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Abstract: As the spread of bacterial resistance to clinically available antibiotics has become a global
public health problem, the scientific community has intensified its studies in the search for natural
compounds and their derivatives to combat bacterial resistance. In this work, a circadian study of the
essential oil extracted from the leaves of Croton piauhiensis (EOCP) was carried out. We also sought
to evaluate its antibacterial activity, modulatory potential and if it acts as a possible inhibitor of the
efflux pump by determining the minimum inhibitory concentration (MIC) and the association of
the oil in subinhibitory concentrations with the antibiotic ciprofloxacin and with ethidium bromide
(EtBr) against the strain of Staphylococcus aureus K2068 strain. The assays used to obtain the MIC
of the EOCP were performed by broth microdilution, while the efflux pump inhibitory test was
performed by the MIC modification method. According to the results, the circadian study showed
differences in the chemical composition and percentage of oils collected at different times of the day,
which can be attributed to environmental conditions. The main components of the EOCP were β-
caryophyllene (6 h—21.23%; 12 h—22.86% and 18 h—16.95%), followed by D-Limonene (6 h—13.27%
and 18 h—15.95%) and γ-Elemene (12 h)—12.61%). The EOCP collected at 12 h had a better profile in
reducing MIC, presenting antibacterial activity for Staphylococcus aureus and Escherichia coli. In the
efflux pump test, it was observed that the oil was able to potentiate the action of ethidium bromide
against the S. aureus K2068 strain, which can contribute to the prevention or treatment of infectious
diseases caused by multidrug-resistant (MDR) strains.

Keywords: antibiotic resistance; essential oil; circadian rhythm; efflux pump inhibitors; MepA

1. Introduction

Epidemiological studies point to the importance of further research to discover new
drugs or compounds with therapeutic properties [1] since bacterial resistance to clinically
used antibiotics and their spread throughout the world has become a global issue of public
health concern [2–5]. Thus, the search for efficient natural compounds with antimicrobial
activity and low toxicity has increased; therefore, plant secondary metabolites have become
a promising alternative to combat microbial infections [6–9].

Due to the increase in microbial resistance, traditionally used antibiotics have been
losing their effectiveness [10]. The Staphylococcus aureus is a worldwide worrying strain,
responsible for a high incidence of infections in hospital environments and which presents
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cross-resistance to other antibiotics [11]. Several mechanisms are involved with the emer-
gence and dissemination of resistance, making its control difficult; among them, an im-
portant mechanism is the presence of efflux pump proteins in bacterial membranes, and
examples of resistance to multiple drugs (MDR pumps) are NorA and MepA [12].

Efflux pumps act by active transport, causing the extrusion of one or several types
of antibiotics from the bacterial cytoplasm [13]. S. aureus bacteria have efflux pumps that
likely act as important factors in the development of high-level antibiotic resistance, not
only causing this resistance, but impacting virulence and even biofilm formation [14–16].
Thus, efflux pump inhibitors become an important therapeutic alternative in the treatment
of infectious diseases.

In view of these facts, the scientific community has intensified studies in the search
for more new effective drugs with a lower level of toxicity. Alternative ways as in vitro
methods in antimicrobial tests to evaluate the potential of extracts, essential oils and isolated
compounds have been widely discussed by science, revealing potential antimicrobial agents,
or even potentiating the activity of antibiotics used in clinical practice [17–20]. Thus, the
combination of products may provide antimicrobial efficacy at doses that were previously
ineffective due to the antimicrobial resistance presented by some strains [20–22].

Products of natural origin are important sources in the search for molecules with
antibacterial activities [23–25]. Furthermore, the combination of a natural compound with
an antibiotic could potentialize the antibacterial activity and/or reduce the dose necessary
for therapeutic success [24,26].

The Northeast region of Brazil has a botanical potential of high diversity, with empha-
sis on Croton (Euphorbiaceae), the second largest genus of the family, with approximately
1300 species distributed throughout the tropical and subtropical region [27]. Studies of
chemical and biological characterization of the activities of essential oils extracted from
Croton species have already been carried out [28,29].

