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Abstract: Branching processes are stochastic individual-based processes leading conse-
quently to a bottom-up approach. In addition, since the state variables are random integer
variables (representing population sizes), the extinction occurs at random finite time on the
extinction set, thus leading to fine and realistic predictions. Starting from the simplest and
well-known single-type Bienaymé-Galton-Watson branching process that was used by several
authors for approximating the beginning of an epidemic, we then present a general branch-
ing model with age and population dependent individual transitions. However contrary to
the classical Bienaymé-Galton-Watson or asymptotically Bienaymé-Galton-Watson setting,
where the asymptotic behavior of the process, as time tends to infinity, is well understood,
the asymptotic behavior of this general process is a new question. Here we give some solu-
tions for dealing with this problem depending on whether the initial population size is large
or small, and whether the disease is rare or non-rare when the initial population size is large.
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1. Introduction

Mathematical models of propagation of a disease in given populations play a central role for under-
standing this propagation, for predicting the future extension of the outbreak, its extinction time, and for
evaluating the efficiency of control measures. Of course the validity and the richness of results of a model
strongly depend on the reliability and the accuracy of the model. A fine predictive model should be built
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as far as possible in a rigorous mechanistic way starting from the mechanism of exposure/infection of
each individual and taking into account their variability. The population dynamic described by births,
deaths, migrations should also be taken into account, especially when the incubation time is relatively
long in comparison with this dynamic. Of course, the time unit of the model should be chosen in keeping
with the respective durations of each health state and the data.

Nevertheless, since the asymptotic behavior, as time tends to infinity, of deterministic models in
continuous time are more easily studied than that of discrete time models or stochastic models, a large
literature in applied mathematical journals is devoted to such theoretical studies [19], while for statistical
purposes, either descriptive non dynamical models or very simple stochastic models are used, such as a
chain binomial model for the propagation of SIS or SIR diseases in closed populations [5, 6], or BGW
(Bienaymé-Galton-Watson) branching processes on the clinical (or diagnosed) cases as an approximate
model of the beginning of an outbreak [2, 3, 4, 6, 10, 11, 20]. These two approaches are both individual-
based (each individual transition is given) and stochastic (individual variability is taken into account) but
the first one takes into account the individual health state evolution S → I → S or S → I → R, where S
means susceptible, I means infective or clinical cases (according to authors and purposes) and R means
removed from the susceptible population, either by immunization or death; while the second approach
directly models the process of I individuals, without analyzing this mechanism of exposure/infection.
The behavior of these two types of processes are well-known. The chain binomial models are just
Markov chains in a finite state space, and since there is no immigration and no incubation period, the
state “0 infected individual” is an absorbing state. Concerning BGW processes, a huge literature exists
for describing their properties. In fact these two different types of models may be written as particular
cases of a large class of branching processes with individual transitions that may be population and age
dependent, and which can take into account both the population dynamics and the disease dynamic.

Branching processes were initiated in the nineteen century by Bienaymé and then by Galton and
Watson, for studying the extinction of some family names. Since this time, the complexity of these
processes continues to increase allowing to describe more and more realistic population dynamics. These
processes are based on the simple property that the population size of each considered type (such as
clinical cases here) at each time is calculated as the sum of all the new individuals (“offspring”) of this
type who are generated by the individuals of the population at the previous times. Since the modelled
variables are integers, then the extinction time of the population of each type is finite on the set of
trajectories which extinct. This is a finer and more realistic property than the asymptotic extinction
time given by a deterministic model. Since the population dynamic may influence the disease dynamic,
and conversely, these two dynamics should be explicitly taken into account in the model, thus leading
to rigorous, but not simple, multitype models where each type should represent an health state crossed
with influence factors levels. Typical examples of such influence factors are age, geographical locations.
However, some authors model directly the time evolution of the incidence of clinical cases, without
explicating all the intermediary steps.

In the following subsections, we present such direct models starting from the simplest one, the single-
type Bienaymé-Galton-Watson process, and finishing by a general and rigorous approach that takes
into account the intermediary steps and the population dynamic, and is based on age-dependent and
population-dependent individual transitions. We focus on models in discrete time since they have the
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double advantage to be easily written as recursive models and to easily correspond to the time unit
of observation, which offers a pedagogic framework and moreover facilitates the model validation and
the estimation of unknown parameters. We study here the behavior of these models. From now on,
all results are given conditionally to the initial value F0 of the process and the notation “|F0” will be
therefore omitted for the sake of simplicity of formulas. The proofs are given in detail in [23] and will
be omitted here.

2. Single-type Bienaymé-Galton-Watson Branching Processes

Let In be the incidence of clinical (or diagnosed) cases at time n and Yn,i represent the numbers of
secondary cases generated at time n by the previous case i. Then In is modelled from the past incidences
by

In =

In−1∑
i=1

Yn,i, (1)

where the variables {Yn,i}i are assumed i.i.d. (independently and identically distributed) according to
a distribution L independent of the time and of the past process given Fn−1 := {Ik}k≤n−1. We de-
note m,σ2 the mean and variance of Yn,1 given Fn−1. Since these first two moments are the mo-
ments influencing the behavior of the process on the non-extinction set, we will also write L(m,σ2)

rather than L. This comes from the following writing of (1): In = mIn−1 +
√
In−1ηn, where ηn :=

[
∑In−1

i=1 (Yn,i − m)][
√
In−1]

−1 is asymptotically distributed according to N (0, σ2) on {limn In = ∞},
which is the non-extinction set, as n → ∞.

