-worker measurement subsets (i.e., all measurements corresponded to a
single worker). In these cases, detailed analysis indicated that the posterior distribution for
the between worker variability was more diffuse than the prior, and in particular the upper
tail supported very large between-worker standard deviations, which in turn led to a very
diffuse posterior distribution for the 90th percentile.

4. Discussion

As was set out in the introduction to this study, the opaque requirements for the
size of measurement datasets, the requirement for sufficient coverage of sites undertaking
similar tasks, and the requirement that data are representative of the OC and RMM in
place, present significant barriers to the widespread utilization of measurement datasets to
support exposure assessments. The vast majority of occupational exposure assessments
under REACH are instead supported by exposure models, principally the tier one ECETOC
TRA tool (personal communication with Celia Tanarro (ECHA)).

The Advanced REACH Tool is unique amongst the available exposure models in
that it supports a hybrid model-measurement approach through a Bayesian exposure
model. In the absence of measurement data, inference solely from the mechanistic model
and variance components is possible. If there are supporting measurement data, there
is no requirement for a minimum number of measurements; nor do the supporting fully
analogous measurement data need to be from a representative subset of workers and
companies because the hierarchical exposure model accounts for the context of exposure
measurements. However, user statistics from the ART webtool indicate the facility of the
software to incorporate analogous personal exposure measurement data is little used. The
ultimate aim of this research was to demonstrate the value of small measurement datasets
of between two and ten measurements in both refining estimates from the prior and in
reducing the uncertainty associated with key summaries. Results from this work suggest
that by encouraging users to make better use of the software capability, even when only
few measurements are available, more precise and reliable estimates from the ART can be
obtained. Bespoke industry wide measurement campaigns are not necessary; data from
routine sampling suffice, although there are clearly requirements on technical adequacy,
etc., to be satisfied which are as stringent as under the REACH regulations.

It is important to stress that the conflicts observed in the latter three case studies
in this work are not representative of the expected performance of the ART. These case
studies were ‘cherry picked’ to provide a challenge for a range of substance classes (and
hence different prior distributions) and had sufficient measurement data available to
support a measurement-based exposure assessment. In practical assessment, discrepancies
between estimates from the ART mechanistic model and measurement data may arise
as a consequence of two principal reasons. Firstly, variability in personal exposures may
be significant: even for the case studies in this work, where measurement data were of
sufficient breadth to support a measurement-based exposure assessment, the uncertainty
in the GM and 90th percentile, as characterised by the width of the credible interval from
the adapted ART posterior, is non-trivial. For the typically much smaller datasets that have
been used in some validation studies, the uncertainty associated with measurement-based
estimates of the GM and 90th percentile is significantly greater. Clearly uncertainty in
both measurement-based and model-based estimates should be considered in thorough
validation studies. Secondly, there is model error. There are three subclassifications of
model error: (a) conceptual error in the exposure model; (b) the authors’ conception of the
exposure scenario is erroneous; and (c) the exposure scenario is incorrectly transcribed into
the determinants of the model. Errors of these latter two classes result in a measurement
dataset that is not fully analogous to the coded exposure scenario. The case studies
in this work cover all three classes of model error: the conflict in the first case study
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appears to result from model error; the second case study represents an error in the
assessor’s conceptualisation of the scenario (Subsequent to scoring this scenario the visiting
occupational hygienist was consulted. The scoring of the primary task was judged to be
sound; however, a second activity involving the handling of contaminated objects, resulting
in exposure to a fine dust, had not been accounted for. This latter near field exposure for a
small fraction of the measurement period is likely to have dominated the exposure.); the
conflict in the third case study likely results from an incorrect assignment for the level
(scored medium) of containment.

Inter-individual variability in the scoring of exposure scenarios has been previously
studied [24] and found to be substantial. As far as the author is aware, the impact of the
assessor’s misconception of exposure scenarios, where sub-tasks leading to significant
exposures are not characterised, has not been previously considered. Both of these sources
of model error are likely to be significant for exposure scenarios coded for the purposes
of validation from literature sources and, without recourse to original data nor expertise,
should be explicitly considered when evaluating model performance in the context of
validation studies.