In view of the diversity of species of this genus, we highlight the Croton piauhiensis
Müll., popularly known as “velame”, an endemic species of the Brazilian Northeast fre-
quently found in the Caatinga biome. It is used in folk medicine for stomachache, nausea,
vomiting and diarrhea [30].

In this context, the objective of this work was to carry out a circadian study of the
essential oils extracted from the leaves of C. piauhiensis (EOCP), determining their chemical
composition. Additionally, it will present, for the first time, a study of the direct antibacterial
and antibiotic-modifying activity of the EOCP against strains of Staphylococcus aureus and
Escherichia coli, as well as the evaluation of the oil in the inhibition of the efflux pump
against the strain of S. aureus K2068 (MepA overexpresser).

2. Materials and Methods
2.1. Experimental Design

The essential oil was extracted from the leaves of C. piauhiensis by hydrodistillation
and its constituents were identified by GC-MS, then the microbial resistance modulator
and inhibition of the efflux pump of the essential oils were verified (Figure 1).

2.2. Plant Material and Essential Oil Extraction

C. piauhiensis leaves were collected in Sobral, Ceará, Brazil at the flowering stage in
June 2017 at the experimental farm of the Acaraú Valley State University (03◦36′44′′ S
40◦18′37′′ W). Plant authentication was performed by Professor Daniela Santos Carneiro-
Torres, and a voucher specimen was deposited at the Universidade Estadual de Feira de
Santana (HUEFS) with the identification number #14989. The fresh leaves of C. piauhiensis
were subjected to hydrodistillation in a Clevenger type apparatus with 2 L of water for
2 h. After being filtered and dried over anhydrous sodium sulfate, the essential oils were
stored in sealed glass vials, which were maintained under refrigeration at 4 ◦C until GC-
MS. The following nomenclature was used for essential oils extracted from C. piauhiensis:
EO1 = Essential oil extracted at 6 h; EO2 = Essential oil extracted at 12 h; EO3 = Essential oil
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extracted at 18 h. GC-MS for the quantitative analysis was carried out on a Shimadzu GC-
17A gas chromatograph using a dimethylpolysiloxane DB-5 fused silica capillary column
(30 mm × 0.25 mm, film thickness 0.25 m). H2 was used as the carrier gas at a flow rate
of 1 mL/min and 30 psi inlet pressure; split, 1:30; temperature program: 35–180 ◦C at
4 ◦C/min, then heated at a rate of 17 ◦C/min to 280 ◦C and held isothermal for 10 min;
injector temperature, 250 ◦C; detector used in flame ionization detector (FID), detector
temperature, 250 ◦C.
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Figure 1. Extraction, characterization and antibacterial activity of the essential oils from C. piauhiensis.

2.3. Bacterial Strains

In the studies related to the modification of antibiotic activity, the standard bacterial
strains used were Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, while
the resistant strains were E. coli 06 and S. aureus 10. These strains were acquired from the
microbiology and molecular biology laboratory of the Regional University of Cariri-URCA.
In the efflux pump tests, the bacterial strain S. aureus K2068 strain, which overexpresses the
MepA efflux pump, provided by Professor S. Gibbons (University of London, London, UK)
and kept on blood agar (Laboratorios Difco Ltd.a., São Paulo, SP, Brazil). All strains before
the experiments, were grown for 24 h and kept in a bacteriological incubator (SANYO,
model MOC-17AC, Osaka, Japan) at 37 ◦C in a solid brain and heart infusion—BHI agar
(microMED—ISOFAR, Duque de Caxias RJ, Brazil) prepared at a concentration of 10%.