The behavior of this process has been deeply analysed for a long time (see for example [1, 13, 16, 24]).
We recall here the main properties. The trajectories of this process either die out or explode in an
exponential way: P ({limn In = ∞} ∪ {limn In = 0}) = 1 and there exists an integrable random
variable W such that limn Inm

−n = W , a.s. (almost surely), where P (W > 0) > 0 if and only if
m > 1 (supercritical case). The random variable W depends on I0 and of L(m,σ2). This limit behavior
comes from the martingale property of Inm−n, that is E(Inm

−n|Fn−1) = In−1m
−(n−1) which implies

E(Inm
−n) = I0. So this process reproduces the initial phase of exponential growth of an epidemic

and can be used for describing this phase when the incubation period is negligible compared to the
time unit. The quantity m := E(Yn,1|Fn−1) is the current reproductive number of the process (mean
number of secondary cases produced by one case during a time unit) and is known to be the bifurcation
parameter of the process, that is, m ≤ 1 implies the a.s. extinction of the process. The deterministic
model Xn = mXn−1 with X0 = I0, derived from E(In|Fn−1) = In−1m, has the same bifurcation
parameter, but when m = 1, the deterministic model persists with Xn = I0 while the stochastic one
dies out a.s.. Moreover before dying out, the stochastic process In|In ̸= 0 presents a linear increasing
behavior: limn P (In[0.5σ

2n]−1 ≤ x|In ̸= 0) = 1− exp(−x).
In addition, the probability of extinction, q, is the solution of q = f(q) := E(qY1,1) and in the subcrit-

ical/critical cases m ≤ 1, the “epidemic size” N :=
∑Text.

k=0 Ik (total number of cases generated until the
extinction time Text.), follows a power series distribution when Yn,1 follows itself a power series distri-
bution, that is, P (Yn,i = k) ∝ akλ

k [7, 11, 12]. In particular, when P (Yn,i = k) = exp(−m)[k!]−1mk
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(Poisson(m) distribution), then N follows the Borel − Tanner(m, I0) distribution, for m < 1,

P (N = k) = exp(−mk)
I0
k

(mk)k−I0

(k − I0)!
, k ≥ I0, (2)

and E(N) = I0(1−m)−1, V ar(N) = I0m(1−m)−3 are increasing functions of m, I0.

3. Single-type Branching Processes with Population-Dependent Offsprings

When the population is small or when the individual migrations are slow compared to the infection
process, the depletion of susceptible individuals due to the infection should be taken into account, which
is not the case in the BGW process. The typical bell curve form of outbreaks is due to this depletion.
The simplest such model is just an extension of the BGW process, that is, In =

∑In−1

i=1 Yn,i, where
the {Yn,i}i are assumed i.i.d. according to a distribution L(Fn−1) =: L(m(Fn−1), σ

2(Fn−1)) given
Fn−1 : {Ik}k≤n−1. The depletion effect of the S population at time n is replaced by the fact that m(Fn−1)

(resp. P (Yn,i = 0|Fn−1)) is a decreasing (resp. increasing) function of the previous incidences of cases
{Ik}k≤n−1.

A simple example is when L(Fn−1) = L(
∑dn

l=1 µ
lIn−l), µ ∈ [0, 1], where m(

∑dn
l=1 µ

lIn−l) (resp.
P (Yn,1 = 0|Fn−1) = p(

∑dn
l=1 µ

lIn−l)) is a decreasing (resp. increasing) function of
∑dn

l=1 µ
lIn−l. For

example, E(Yn,1|Yn,1 ̸= 0) = α and P (Yn,1 = 0|Fn−1) = 1 − K[K +
∑dn

l=1 µ
lIn−l]

−1, 0 < µ ≤ 1,
K > 0. We will see in this section that this kind of models may exhibit a random cycle and therefore
may be used for modeling recurrent epidemics. The extremal case µ = 0 means no depletion in S, which
is got by an immediate healing with no immunization, after one time unit in the state I (SIS disease)
and this model is reduced to the previous BGW process.

The other extremal case µ = 1 with dn = n corresponds either to a not necessarily immediate healing
with persistent immunization or to a fatal issue (SIR disease). This process is a branching process with
a long memory and has not be studied in the literature excepted by simulation [27].

The intermediate case 0 < µ ≤ 1 with dn = d represent the possibility of recovering but with a
transient immunization only, and leads to a Markovian chain of order d. The behavior of this process has
been studied in [27] and is described in the following paragraphs.

Let A1: there exists a positive function f(.) such that P (Yn,i = 0|In−1 = N,Fn−1) ≥ f(N) > 0, for
all N ∈ N+ and any value of Fn−1 consistent with In−1 = N .

This assumption is checked as soon as P (Yn,i = 0|Fn−1) is a non-decreasing function of In−1,
In−2,. . . , which is strictly increasing in In−1.

Proposition 1 Let us assume A1. Then P (limn In = 0 ∪ limn In = ∞) = 1.

Let A2: there exists m∗ < ∞ such that m(F ) ≤ m∗, for all F , and lim|F |→∞m(F ) < 1, where |F | is
the L1-norm of F .

Let us define the bifurcation parameter R∞ by

R∞ = sup{R : 0 < R < 1 =⇒ P (lim
n

In = 0) = 1},

where R is any real quantity depending on the parameters of the distribution of {In}.
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Proposition 2 The bifurcation parameter R∞ is equal to lim|F |→∞m(F ). Let us assume A1 and A2.
Then R∞ < 1, i.e., the process dies out a.s.. Moreover for the deterministic trajectory {Xn} defined
by Xn := m(FX

n−1)Xn−1, where FX
n−1 = {Xn−1, Xn−2, ...}, then the bifurcation parameter is the repro-

ductive number R0 = lim|FX |→0m(FX), that is, if R0 < 1, then limnXn = 0, while if R0 > 1, then
limnXn ̸= 0.

Remark 1 When dn = d, for all n, {In} may be represented as a multitype branching process Ĩn =

(In, In−1, ..., In−(d−1)) =: (In,1, In,2, ..., In,d), which is asymptotically BGW if L(Fn−1) tends to a distri-
bution L independent of the process as time tends to ∞ on {limn In = ∞}. But the asymptotic BGW
process is not positively regular at the opposite of classical BGW branching processes, since M̃(Fn−1)

being defined by E(Ĩn|Fn−1) =: Ĩn−1M̃(Fn−1), then

M̃(Fn−1) =


m(Fn−1) 1 0 ... 0

0 0 1 ... 0

... ...

0 0 0 ... 1

0 0 0 ... 0


which implies that, for all n ≥ d − 1, M̃n[1, j] = mn−(j−1), and M̃n[i, j] = 0, i > 1, where m :=

lim|F |→∞m(F ) and M̃ := lim|F |→∞ M̃(F ).

Remark 2 If m((1, 0, ..., 0)) > 1 (supercritical assumption at the beginning of the disease spread),
since m(Fn−1) < 1 under A2, for |Fn−1| and n sufficiently large, then we may observe oscillations until
the a.s. extinction, the process increasing when |Ĩn−1| is small enough, and decreasing when it is too
large. It is the case of the logistic model m(Fn−1) = αK[K +

∑dn
l=1 µ

lIn−l]
−1, when dn = d with d > 1

and m((1, 0, ..., 0)) = α(1 + µK−1)−1 > 1. Moreover since R0 = α > 1, then {Xn} tends to a stable
limit cycle, as n → ∞ [9, 27].