Our final comments relate to the resolution of prior-data conflicts. Results from
simulations (Figures 1d–f and 3) demonstrated that measurement data from a cross-section
of workers and companies offered the best breadth of data with which to improve estimates.
However, whilst the updates with measurement subsets moved towards the adapted
ART posterior as greater numbers of measurements were used, the prior-data conflict
never fully resolved (as seen by the central estimates sitting consistently above/below the
corresponding values from the adapted ART posterior), with the posterior converging to
the region of parameter space that minimised the prior-data conflict.

The current form of the ART exposure model is not formulated to efficiently resolve
prior-data conflicts; however, there is a rich literature [25–30] to inform suitable adaptions to
Equations (6)–(9). Specifically, adapting the prior for µ by using a heavier tailed distribution
compared with the current Gaussian may facilitate the more rapid resolution of prior-
data conflicts. A t-distribution with low degrees of freedom might represent one viable
alternative for modelling uncertainty in the mechanistic model estimate. Whilst the remedy
described above would result in a technically correct resolution, this would be achieved
through a ‘rejection’ of the prior in favour of measurement data. It is not clear this is
desirable without first providing feedback to an assessor that the ART mechanistic model
appeared to be inconsistent with measurements: awareness of this conflict may prompt
a re-evaluation of assessments or further investigations as to whether the data were fully
analogous as previously assumed. The results from case study (d) suggest that under
certain conditions a significant prior-data conflict might be identified with as few as two
measurements (in these special cases the ratio of the UCL to LCL massively increased
compared to the prior). Ongoing work is attempting to establish whether the results from
this case study might inform an efficient screening methodology for rapidly identifying
and communicating such conflicts based upon ART output.

5. Conclusions

The results from this simulation study suggest that small measurement datasets have
the potential to substantially reduce the uncertainty associated with estimates of the GM
and 90th percentile, particularly when the measurements are sourced from a representative
subset of workers and companies associated with the exposure scenario. Furthermore,
very rapid improvements in a poor estimate from the ART mechanistic model may be
achieved with as few as two or three measurements. Further research is required for rapidly
identifying prior-data conflicts. A conceptual workflow for communicating and resolving
prior-data conflicts needs to be developed and tested prior to considering an alternative
robust prior specification in the ART webtool.



Int. J. Environ. Res. Public Health 2023, 20, 5386 13 of 14

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph20075386/s1, ART reports for case studies 1–6.

Funding: This research was funded by the Health and Safety Executive.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank Anne-Helen Harding for her review of an earlier
version of this manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References
1. ECHA. Guidance on Information Requirements and Chemical Safety Assessment Part R.14: Occupational Exposure Assessment.

Draft (Public) Version 3.0. August 2016. 2016. Available online: https://echa.europa.eu/documents/10162/13632/information_
requirements_r14_en.pdf/bb14b581-f7ef-4587-a171-17bf4b332378 (accessed on 17 March 2023).

2. EN 689; Workplace Exposure-Measurement of Exposure by Inhalation to Chemical Agents-Strategy for Testing Compliance with
Occupational Exposure Limit Values. European Committee for Standardization EN 689: Bruxelles, Belgium, 2018.

3. Franken, R.; Shandilya, N.; Marquart, H.; McNally, K.; Fransman, W. Extrapolating the Applicability of Measurement Data on
Worker Inhalation Exposure to Chemical Substances. Ann. Work Expo. Health 2020, 64, 250–269. [CrossRef]

4. Tickner, J.; Friar, J.; Creely, K.S.; Cherrie, J.; Pryde, D.E.; Kingston, J. The development of the EASE model. Ann. Occup. Hyg. 2005,
49, 103–110.

5. Cherrie, J.W.; Fransman, W.; Heussen, G.A.H.; Koppisch, D.; Jensen, K.A. Exposure Models for REACH and Occupational Safety
and Health Regulations. Int. J. Environ. Res. Public Health 2020, 17, 383. [CrossRef]

6. Money, C.D.; Jacobi, S.; Penman, M.G.; Rodriguez, C.; de Rooij, C.; Veenstra, G. The ECETOC approach to targeted risk assessment;
Lessons and experiences relevant to REACH. J. Expo. Sci. Environ. Epidemiol. 2007, 17 (Suppl. 1), S67–S71. [CrossRef] [PubMed]

7. Marquart, H.; Heussen, H.; Le Feber, M.; Noy, D.; Tielemans, E.; Schinkel, J.; West, J.; van der Schaaf, D. ‘Stoffenmanager’, a
web-based control banding tool using an exposure process model. Ann. Occup. Hyg. 2008, 52, 429–441. [PubMed]