2.4. Drugs

To evaluate the potentiating activity, the antibiotics used were ampicillin (β-lactams)
(SIGMA-ALDRICH, St. Louis, MO, USA), norfloxacin (fluroquinolones) (SANDOZ, Cambé,
PR, Brazil) and gentamicin (aminoglycosides) (SIGMA-ALDRICH, St. Louis, MO, USA). A
total of 10 mg of each of the compounds used in the tests were weighed. To find out if the
EOCP has an efflux pump indicator, the pump inhibitor chlorpromazine (CPZ) (SANOFI,
São Paulo, SP, Brazil) and the beta-lactamase inhibitor sulbactam (SIGMA-ALDRICH,
St. Louis, MO, USA) were used. In tests with efflux pumps, the antibiotic ciprofloxacin
(GEOLAB, Anapolis, GO, Brazil) was used, which acts as a substrate for the bacterial strain
S. aureus K2068. In addition to antibiotics, ethidium bromide (EtBr) was used to check for
efflux pumps. EtBr when associated with standard pump inhibitors is a technique used in
several studies to investigate the presence or absence of efflux pumps [31,32]. Carbonyl-
m-chlorophenyl hydrazone cyanide (CCCP) (SIGMA-ALDRICH, St. Louis, MO, USA)
and EtBr (SIGMA-ALDRICH, St. Louis, MO, USA) were obtained from Sigma Aldrich
Co. Ltd. The antibiotic ciprofloxacin and EOCP were initially diluted in 0.5 mL of dimethyl
sulfoxide (DMSO) (LABSYNTH, Diadema, SP, Brazil) and then in sterile water. CPZ and
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EtBr solutions were dissolved in distilled and sterile water, and kept protected from light.
The CCCP was dissolved in a 1:1 methanol/water solution. All the solutions were prepared
on the basis of recommendations established in [33] and diluted in sterile water to reach a
final concentration of 1024 µg/mL.

2.5. Antibacterial Activity

Minimum inhibitory concentration (MIC) was determined for EOCP according to
the broth microdilution method proposed by with adaptations. The bacterial inoculum
was suspended in saline, corresponding to 0.5 of the McFarland scale, approximately
1.5 × 108 (CFU)/mL. Eppendorfs® microtubes (CRALPLAST, Cotia, SP, Brazil) were then
filled with 900 µL of BHI and 100 µL of the inoculum and the microdilution plates
(CRALPLAST, Cotia, SP, Brazil) were filled with 100 µL of the final solution with se-
rial dilutions up to the penultimate well of the plate (1:1), the latter being used as a growth
control. The final concentration of the EOCP samples ranged from 512 to 8 µg/mL. After
24 h of incubation, readings were performed by adding 20 µL of resazurin (7-hydroxy-10-
oxidophenoxazin-10-ium-3-one). Resazurin reagent (VETEC, Rio de Janeiro, RJ, Brazil)
was oxidized in the presence of the acid medium caused by bacterial growth, promoting
the color change of blue to pink [34]. The MIC was defined as the lowest concentration in
which no growth can be observed [35]. The tests were performed in triplicate.

2.6. Antibiotic Resistance Modulation Test

To evaluate the EOCP as a microbial resistance modulator, the MIC values of antimi-
crobials (ampicillin, norfloxacin and gentamycin) against multidrug-resistant bacterial
strains were determined in the presence of the compound in a sub-inhibitory concentration
(MIC/8), based on the methodology by Freitas and collaborators [36], and to evaluate a
possible efflux pump mechanism, was also used to control the antibiotics chlorpromazine
and sulbactam in a subinhibitory concentration. The distribution medium was prepared in
Eppendorf® tubes, each containing 10% BHI, 150 µL of the bacterial suspension of S. aureus
and E. coli and the oil, totaling 1.5 mL of solution. For the control, 1.5 mL of this solution
contained only 10% BHI and 150 µL of the microbial suspension. The microdilution plate
was filled with 100 µL of the solution followed by series microdilution (1:1) with the antibi-
otic until the penultimate well is filled. The plates were incubated at 37 ◦C for 24 h and
were analyzed in the same way as in the MIC test.