4. Set of Single-type Branching Processes with Population-Dependent Offsprings

We generalize here the model of the previous section to a set of J similar diseases in competition:

I(j)n =

I
(j)
n−1∑
i=1

Y
(j)
n,i , j = 1, ..., J,

where, for each j, the {Y (j)
n,i }i are i.i.d. according to L(j)(Fn−1) =: L(m(j)(Fn−1), σ

2(j)(Fn−1)) given
Fn−1 : {{I(j)k }j=1,...,J}k≤n−1. We assume that m(Fn−1) is non increasing in I

(j)
k , for each j, each k ≤

n− 1.
A simple example is when as previously L(j)(Fn−1) = L(j)(

∑dn
l=1 µ

l
∑

j′ I
(j′)
n−l), µ ∈ [0, 1], and

m(j)(
∑dn

l=1 µ
l
∑

j′ I
(j′)
n−l) (resp. P (Y

(j)
n,1 = 0|Fn−1) = p(j)(

∑dn
l=1 µ

l
∑

j′ I
(j′)
n−l)) is a decreasing (resp. in-

creasing) function of
∑dn

l=1 µ
l
∑

j′ I
(j′)
n−l. A typical example is given by different influenza viruses.

As in the single-type case, assuming m(j)(F ) < m∗ < ∞, for all F , with R
(j)
∞ := lim|F |→∞m(j)(F ) <

1, then, for all j, P (limn I
(j)
n = 0) = 1, that is each disease dies out. Therefore as soon as the number of
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cases due to any pathogenic agent decreases or dies out, then the epidemics due to the other pathogenic
agents may increase (see Figure 1).

Let the deterministic associate trajectory {X(j)
n } be defined by X

(j)
n := m(j)(FX

n−1)X
(j)
n−1, n ≥ 1,

X
(j)
0 := I

(j)
0 .

Proposition 3 The reproductive number R
(j)
∞ := lim|F |→∞m(j)(F ) is the bifurcation parameter for

{I(j)n }, that is, if R(j)
∞ < 1, then limn I

(j)
n

a.s.
= 0, and the reproductive number R(j)

0 := lim|FX |→0m
(j)(FX)

is the bifurcation parameter of {X(j)
n }, that is if R(j)

0 < 1, then limnX
(j)
n = 0. Moreover if R(j)

0 > 1,
then limnX

(j)
n > 0.

A possible extension of the previous models consists in adding an immigration. Then:

In =

In−1∑
i=1

Yn,i + Jnδn, (3)

where Jn is an immigration at time n when δn = 1, and δn is a Bernoulli variable allowing or not an
immigration at time n. When {δn} follows some seasonality, then the model is suitable for recurrent
seasonal epidemics with seasonal immigrant, such as influenza.

This type of processes has been deeply studied in the subcritical case m < 1, when ({Yn,i}i, Jn)
has a distribution independent of n and Fn−1, with either an immigration allowed only in the periods of
extinction of the process {In} (regenerative branching process), or when the {δn} are i.i.d. independent
of Fn−1 (see the review article [39] and the estimation point of view in [25]).

We may also write (3) in the following way:

In = 1{In−1 ̸=0}

In−1∑
i=1

Ỹn,i + 1{In−1=0}Jnδn, Ỹn,i = Yn,i +
Jn
In−1

δn.

Consequently, when ({Yn,i}i, Jn, δn) is not time-dependent and when 1{In−1=0}Jnδn = 0, for all n, then
(3) may be written as a model of Section 3..

5. Multitype Branching Processes with Age and Population-Dependent Offsprings

Let Nn = (N1
n, ...N

D
n ) satisfying

Nk
n =

D∑
h=1

d∑
l=1

Nh
n−l∑
i=1

Y
(h),k
n−l,n,i, k = 1, ..., D, (4)

where h, k represent types and l is the maturation time for getting the “offsprings” Y (h),k
n−l,n,i of the individ-

ual i (number of k individuals at time n generated by i belonging to the type h at time n− l). We assume
that the {Y (h),k

n−l,n,i}i,l are mutually independent given Fn−1 = {Nn−1, ...,N0} and that the {Y (h),k
n−l,n,i}i are

i.i.d. given Fn−1.
The models of the previous sections (Sections 2. and 4.) belong to this class when dn = d.
When rigorously modeling the propagation of a disease in a given population, taking explicitly into

account the population dynamic and the disease dynamic, then a type should be a health state (S, E
(incubation) or I , for example) crossed with an influence factors level, and the “offsprings” {Y (h),k

n−l,n,i}
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Figure 1. Two populations of infectives from similar diseases in competition following

the same logistic Poisson model I
(j)
n =

∑I
(j)
n−1

i=1 Y
(j)
n,i , Y

(j)
n,i |Fn−1 ∼ Poisson

(
αK[K +∑

l≤d µ
l(I

(1)
n−l + I

(2)
n−l)]

−1
)

, j = 1, 2, with I
(1)
0 = I

(2)
0 = 1, K = 105, µ = 1, d = 20.

Each line of graphics concerns a trajectory of the process {I(1)n , I
(2)
n }, and on each line, the

graphic on the left concerns population 1 and the graphic on the right, population 2. On
each graphic, the red line represents the deterministic limit cycle (reached very quickly) and
the blue one, the stochastic cycle. We see that when one population is small during a long
enough period, then the other population may be large, but both populations may also die
out very quickly (second line).
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should be expressed according to the number of newborn individuals of i, who are of the k type, and to
the proper transition of i from the state h at n − l to the state k at n. For example assuming that there
is no influence factors and that the set of individual health states is {S,E, I} and assuming that the life
duration in the state I is at most one time unit, then, for k = I ,

Y
(h),I
n−l,n,i = 1{h=S}δ

E,I|h
2,n−l+1,n,i +

Y
(h)
n−l+1,i∑
j=1

δ
E,I|(h)
1,n−l+1,n,i,j,

where the {δE,I|S
2,n−l+1,n,i}i are i.i.d. Bernoulli variables given Fn−1, with δ

E,I|S
2,n−l+1,n,i equal to 1 if the

individual i undergoes transitions S → E, at time n − l + 1, and E → I , at time n, which means that
his incubation period is l, the {δE,I|(h)

1,n−l+1,n,i,j}i,j are similar i.i.d. Bernoulli variables given Fn−1, relative
to the newborn j of i, and the {Y (h)

n−l+1,i}i are i.i.d variables given Fn−1, Y (h)
n−l+1,i being the number of

newborns of i at time n − l + 1. So Y
(h),I
n−l,n,i is the number of I individuals generated at time n with an

incubation time l from i who is in the h type at n− l.
Let us write Nn := (Nn,Nn−1, ...,Nn−(d−1)). Then E(Nn|Fn−1) = Nn−1M(Fn−1), where

M(Fn−1) =


Mn−1,n(Fn−1) I 0 ... 0

Mn−2,n(Fn−1) 0 I ... 0

... ...