8. Tielemans, E.; Warren, N.; Fransman, W.; Van Tongeren, M.; Mcnally, K.; Tischer, M.; Ritchie, P.; Kromhout, H.; Schinkel, J.;
Schneider, T.; et al. Advanced REACH Tool (ART): Overview of Version 1.0 and Research Needs. Ann. Occup. Hyg. 2011, 55,
949–956. [PubMed]

9. Koivisto, A.J.; Kling, K.I.; Hänninen, O.; Jayjock, M.; Löndahl, J.; Wierzbicka, A.; Fonseca, A.S.; Uhrbrand, K.; Boor, B.E.; Jiménez,
A.S.; et al. Source specific exposure and risk assessment for indoor aerosols. Sci. Total Environ. 2019, 668, 13–24. [CrossRef]

10. Koivisto, A.J.; Jayjock, M.; Hämeri, K.J.; Kulmala, M.; Van Sprang, P.; Yu, M.; Boor, B.E.; Hussein, T.; Koponen, I.K.; Löndahl,
J.; et al. Evaluating the theoretical background of STOFFENMANAGER® and the Advanced REACH Tool. Ann. Work Expo.
Health 2022, 64, 520–536. [CrossRef]

11. Fransman, W.; Arnone, M.; Borghi, F.; Cattaneo, A.; Cavallo, D.M.; Cherrie, J.W.; Franken, R.; Galea, K.S.; Van Der Haar, R.;
Heussen, G.A.; et al. Response Letter to Koivisto et al. ‘Evaluating the Theoretical Background of STOFFENMANAGER® and the
Advanced REACH Tool’. Ann. Work Expo. Health 2022, 66, 543–549. [CrossRef]

12. Savic, N.; Lee, E.G.; Gasic, B.; Vernez, D. TREXMO plus: An advanced self-learning model for occupational exposure assessment.
J. Expo. Sci. Environ. Epidemiol. 2020, 30, 554–566. [CrossRef]

13. Kromhout, H.; Symanski, E.; Rappaport, S.M. A comprehensive evaluation of within- and between-worker components of
occupational exposure to chemical agents. Ann. Occup. Hyg. 1993, 37, 253–270. [PubMed]

14. Symanski, E.; Maberti, S.; Chan, W. A meta-analytic approach for characterizing the within-worker and between-worker sources
of variation in occupational exposure. Ann. Occup. Hyg. 2006, 50, 343–357. [PubMed]

15. McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.;
Tielemans, E. Advanced REACH Tool: A Bayesian model for occupational exposure assessment. Ann. Occup. Hyg. 2014, 58,
551–565. [PubMed]

16. Spinazzè, A.; Borghi, F.; Campagnolo, D.; Rovelli, S.; Keller, M.; Fanti, G.; Cattaneo, A.; Cavallo, D.M. How to obtain a reliable
estimate of occupational exposure? Review and discussion of models’ reliability. Int. J. Environ. Res. Public Health 2019, 16, 2764.
[CrossRef] [PubMed]

17. LeBlanc, M.; Allen, J.G.; Herrick, R.F.; Stewart, J.H. Comparison of the near field/far field model and the advanced reach tool
(ART) model V1.5: Exposure estimates to benzene during parts washing with mineral spirits. Int. J. Hyg. Environ. Health 2018,
221, 231–238. [CrossRef]

18. Schinkel, J.; Ritchie, P.; Goede, H.; Fransman, W.; van Torgersen, M.; Cherrie, J.W.; Tielemans, E.; Kromhout, H.; Warren, N. The
Advanced REACH Tool (ART): Incorporation of an exposure measurement database. Ann. Occup. Hyg. 2013, 57, 717–727.