2.7. Evaluation of MepA Efflux Pump Inhibition

The inhibition of the efflux pump was tested using a sub-inhibitory concentration
(MIC/8) of the EOCP and using effluent pump inhibitors (EPI) to verify the effect on
the tested pump, following the methodology proposed by the Clinical and Laboratory
Standards Institute—CLSI [32]. The comparative study between the effects of the standard
inhibitors of the efflux pump was used, evaluating the ability of both to decrease the MIC
of EtBr and the antibiotic ciprofloxacin. The standard CCCP inhibitors and CPZ were
used to provide the expression of the MepA pump by the strain S. aureus (SA-K2068). In
the tests, 170 µL of each bacterial inoculum suspended in saline, corresponding to 0.5 of
the McFarland scale, approximately 1.5 × 108 (CFU)/mL, was added together with the
inhibitors and oil (MIC/8) and completed with BHI. These were then transferred to 96-well
microdilution plates to which 100 µL of antibiotic or EtBr were added in serial dilutions
(1:1) ranging from 512 to 0.5 µg/mL. The plates were incubated at 37 ◦C for 24 h and
bacterial growth was evaluated with resazurin.

2.8. Statistical Analysis

The tests were performed in triplicate, and the results were expressed as the geometric
mean. Central data and standard deviations were obtained according to the methodology
used by Ribeiro and collaborators [37], in microbiological analysis in microdilution plates.
Antibiotic potentiating activity data were analyzed using the GraphPad Prisma 6.01 statisti-
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cal program via a one-way ANOVA test. Then, a post hoc Bonferroni test was performed
considering statistically values significant (**** p < 0.0001; *** p < 0.001; ** p < 0.01 or * p <
0.05), and - non-significant values (ns) represented by p > 0.05.

3. Results
3.1. Chemical Composition of Essential Oil

The essential oils collected from the leaves of C. piauhiensis at 6 h, 12 h and 18 h were
analyzed by GC/MS (Table 1).

Table 1. Chemical composition of essential oils extracted from Croton piauhiensis leaves at 6 h, 12 h
and 18 h.

Compounds KI * Percent Composition (%)

6 h 12 h 18 h

α-Thujene 930 0.40 0.19 0.49
α-Pinene 939 2.95 1.59 2.84

Camphene 954 0.12 0.13
β-Pinene 979 0.28
β-Myrcene 990 3.55 2.19 3.00

α-Phellandrene 1002 0.44 0.77 0.77
2-Carene 1002 1.16

(+)-4-Carene 1011 0.91
α-terpinene 1017 0.27 0.22 0.36
p-Cymene 1024 4.04 2.08 2.70

β-Phellandrene 1029 0.34 0.56 1.00
D-Limonene 1029 13.27 9.14 15.95
Eucalyptol 1031 2.91 2.77 1.98
β-Ocimene 1037 1.12 0.72 1.08
γ-Terpinene 1059 5.56 3.68 4.60
Terpinolene 1088 1.45

Linalool 1096 1.18 1.16 1.24
Terpinen-4-ol 1177 0.63 0.74 1.01
α-Terpineol 1188 0.35 0.37 0.38

Isoamyl tiglate (E) 1192 0.14 0.15 0.15
Hexenyl valerate (Z) 1281 0.39 0.20 0.27

Bornyl acetate 1285 0.11
Cycloisolongifolene 1319 0.34 0.18
α-Terpinyl acetate 1349 0.20 0.18 0.27

Cyclosativene 1371 0.11
α-Copaene 1376 1.06 1.01 0.82
Isoledene 1376 0.22 0.27 0.20

β-Damascenone 1384 0.42 0.34
b-Cubebene 1388 0.13
b-Elemene 1390 2.10 2.43 1.66
Cyperene 1398 0.18