Mn−(d−1),n(Fn−1) 0 0 ... I

Mn−d,n(Fn−1) 0 0 ... 0


I is the D × D identity matrix, and Mn−l,n(Fn−1)[h, k] := E(Y

(h),k
n−l,n,i|Fn−1), for h = 1, ..., D, k =

1, ..., D. Then, assuming that M(F ) is invertible, for any value F of Fn−1, Nn

[
M(F0)...M(Fn−1)

]−1

is a martingale with E(Nn

[
M(F0)...M(Fn−1)

]−1

|F0) = N0, implying by the convergence theorem

for martingales [15] that limnNn

[
M(F0)...M(Fn−1)

]−1

Ut = WU, for any vector U, where WU is
an integrable random variable. But, except in the simple cases M(Fn−1) = M (BGW process) or
M(Fn−1) = M(

∑
k N

k
n−1) with limN M(N) = M (asymptotically BGW process) [30, 31, 32, 33], we

cannot deduce from this martingale convergence any information on the asymptotic behavior of {Nn}
itself.

In Section 5.1., we give some approaches for studying the behavior of model (4) when the total
population size remains bounded. In Sections 5.2. and 5.3., we study the asymptotic behavior of limit
models derived from (4) as the initial population size increases to infinity.

5.1. The Population Size Remains Bounded

Let Nn :=
∑

k N
k
n be the total population size at time n. Let us first assume that this population size

remains bounded by some control. For example the population is a herd of farm animals. We assume that
the number of newborns Yn,i at time n of the animal i is bounded whatever i, n, and we use the following
control: if Nn−1 > NM , for some chosen threshold NM , then Yn,i = 0 (all the newborn animals are sold),
and when Nn−1 < Nm, for some chosen threshold Nm < NM , then new animals are bought. Therefore
assuming that P (Nn = N2|Nn−1 = N1) =: Q(N1, N2) is independent of n, {Nn} is a homogeneous
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Markov chain on a finite space. Since the population is open to immigration, then the healthy state “0
case” is not an absorbing state and there may exist some endemic behavior: if there exists an asymptotic
distribution π, it satisfies ∑

N1

Q(N1, N2)π(N1) = π(N2), ∀N2 ∈ NdD.

But due to combinatorial aspects, the transition probabilities {Q(N1, N2)} may be difficult to compute.
A solution is then to work in continuous time: in [26], we determine the distribution of the population
process from the individual transitions that may be age and population-dependent and that may be all
different, and in [40], we use this type of process for studying the propagation of the BVD (Bovine
Diarrhoea Virus) within a dairy herd. For that, a renewal approach is used, which generalizes to a
population the semi-Markov process theory relative to one individual. This approach also allows to build
a rigorous and general simulation algorithm for this individual based model, but when used for non
bounded branching populations, it cannot lead to fine stochastic behaviors such as limnNn[N0ρ

n]−1 a.s.
=

W determined by martingale theory in the frame of BGW processes.

5.2. The Initial Population Size N0 is Large and the Disease is not Rare

We assume here that the initial population size N0 is large which allows to study the limit, as N0 → ∞,
of the following quantities: Nn/N0 =: D̂n (empirical densities) or Nn/Nn =: P̂n (empirical probabil-
ities) or Nn[N0ρ

n]−1 =: Wn (empirical normalized densities), when assuming that limN0 D̂0 = D0 or
limN0 P̂0 = P0.

A simple theoretical example that we (artificially) apply here on epidemics is the following model
on densities with D = 1, d = 1 [34, 35, 36, 37, 38]: In =

∑In−1

i=1 Yn,i, where the {Yn,i}i are i.i.d.
given Fn−1 = {In−1, ..., I0} and depend on the previous cases incidences only through the condition:
Yn,i = 0 when In−1 > cI0, that is, a massive vaccination is done as soon as the density In−1I

−1
0 crosses

the threshold c. This implies that the process dies out a.s.. The author studied D̂n := In/I0 and proved
that limI0 limn D̂n|D̂n ̸= 0 belongs to the set of stable fixed points of Dn, where Dn is the deterministic
limit model Dn = Dn−1m(Dn−1), n ≥ 1, D0 = 1, with m(Dn−1) := E(Yn,1|D̂n−1 = Dn−1). Thus,
for I0 very large (which occurs when the initial time is chosen when the epidemic is large enough), the
random empirical densities has the same asymptotic behaviour, as n → ∞, as the limit densities.

Let us study now the empirical probabilities in the general case D ≥ 1, d ≥ 1 under a density-
dependence assumption. We prove in Proposition 5 that limn limN0 P̂n|Nn ̸= 0

P
= limN0 limn P̂n|Nn ̸=

0 (and similarly for {Wn}), which allows to approximate limn P̂n or limnWn.
Let us first study the behavior of the total population size, under the assumption that the number of

newborns is independent of the mother health state.

Proposition 4 Let us assume that the distribution of
∑D

k=1 Y
(h),k
n−l,n,1 only depends on l and is denoted∑D

k=1 Y
(h),k
n−l,n,i = Yn−l,n,i. Let us denote Φl := E(Yn−l,n,1|Fn−1), σ2

l := V ar(Yn−l,n,1|Fn−1). Then the
total size of the alive population at time n, Nn =

∑D
k=1 N

k
n , may be expressed as a multitype branching

process Ñn := (Nn,1, ...Nn,d) := (Nn, Nn−1, ..., Nn−(d−1)), where Nn =
∑d

l=1

∑Nn−l

i=1 Yn−l,n,i and

Nn,j =
d∑

l=1

Nn−1,l∑
i=1

Y
(l,j)
n,i ,
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with, for j = 1, Y (l,1)
n,i = Yn−l,n,i, for j > 1, Y (j−1,j)

n,i = 1 and Y
(l,j)
n,i = 0, for l ̸= j − 1, and the {Y (l,j)

n,i }i
are independent given Fn−1.