19. Fransman, W.; Van Tongeren, M.; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.;
Tielemans, E. Advanced Reach Tool (ART): Development of the Mechanistic Model. Ann. Occup. Hyg. 2011, 55, 957–979.

https://www.mdpi.com/article/10.3390/ijerph20075386/s1
https://www.mdpi.com/article/10.3390/ijerph20075386/s1
https://echa.europa.eu/documents/10162/13632/information_requirements_r14_en.pdf/bb14b581-f7ef-4587-a171-17bf4b332378
https://echa.europa.eu/documents/10162/13632/information_requirements_r14_en.pdf/bb14b581-f7ef-4587-a171-17bf4b332378
http://doi.org/10.1093/annweh/wxz097
http://doi.org/10.3390/ijerph17020383
http://doi.org/10.1038/sj.jes.7500565
http://www.ncbi.nlm.nih.gov/pubmed/17457324
http://www.ncbi.nlm.nih.gov/pubmed/18587140
http://www.ncbi.nlm.nih.gov/pubmed/22080161
http://doi.org/10.1016/j.scitotenv.2019.02.398
http://doi.org/10.1093/annweh/wxab057
http://doi.org/10.1093/annweh/wxac001
http://doi.org/10.1038/s41370-020-0203-9
http://www.ncbi.nlm.nih.gov/pubmed/8346874
http://www.ncbi.nlm.nih.gov/pubmed/16513810
http://www.ncbi.nlm.nih.gov/pubmed/24665110
http://doi.org/10.3390/ijerph16152764
http://www.ncbi.nlm.nih.gov/pubmed/31382456
http://doi.org/10.1016/j.ijheh.2017.10.016


Int. J. Environ. Res. Public Health 2023, 20, 5386 14 of 14

20. Schinkel, J.; Warren, N.; Fransman, W.; van Tongeren, M.; McDonnell, P.; Voogd, E.; Tischer, M.; Kromhout, H.; Tielemans, E.
Advanced REACH tool (ART): Calibration of the mechanistic model. J. Environ. Monit. 2011, 13, 1374–1382. [CrossRef] [PubMed]

21. Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS project: Evolution, critique and future directions. Stat. Med. 2009, 28,
3049–3067.

22. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2008. Available online: http://www.R-project.org (accessed on 17 March 2023).

23. Sturtz, S.; Ligges, U.; Gelman, A. R2WinBUGS: A Package for Running WinBUGS from R. J. Stat. Softw. 2005, 3, 1–16.
24. Schinkel, J.; Fransman, W.; McDonnell, P.E.; Klein Entink, R.; Tielemans, E.; Kromhout, H. Reliability of the Advanced REACH

Tool (ART). Ann. Occup. Hyg. 2014, 58, 450–468.
25. Andrade, J.A.A.; O’Hagan, A. Bayesian Robustness Modelling of Location and Scale Parameters. Scand. J. Stat. 2011, 38, 691–711.

[CrossRef]
26. Andrade, J.A.A.; Omey, E. Modelling conflicting information using sub-exponential distributions and related classes. Ann. Inst.

Stat. Math. 2013, 65, 491–511. [CrossRef]
27. Choy, S.T.B.; Smith, A.F.M. On Robust Analysis of a Normal Location Parameter. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1997, 59,

463–474. [CrossRef]
28. O’Hagan, A.; Pericchi, L. Bayesian heavy-tailed models and conflict resolution: A review. Braz. J. Probab. Stat. 2012, 26, 372–401.

[CrossRef]
29. O’Hagan, A. Modelling with Heavy Tails. Bayesian Stat. 1988, 3, 345–359.
30. O’Hagan, A. Outliers and Credence for Location Parameter Inference. J. Am. Stat. Assoc. 1990, 85, 172–176. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1039/c1em00007a
http://www.ncbi.nlm.nih.gov/pubmed/21403945
http://www.R-project.org
http://doi.org/10.1111/j.1467-9469.2011.00750.x
http://doi.org/10.1007/s10463-012-0380-y
http://doi.org/10.1111/1467-9868.00079
http://doi.org/10.1214/11-BJPS164
http://doi.org/10.1080/01621459.1990.10475321

	Introduction 
	Materials and Methods 
	Overview of Approach 
	Case Studies 
	Case Study (a): Spreading of Glue 
	Case Study (b): Plastering of Walls 
	Case Study (c): Electroplating 
	Case Study (d): Mixing Drugs 
	Case Study (e): Sawing of Wood 
	Case Study (f): Pumping Gasoline 

	Statistical Modelling 
	ART Exposure Model 
	Initial Runs 
	Simulation Framework and Analysis 
	Computational Framework 


	Results 
	Cases with Prior-Data Consistency 
	Cases with Prior-Data Conflicts 

	Discussion 
	Conclusions 
	References