β-Caryophyllene 1419 21.23 22.86 16.95
β-copaene 1432 8.28 10.07 7.70

β-Gurjunene 1433 0.62 0.61 0.48
γ-Elemene 1436 6.59 12.61 9.59

Aromandendrene 1441 0.40 2.55 1.41
α-Humulene 1454 2.70 2.85 2.17
γ-Muurolene 1479 0.46 0.36 0.51
γ-Himachalene 1482 0.12
α-Amorphene 1484 0.11 0.59 0.19

Valencene 1496 0.06
α-Muurolene 1500 0.37 0.57 0.42

Cuparene 1504 0.16
δ-Cadinene 1523 2.18 2.83 2.13

Cadina-1,4-diene (trans) 1534 0.16 0.29 0.17



Nutraceuticals 2023, 3 596

Table 1. Cont.

Compounds KI * Percent Composition (%)

6 h 12 h 18 h

Germacrene B 1561 0.23 0.32
Palustrol 1568 0.25 0.21 0.27

Spathulenol 1578 3.08 2.5 2.59
Caryophyllene oxide 1583 0.11 0.10

Gleenol 1587 0.09
Viridiflorol 1592 0.79

Ledol 1602 0.28 0.35
α-epi-Muurolol 1642 0.15 0.67 4.03

Cubenol 1646 0.32 0.33 0.34
α-Cadinol 1654 3.92 3.95 1.22

Selin-11-en-4-α-ol 1659 0.14
Cembrene 1938 0.23

Elemol 1549 0.11
Pentadecanone 1697 0.17 0.19 0.19

Phytol 1943 0.23 0.35 0.30

Total 96.04 96.82 96.25
*: The most common index is the Kovats Index.

Analysis of the chromatograms (Supplementary Materials) allowed the identification
of 48 constituents (94.04%) in the essential oil extracted at 6 h. To the essential oil extracted at
12 h, 43 constituents (96.82%) were identified. While in the oil extracted at 18 h, 51 essential
constituents (96.25%) were identified. With the analysis of the circadian variation in essen-
tial oils of C. piauhiensis leaves, a production of different chemical constituents in different
proportions was observed, which was probably affected by climatic factors. The percentage
of the main components of the EOCP were D-Limonene (6 h—13.27%, 12 h—9.14% and
18 h—15.95%), β-caryophyllene (6 h—21.23%; 12 h—22.86% and 18 h—16.95%), followed
by β-copaene (6 h—8.28%, 12 h—10.07% and 18 h—7.70%) and γ-Elemene (6 h—6.59%,
12 h—12.61%, 18 h—9.59%) (Figure 2).
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3.2. Direct Antibacterial Activity by Minimum Inhibitory Concentration (MIC)

Using this value as a cutoff point, the essential oil of C. piauhiensis (EOCP) showed
antibacterial activity by reducing the concentration of MIC against some standard and
multidrug resistant strains of Staphylococcus aureus (SA) and Escherichia. coli (EC). The MIC
obtained for each strain is indicated in the table below (Table 2).

As verified in our study, the EOCP collected at 6 h showed MIC = 813 µg/mL to
S. aureus 10 e MIC = 406 µg/mL to E. coli ATCC. On the other hand, tests performed with
the EOCP 12 h showed greater bacterial sensitivity with a significant reduction in the MIC
value for all S. aureus and E. coli strains tested. This result is probably related to the major
constituent β-caryophyllene, which at this time showed a chemical percentage (22.86%).
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The oil collected at 18 h had a subinhibitory concentration of 645 µg/mL for S. aureus ATCC
and 16 µg/mL for E. coli ATCC.

Table 2. Minimum Inhibitory Concentration (MIC) of the circadian cycle of Croton piauhiensis essential
oil (EOCP) against standard and multidrug-resistant bacterial strains.

Strains

EOCP (µg/mL)

6 h 12 h 18 h

MIC MIC MIC

Staphylococcus aureus 10—SA10 813 256 ≥1024
Staphylococcus aureus ATCC 25923—SA ATCC ≥1024 25 645

Escherichia coli 06—EC06 ≥1024 323 ≥1024
Escherichia coli ATCC 25922—EC ATCC 406 128 16

MIC: Minimum inhibitory concentration.