Moreover, assuming 0 < Φl < ∞, l = 1, ..., d, 0 <
∑d

l=1 σ
2
l < ∞, and P (Yn−l,n,i ≥ 2|Fn−1) > 0 for

some l, then {Nn}n satisfies the following properties:

1. {Nn} is positively regular, nonsingular, and checks the xlogx property;

2. P (limnNn = 0 ∪ limnNn = ∞) = 1

3. Let ρ be the first eigenvalue of M̃ defined by E(Ñn|Ñn−1) =: Ñn−1M̃, that is,

M̃ =


Φ1 1 0 ... 0

Φ2 0 1 ... 0

... ...

Φd−1 0 0 ... 1

Φd 0 0 ... 0


Then E(Ñnξ

t) = Ñ0ρ
nξt, where M̃ξt = ρξt. Moreover ρ ≤ 1 (subcritical and critical cases)

implies that P (limnNn = 0) = 1 (a.s. extinction), and ρ > 1 (supercritical case) implies
the existence of an integrable random variable W such that limn→∞Wn

a.s.
= W , where Wn :=

Nn[N0ρ
n]−1, and P (limnNn = ∞) = P (W > 0). Finally let us assume that N−l = ρ−lN0,

l = 1, ..., d− 1. Then if ρ ∈ Q, limN0→∞Wn
a.s.
= limN0→∞ limn→∞Wn

a.s.
= 1.

4. ρ is solution of
∑d

l=1 Φlρ
−l = 1, and ρ ≤ 1 ⇐⇒ R∞ ≤ 1, where R∞ =

∑d
l=1 Φl (total mean

number of offspring generated by an individual).

Let us notice that the process {Nn} is the counterpart in discrete time of a single-type age-dependent
Crump-Mode-Jagers branching process in continuous-time [29].

Let us write αl := Φlρ
−l, l = 1, ..., d, dn := d∧n, nd = ⌊n/d⌋ (integer part of n/d) and let us define:

A3: limn ρ
−n/2

∑n
k=nd+1

∑
l1,...,lk

[αl1ρ
l1/2...αlkρ

lk/2]1{∑k
j=1 lj≤n} < ∞.

For d = 1, or d > 1 with ϕl = 0, for all l < d, then the sum in A3 is reduced to 0 implying that A3 is
satisfied. In the general case A3 is satisfied under the stronger assumption:

n∑
k=nd+1

∑
l1,...,lk

[αl1 ...αlk ]1{∑k
j=1 lj≤n} < ∞,

where, we notice that, for all k ≤ n, αk
1 ≤

∑
l1,...,lk

[αl1 ...αlk ]1{∑k
j=1 lj≤n} ≤ 1 and

∑
l1,...,lk

[αl1 ...αlk ]1{∑k
j=1 lj≤n}

is decreasing in k.

Proposition 5 Let us assume, as in Proposition 4, that the distribution of
∑D

k=1 Y
(h),k
n−l,n,1 depends only

on l. Let us moreover assume ρ > 1, A3, Mn−l,n(Fn−1) = Mn−l,n(P̂n−1) (density-dependence),
limN0→∞ P̂0 = P0, and N−l = clN0, l = 1, ..., d − 1, where cl is independent of N0. Then, for all
η > 0, limN0 P (|P̂n −Pn| > η|Nn ̸= 0)=0 and

lim
N0

lim
n

P (|P̂n −Pn| > η|Nn ̸= 0)= lim
n

lim
N0

P (|P̂n −Pn| > η|Nn ̸= 0)=0,

lim
N0

lim
n

P (|Wn −Pn| > η|Nn ̸= 0)= lim
n

lim
N0

P (|Wn −Pn| > η|Nn ̸= 0)=0,
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where Pn is the vector of probabilities defined by:
Pn := (

∑
l

∑
h P

h
n−lρ

−lMn−l,n(Fn−1)[h, 1], ...,
∑

l

∑
h P

h
n−lρ

−lMn−l,n(Fn−1)[h,D]), n ≥ 1.

Proposition 5 allows to use the attractors of the dynamical model {Pn} as an approximation of
the asymptotic behavior of the empirical frequencies if the initial population size is very large, and
moreover generalizes the result of the BGW process: limN0 limnNn[N0ρ

n]−1 a.s.
= 1 deduced from

limnNn[N0ρ
n]−1 a.s.

= W (Section 2.). But the main drawbacks of this approach consist in the loss of
the population variability, since the quantities are normalized by N0 with N0 tending to infinity, and the
loss of the possibility for the extinction time of any type to be finite. Moreover the global asymptotic
stability of the healthy state for {Pn} (extinction of the disease propagation starting from any initial
infected population size) may be difficult to prove, the difficulty increasing with the number d × D

of dimensions. This global asymptotic stability was studied for the propagation of a SIS disease in a
branching population (D = 2) [21] and for the one of a SEI disease (D = 3) [22]. Both studies assumed
d = 1 and we showed that the bifurcation parameter for the disease process was based on the comparison
of the capacity of infection and the capacity for the population to renew its susceptible population.

5.3. The Initial Population Size is Large and the Disease is Rare

Another approach for studying the asymptotic behavior of the process {Nn} is to study the asymptotic
behavior of the limit model assuming now that the disease is rare at the initial time, which forbids the
use of densities or probabilities as in Section 5.2. We present here such an approach generalizing the
case of the BSE propagation at the scale of a country [28].

Let us recall model (4): Nk
n =

∑d
l=1

∑D
h=1

∑Nh
n−l

i=1 Y
(h),k
n−l,n,i, where the {Y (h),k

n−l,n,i}i,l are mutually inde-
pendent given Fn−1 = {Nn−1, ...,N0} and the {Y (h),k

n−l,n,i}i are i.i.d. given Fn−1. We assume here that h
and k are health states H and K crossed with age a of the individual. For k = I × a, where I repre-
sents here the first time unit in the clinical state, then the number of new clinical cases aged a at time n

generated by an individual i with a delay of l time units, is thus defined:

Y
(h),I×a
n−l,n,i := 1{a>l}1{h=S×a−l}δ

E,I|h
2,n−l+1,n,i + 1{a=l}

Y
(h)
n−l+1,i∑
j=1

δ
E,I|(h)
1,n−l+1,n,i,j,

where we assume that the {δE,I|h
2,n−l+1,n,i}i are i.i.d. Bernoulli variables given Fn−1, the {δE,I|(h)

1,n−l+1,n,i,j}i,j
are i.i.d. Bernoulli variables given Fn−1, the {Y (h)

n−l+1,i}i are i.i.d. given Fn−1, and the {δE,I|h
2,n−l+1,n,i}i and

the {δE,I|(h)
1,n−l+1,n,i,j}i,j are mutually independent given Fn−1. Therefore the incidence of cases aged a at

time n is given by:

N I×a
n =

∑
l

[
1{a>l}

∑
h

Nh
n−l∑
i=1

[1{h=S×a−l}δ
E,I|h
2,n−l+1,n,i + 1{a=l}

∑
h

N
(h)
Y,n−l+1∑
i=1

δ
E,I|(h)
1,n−l+1,n,i,j

]
, (5)

where N
(h)
Y,k :=

∑Nh
k−1

i=1 Y
(h)
k,i .

Moreover, if a I individual may survive in this state a longer time than a time unit, the infection
process will depend on the total number of infectives including all the I individuals. In this case, let
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k = I tot × a, where I tot represents the clinical state (new or not), then

N Itot×a
n =

∑
l

NI×a−l
n−l∑
i=1

δ
I,Itot|I×a−l
n−l,n,i +N I×a

n (6)

where δ
I,Itot|I×a−l
n−l,n,i is a Bernoulli variable, equal to 1 if i survives in the state I from age a − l at n − l

to age a at n at least. Since the distribution of {N Itot×a
n }a,n is easily calculated from the distribution of

{N I×a
n }a,n and since clinical cases are generally rapidly isolated and then removed from the infection

process, and since moreover only the new cases are counted by surveillance systems, we will study here
the limit of N I×a

n given F ∗
n−1 := {{N I

k}k≤n−1, {Nk}k≤n−1, {NY,k}k≤n}, where NY,k =
∑

h N
(h)
Y,k . Of

course, expressions similar to (5) and (6) can be written for NE×a
n and NEtot×a

n .
Let δn−l,h(i) be the Bernoulli variable equal to 1 if i belongs to the h population at time n− l.

Proposition 6 Let us assume that limN0 N
H×a
n exist, for H ∈ {I, E, I tot, Etot} and all a, and let us

assume the following conditions, for l ≥ 2,

E(δn−l,S×a−l(i)δ
E,I|S×a−l
2,n−l+1,n,i|F

∗
n−1) = E(δn−l,S×a−l(i)δ

E,I|S×a−l
2,n−l+1,n,i|F

∗
n−l) =: p2,a,l|n−l(F

∗
n−l)∑

h

E(δn−l,h(i)δ
E,I|(h)
1,n−l+1,n,i,j|F

∗
n−1) =

∑
h

E(δn−l,h(i)δ
E,I|(h)
1,n−l+1,n,i,j|F

∗
n−l) =: p1,a,l|n−l(F

∗
n−l)

lim
N0

Nn−l p2,a,l|n−l(F
∗
n−l) = Ψ2,a,l|n−lN

I
n−l, lim

N0

NY,n−l+1 p1,a,l|n−l(F
∗
n−l) = Ψ1,a,l|n−lN

I
n−l,

where Ψ1,a,l|n−l and Ψ2,a,l|n−l are independent of F ∗
n−l. Then the limit process Ia,n :

D
= limN0 N

I×a
n of

incidence of cases aged a at time n is a single-type Markovian process of order d with a Poissonian
transition law:

Ia,n|In−1, In−2, ... ∼ Poisson(
d∑

l=1

Ψa,l|n−lIn−l), (7)

Ψa,l|n−l := 1{a>l}Ψ2,a,l|n−l + 1{a=l}Ψ1,a,l|n−l, (8)

where In :=
∑

a Ia,n. Moreover we may write In =
∑d

l=1

∑In−l

i=1 Yn−l,n,i, where the {Yn−l,n,i}i are i.i.d.
given Fn−1 = {In−1, In−2, ...} with Yn−l,n,1|Fn−1 ∼ Poisson(Ψl|n−l), Ψl|n−l =

∑
a Ψa,l|n−l, and the

{Yn−l,n,i}i,l are independent.

As an example of such an approach, we studied the propagation of the BSE in Great-Britain by a
general model of type (4). Since the time unit is large (one year), we used Proposition 6 with, for
l ≥ 2, F̃ ∗

n−l := {{N I
k}k≤n−l+1, {Nk}k≤n−l, {NY,k}k≤n−l+1} instead of F ∗

n−l. Then the assumptions of
this proposition 6 were satisfied under the following assumptions [28]:

1. The S and E individuals have the same time-homogeneous survival law {Sa}a;

2. There is no over-contamination during the incubation period or the clinical state;

3. The number of newborn animals Y (h)
l,i at each birth per individual at time l, is independent of l, i,

and of the health state h of i (but the health state of each newborn and his survival during the first
time unit may depend on h);
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4. The population is roughly stable: limN0 N1N
−1
0

a.s.
= 1;

5. The disease is rare at the initial time: limN0(N
E
0 +N I

0 )
2N−1

0
a.s.
= 0;

6. The probability for a given S to be infected at time k + 1 via the horizontal route of excretion,
follows a Reed-Frost’s type model, that is

P (i aged a at k , is infected at k + 1 by excretion|F ∗
k , i survives at k + 1)=

E
(
1− (1− θa,R

c

Nk

)N
Itot∗
k |F ∗

k

)
Nk large
≃ θa,R

cE(N
Itot∗
k |F ∗

k )

Nk

,

where N
Itot∗
k is the number of infectious animals at time k (including those in the latest stage of

their incubation period). We assume a similar expression for the infection via the horizontal route
concerning contaminated meat and bone meal produced from dead infectious animals.