3.3. Modulatory-Antibiotic Activity of EOCP

In the antibiotic activity modification test, three different classes of antibiotics were
used to test the modulating effect: ampicillin (beta-lactam), norfloxacin (fluoroquinolone
class) and gentamicin (aminoglycoside). The effect was tested in two models using
multidrug-resistant bacteria, Gram-positive (S. aureus) and Gram-negative (E. coli). The an-
tibiotics were used in the presence and absence of the EOCP, we also tested the association
of the antibiotic ampicillin with the efflux pump inhibitor sulbactam, and for the antibiotics
norfloxacin and gentamicin, the efflux pump inhibitor chlorpromazine.

In the test with ampicillin (Figure 3) when the antibiotic is associated, the substance
EOCP is observed to potentiate antibiotic activity with statistically significant values with
p < 0.0001 for the three oils tested against S. aureus and E. coli strains.
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The antibiotic norfloxacin (Figure 4) with the EOCP showed to potentiate the antibiotic
effect against S. aureus, for the 6 h and 18 h oil with statistically significant values p < 0.0001
and for the 12 h oil p < 0.05.
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When the antibiotic used was gentamicin (Figure 5), we observed the relevant results
only in association with EOCP collected at 12 h with a potentiation of the antibiotic action
against the S. aureus bacteria of p < 0.0001.
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3.4. Efflux Pump in Staphylococcus aureus K2068, Carrier of the MepA Gene

To carry out the efflux pump tests, the OECP collected at 12 h (EO2) was used. At this
time of collection, the highest concentration of the majority constituent, βcaryophyllene,
was obtained, in addition to showing a significant reduction in the MIC value in bacterial
activity tests, proving to be effective against all strains tested.

EOCP did not have an antibacterial effect on the tested strain SA K2068 when asso-
ciated with the antibiotic ciprofloxacin (Figure 6). However, there was a reduction in the
MIC of the antibiotic when used in conjunction with the standard efflux pump inhibitors,
CCCP and CPZ, both with statistically significant values p < 0.0001, thus suggesting that
the oil in question may be acting on the resistance mechanism of the bacterium.
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Figure 6. Evaluation of the MIC of ciprofloxacin alone and in association with standard inhibitors
(CCCP and CPZ) and EOCP collected 12 h (EO2) against the strain S. aureus K2068 (SA-K2068) that
overexpresses MepA.

When the oil was used in association with EtBr (Figure 7), it caused a reduction in MIC
showing that EOCP potentiated the action of bromide against SA-K2068 (reduction from
323 µg/mL to 256 µg/mL). A similar result was also observed when using the standard
efflux pump inhibitors CCCP and CPZ, which potentiated the action of bromide with
p < 0.0001 and p < 0.001, respectively. The importance demonstrated by the reduction of
the MIC of EtBr in association with the standard inhibitors indicates the expression of the
MepA efflux pump by the strain tested.
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4. Discussion

Essential oils are acquired from the secondary metabolism of plants, being composed
mainly of monoterpenes, sesquiterpenes and phenylpropanoids [38]; its chemical composi-
tion is determined by genetic factors, however, other factors can change its composition.
Factors such as temperature, rainfall, type of soil, fertilization, use of pesticides, seasons of
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the year, etc., act with varying degrees of intensity, mediating the quantity and nature of
the substances produced [39,40]. Radiation is an important factor that can directly interfere
with plant growth and development, through photosynthesis, modulation of photoperiod
and light quality. Variations in light intensity and temperature may occur throughout the
day, acting directly on primary processes, such as photosynthesis and respiration, and may
indirectly influence the production of secondary metabolites, including the constituents of
essential oil, whose synthesis depends on products of primary metabolism. The intensity of
light can also alter the production of essential oil through the activation of photosensitive
enzymes involved in the mevalonic acid pathway, the precursor of terpenes, which are
chemical constituents of essences. In general, essential oil content tends to increase with
increasing temperature, due to the increase in the number of oil glands per unit of leaf
area; however, in some cases, it may decrease due to losses, which, in turn, are due to
volatilization [40].