Under these assumptions, then Ψl|n−l =
∑d

a=l

[
(θa−l,Rc

+ θa−l,Rϕn−l) + 1{a=l}pmat

]
P (a)Pinc.(l),

where θa−l,Rc

l and θa−l,R
l (expλ − 1)−1ϕn−l represent the mean numbers of new infected animals aged

a− l+1 per infective at time n− l+1 respectively via a horizontal route (excretion of alive animals and
slaughtered animals respectively), ϕn−l ∈ [0, 1] represents the efficiency at time n− l of the main current
control regulations: ϕk = 1, for k ≤ 1988, ϕk = ϕ, for k ∈ (1989, 1996), and ϕk = 0, for k ≥ 1997,
where ϕ represents the efficiency of the Meat and Bone Meal ban of July 1988, pmat. is the probability
for a newborn animal to be infected by his mother (maternal route), P (a) is the probability at each time
for an animal to have age a which may be expressed as a function of the survival distribution, and Pinc.(l)

is the probability for an infected animal to have an intrinsic incubation time equal to l (conditioned on
survival). So Ψl|n−l represents the mean number of new clinical cases produced with a delay l by a
clinical case of time n− l.

Let us assume that Ψl|n−l depends only on l. This is achieved by modeling the process on a period
with a constant control. Then {In} may be written as a multitype BGW branching process and therefore
results of Proposition 4 are valid for this process, replacing Φl by Ψl := Ψl|n−l. More precisely, let
Ĩn =: (In,1, In,2, ..., In,d) := (In, In−1, ..., In−(d−1)) and Fn−1 = {In−1, In−2, ..., I0}.

Let M̃ be defined by E(Ĩn|Fn−1) =: Ĩn−1M̃, where

M̃ =


Ψ1 1 0 ... 0

Ψ2 0 1 ... 0

... ...

Ψd−1 0 0 ... 1

Ψd 0 0 ... 0


Proposition 7 {Ĩn} is a multitype BGW branching process:

In,j =
d∑

l=1

In−1,l∑
i=1

Y
(l,j)
n,i ,

where, for j = 1, Y (l,1)
n,i := Yn−l,n,i, for j > 1, Y (j−1,j)

n,i := 1 and Y
(l,j)
n,i := 0, for l ̸= j − 1, and the

{Y (l,j)
n,i }i,l,j are independent given Fn−1 and Y

(l,1)
n,i |Ĩn−1 ∼ Poisson(Ψl).
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Moreover E(Ĩnξ
t) = Ĩ0ρ

nξt, where ρ and ξ are the first eigenvalue and corresponding eigenvector
with ξ1 = 1, of M̃, that is, M̃ξt = ρξt, implying that ξl = ρl−1

∑d
l′=l ρ

−l′Ψl′ , l = 1, ..., d.

Let s := (s1, .., sd), sd+1 := 1, f (l)(s) := E(s
Y

(l,1)
n,1

1 ...s
Y

(l,d)
n,1

d ), f(s) := (f (1)(s), ..., f (d)(s)).

Proposition 8 The generating function of {Ĩn}, Fn(s) := E(s
In,1

1 ...s
In,d

d ) is equal to

Fn(s) = Fn−1(f(s)) = Fn−2(f(f(s))) = ... = F0(fn(s)) := [fn,1(s)]
I0,1 ...[fn,d(s)]

I0,d ,

where fn(s) := f(fn−1(s)), and f (h)(s) = sh+1 exp(−Ψh(1− s1)).

As in Proposition 4, the bifurcation parameter of the process is given by the first eigenvalue ρ of M̃.

Proposition 9 ρ is solution of
∑d

l=1 Ψlρ
−l = 1, and ρ ≤ 1 is equivalent to R∞ ≤ 1, where R∞ =∑d

l=1 Ψl is the total mean number of new cases I who begin to be generated by a I during his first time
unit.

Let us assume from now on that Ψ1 > 0,...,Ψd > 0.

Proposition 10 1. P (limn In = 0 ∪ limn In = ∞) = 1;

2. ρ > 1 is equivalent to R∞ > 1 (supercritical case) which itself implies the existence of a positive
integrable random variable W such that limn→∞ In[I0ρ

n]−1 a.s.
= W , where P (limn In = ∞) =

P (W > 0). Moreover let us assume that I−l = clI0, l = 1, ..., d− 1, where cl is independent of I0.
Then limI0→∞ In[I0ρ

n]−1 a.s.
= limI0→∞ limn→∞ In[I0ρ

n]−1 a.s.
= 1.

3. ρ ≤ 1 is equivalent to R∞ ≤ 1 (subcritical and critical cases) which implies P (limn In = 0) = 1

(a.s. extinction).

Let us point out that the deterministic model derived from E(Ĩn|Ĩn−1) = Ĩn−1M̃ is defined by: X̃n :=

X̃n−1M̃, X̃0 := Ĩ0. Therefore X̃n = X̃0M̃
n and the bifurcation parameter of {X̃n} is ρ, but for ρ = 1,

X̃nξ
t = X̃0ξ

t (persistence), while limn Ĩn
a.s.
= 0 (extinction).

Let Text. be the (random) extinction time of {In}. Then the extinction probability is q := PĨ0
(limn Ĩn =

0) = PĨ0
(Text. < ∞).

Proposition 11 We have q = qI01 ...q
I−(d−1)

d , where qh = exp(−
∑d

l=h Ψl(1 − q1)), is the extinction
probability starting from Ĩ0 = (0, .., 0, 1, 0, ..., 0) (one individual of the h type), h = 1, ..., d.

As a consequence, in the particular case Ĩ0 = (I0, 0, ..., 0), then q = qI01 , where q1 is solution of the
equation: 1−q1 = 1−exp(−R∞(1−q1)). Thus, there exists a solution q1 ̸= 1 if R∞ > 1, implying that
q1 decreases as R∞ increases. Otherwise, if R∞ ≤ 1, then q1 = 1, implying qh = 1, for all h = 1, ..., d.

Let Gn := P (Text. ≤ n) = P (Ĩn = 0) (distribution of the extinction time Text.). Then according
to [1], p.187, if R∞ < 1, the distribution of the extinction time has an exponential form as n → ∞:
limn ρ

−n(1 − Gn) = Q(0)Ĩ0.ξ
t > 0 where Q(0) := limn ρ

−nζ.(1 − fn(0))
t, Mξt = ρξt, ζM = ρζ,

ξ.ζt = 1, ξ.1t = 1, and for h = 1, ..., d, ζh ∝ ρ−(h−1), ξh ∝ ρh−1
∑d

l=h ρ
−lΨl. So for n large enough,

P (Text. > n) ∝ ρn, but the coefficient of proportionality is not easy to calculate in practice. So we
investigate other ways to calculate Gn.
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Proposition 12 For any value of R∞, the extinction time distribution satisfies, for n ≥ d,

Gn=E(E(1{Ĩn=0}|Fn−d)) = E
(
exp(−

d−1∑
l=0

In−d−l

d∑
h=l+1

Ψh)
)
.

Let us notice that Gn decreases (and R∞ increases) as soon as at least one Ψl increases.
In addition, using Proposition 8, we get the following result, allowing an exact iterative computation

of {Gn}:

Proposition 13 For any value of R∞, the distribution {Gn} of Text. satisfies:

Gn =
d∏

l=2

[fn−1,l(s0)]
I0,l−1 exp

[
−

d∑
l=1

ΨlI0,l(1− (
Gn−1∏d

l=2[fn−1,l(s0)]I0,l
)1/I0,1)

]
,

where s0 = (0, ..., 0) and fn(s) = (fn,1(s), ..., fn,d(s)) is the offspring generating function (see Proposi-
tion 8). In the particular single-type case d = 1, Gn = [f(G

1/I0
n−1)]

I0 = exp[−ΨI0(1−G
1/I0
n−1)].

Let N :=
∑Text.−1

l=−(d−1) Il be the size of the tree generated by Ĩ0 (epidemic size). Let us recall that
the Borel-Tanner distribution with parameter (λ, l) is a (fλ, s

l) GLPD (Generalized Lagrange Proba-
bility Distribution), where fλ(s) = e−λ(1−s) is the generating function of the Poisson distribution with
parameter λ [7, 14] (see (2)).

Let g(s) := E(sN) be the generating function of N .

Proposition 14 Let us assume that
∑d

l=1 Ψl < 1 (subcritical case).

1. Let Ĩ0 := (I0, 0, ..., 0). Then g(s) = sI0fI0
∑d

l=1 Ψl
(g(s)), that is N ∼ Borel−Tanner(

∑d
l=1 Ψl, I0):

P (N = k) = exp(−k

d∑
l=1

Ψl)
I0
k

(k
∑d

l=1 Ψl)
k−I0

(k − I0)!
, k ≥ I0

and E(N) = I0(1−
∑d

l=1 Ψl)
−1, V ar(N) = I0(

∑d
l=1 Ψl)(1−

∑d
l=1 Ψl)

−3.

2. Let Ĩ0 := (I0, I−1, , ..., I−(d−1)). Then N
D
= ⊕d

h=1 ⊕I−(h−1)

i=1 (⊕Y0,h,i

j=1 Ni,j + 1), where Y0,h,i ∼
Poisson(

∑d
l=h Ψl), the {Ni,j} are i.i.d. with Ni,j ∼ Borel − Tanner(

∑d
l=1 Ψl, 1) and ⊕ means

the mutual independence, that is

E(sN) =
d∏

h=1

sI−(h−1)

[
f∑d

l=h Ψl
(g(s))

]I−(h−1)

,

and

E(N) =
d∑

h=1

I−(h−1)[
d∑

l=h

Ψl(1−
d∑

l=1

Ψl)
−1 + 1]

V ar(N) =
d∑

h=1

I−(h−1)

d∑
l=h

Ψl(1−
d∑

l=1

Ψl)
−3
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6. Discussion

We presented a general class of branching processes in discrete time for modeling in a stochastic way
some diseases propagation when the infected period is long respectively to the time frequency of births.
However when the transitions are population dependent, the long-term prediction of these processes is
an open problem in the general case. We indirectly solved this problem by studying the behavior of the
limit models, as the total initial population size increases to infinity, assuming at the initial time, either a
non-rare disease with a density-dependence assumption, or a rare disease.

Under the first assumption, since limn limN0 P̂n|Nn ̸= 0
P
= limN0 limn P̂n|Nn ̸= 0, we proved, for

a large N0, that the proportion of infected individuals in the whole population, P̂E
n + P̂ I

n , behaves, as
n → ∞, as the probability PE

n + P I
n for an individual in an infinite population to be infected. Under

the second assumption, we got a branching process on the incidence of cases which has the advantage to
correspond to the usual observations, to be rigorously built, starting from a detailed multitype branching
process {Nn} taking into account the different disease steps together with the population dynamic, to
keep the population variability, and to belong to the simple class of multitype BGW processes for which
many analytical results exist and that we used or generalized to this model. We calculated the distribution
of the extinction time and the distribution of the epidemic size. Moreover we proved that the bifurcation
parameter of this process was the total mean number of secondary cases who began to be generated by
one case during his first time unit.

This result would validate and generalize the current use in epidemiology of the reproductive number
as a bifurcation parameter [8, 17, 18], if we could establish that limn limN0 N

I
n = limN0 limnN

I
n. We

studied the left quantity, while the valid realistic quantity is in reality the right one. In fact this equality is
in general not true because the bell form of an epidemic can be modelled only by a population dependent
process. But for large N0, the stochastic limit model is a good approximation of the epidemic growth (in
the supercritical case), or of the epidemic decay (in the subcritical case). In any case, if N0 is too small,
the limit in N0 cannot be used and therefore the limit models developed here cannot be used.

Let us finally notice that we proved that in a size-dependent model on the clinical cases, then the
quantity determining the extinction of the process was the total mean number of secondary cases that
will be produced in the future by a case as the whole current population is infected (R∞), while the
corresponding quantity in the associate deterministic model derived from the conditional expectation of
the process is the total mean number of secondary cases that will be produced by a case as the whole
current population is susceptible (R0), which easily leads to the extinction of the process on one hand and
the persistence of the deterministic trajectory on the other hand. However, simulations of the single-type
process with population-dependent offsprings described in Section 3., showed that until its extinction,
the process roughly behaved as its deterministic counterpart and the extinction time strongly depends on
the parameters of R0. The extinction time roughly increases as R0 increases. So the greatest difference
between the behavior of this population-dependent process and its deterministic counterpart is obtained
when R0 > 1 with R0 ≃ 1. This is the generalization of the difference observed between the BGW
process and its deterministic counterpart, when R0(= ρ)= 1.
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