Studies carried out with β-caryophyllene showed bactericidal activity against the
strain of Bacillus cereus [41]. In order for minimum inhibitory concentration (MIC) values to
be considered clinically relevant, they cannot present concentrations above 1000 µg/mL, as
it may be impractical to extrapolate the dose from in vitro activity to that which would be
equivalent to adult human size [42].

In the scientific literature, the C. piauhiensis species is rarely reported, but some studies
have already begun to be carried out and corroborate our results. Studies carried out to
evaluate the development of the biofilm formed by Staphylococcus aureus ATCC 25923 and
Pseudomonas aeruginosa ATCC 10145 showed that the essential oils of C. piauhiensis and
Vitex gardneriana were able to inhibit microbial growth in both forms of bacterial life and
also have antioxidant action action [26].

The essential oil of C. piauhiensis showed larvicidal activity against Aedes aegypti
with CL50 = 336.8 µg/mL (oil extracted 8 h), CL50 = 283.9 µg/mL (oil extracted 12 h),
and CL50 = 252.5 µg/mL (oil extracted 17 h). O flavonoid kaempferol 7-O-β-D-(6′′-O-
cumaroyl)-glucopyranoside isolated from C. piauhiensis leaves showed a synergistic effect
potentiating the action of the aminoglycosides gentamicin and amikacin against strains of
Staphylococcus aureus 10 e Escherichia coli 06 [43].

From the analysis of ampicillin with sulbactam we can infer that both S. aureus and
E. coli have an enzymatic mechanism against ampicillin expressing significant values of
p < 0.0001. Ampicillin, as β-lactam, has a mechanism of action that acts outside the cell,
preventing cross-bridge formation in the cell wall. Norfloxacin and gentamicin antibiotics
that act inside the bacterial cell were analyzed with chlorpromazine control, as the bacterial
resistance mechanism for these antibiotics is different. While ampicillin is tested with
sulbactam to see the enzymatic mechanism, norfloxacin and gentamicin are tested with
chlorpromazine to see if the bacteria are shedding the antibiotics.

To E. coli bacteria, we also observed the potentiation of the antibiotic except for the
18 h oil, which was not significant. Analyzing the norfloxacin test in the presence of the
inhibitor chlorpromazine, it is observed that S. aureus and E. coli strains may present an
efflux pump mechanism for this antibiotic with p < 0.05.

The antibiotic norfloxacin, fluoroquinolones, inhibit the bacterial DNA gyrase enzyme,
which cuts double-stranded DNA, in Gram-positive bacteria; the main target of action
is topoisomerase IV, which cuts and separates the daughter strand of DNA after DNA
replication. A higher affinity for this enzyme may confer greater potency against Gram-
positive bacteria [44].

However, we did not obtain significant results for the E. coli bacteria. The loss of
efficacy in this bacterial model can be explained by structural differences between Gram-
positive and Gram-negative bacteria, which alter permeability and by drug interaction with
their targets [45]. We also had no significant results for the pump inhibitor chlorpromazine
in combination with gentamicin.

Aminoglycosides, such as gentamicin, are potent bactericides that inhibit protein
synthesis by binding to the 30S subunit of the bacterial ribosome. Several resistance
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mechanisms have been observed in microorganisms against this class of molecules [46,47].
In the general analysis of the activity with the inhibitor sulbactam, the S. aureus and E. coli
strains showed an enzymatic mechanism against ampicillin.

The antibiotic norfloxacin in the presence of chlorpromazine indicates a possible efflux
pump mechanism against the strains tested, but gentamicin with chlorpromazine did not
show significant results. Efflux pump inhibitor evaluation was performed against the
mutant multidrug resistant (MDR) strain S. aureus K2068 (SA-K2068), which features the
MepA efflux pump. To assess efflux pump reversal, subinhibitory concentrations (MIC/8)
of EOCP and standard pump inhibitors, the carbonyl-m-chlorophenyl hydrazone cyanide
(CCCP) and chlorpromazine (CPZ) were used, each with its own inhibition mechanism,
and it was verified if they were able to modulate the action of ciprofloxacin and ethidium
bromide (EtBr), substrate for the mentioned efflux pump.

The CCCP acts by causing a disturbance in the electrochemical potential due to a
decrease in the production of adenosine triphosphate (ATP) leading to inhibition of the
efflux pump, while chlorpromazine acts via competitive inhibition of antibiotics interacting
directly with the efflux pump, inhibiting them [48]. Thus, the presence of the efflux pump
will be visualized when the minimum inhibitory concentration of EtBr associated with a
standard inhibitor is lower than the MIC of the bromide control, indicating the inability of
the bacterial cell to utilize the efflux mechanism. Efflux pump studies were performed with
the essential oil of Piper caldense (OEPC); this work corroborates our research, showing that
it is possible to observe the presence of an efflux pump using essential oil even if it is a
mixture of chemical compounds. OEPC presented caryophyllene oxide (11.9%) as the main
constituent found, followed by δ-cadinene (9.6%) and spathulenol (9.1%). When the oil
was combined with norfloxacin and ethidium bromide, it reduced the MIC values against
S. aureus strains (SA1199B, K2068 and K4100), acting as inhibitors of NorA, MepA and
QacC [49].

We showed that both CCCP and CPZ associated with ethidium bromide had lower
MICs than the control, showing the presence of efflux pumps. Because the only mechanism
used by bacteria to resist the action of EtBr is the efflux pump with distinct mechanisms of
expulsion of intracellular bromide [50]. Bromide has antibiotic activity due to its character-
istic of intercalating DNA and has been used to evaluate the potential inhibitory activity of
the effux pump of natural products, isolated phytochemicals and synthetic compounds [51].

Thus, considering the role of efflux pumps in innate and evolved resistance, they
have been targets for the discovery and development of antimicrobial adjuvants being of
great importance to research new substances that have pump inhibitors and are able to
reduce the incidence of infectious diseases. Thus, we can conclude that EOCP is a source
of phytochemicals that act as efflux pump inhibitors in the multidrug-resistant strain of
SA-K2068 (MepA overexpresses).

5. Conclusions

The circadian study of C. piauhiensis essential oils allowed us to conclude that the
volatile composition of the vegetable was influenced by environmental variables (light,
temperature and humidity) throughout the day, varying its chemical composition. The
main components found were β-Caryophyllene, D-Limonene, γ-Elemene. In the activity
test, the EOCP collected at 12 h showed a better profile in the reduction of MIC showing
antibacterial activity for Staphylococcus aureus and Escherichia coli. When the modulating
power of the oil was evaluated in association with different classes of antibiotics, it was
possible to observe a potentiation of the activity with ampicillin and norfloxacin, both for
S. aureus and E. coli and in the tests carried out with gentamicin only the EOCP 12 h showed
potentiation of the antibiotic against S. aureus and non-significant results for the bacterium
E. coli. In addition, EOCP was able to modulate ethidium bromide resistance against the
bacterium SA-K2068, and indicates the presence of compounds acting as MepA inhibitors.
These data provide information for a potential use of the oil as an efflux pump inhibitor
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of the studied strain, which may contribute to the prevention or treatment of infectious
diseases caused by multidrug-resistant S. aureus.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nutraceuticals3040042/s1. Figure S1: chromatogram of Croton piauhiensis essential oil collected
at 6:00 a.m., Figure S2: chromatogram of Croton piauhiensis essential oil collected at 12:00 a.m.,
Figure S3: chromatogram of Croton piauhiensis essential oil collected at 18:00 p.m.
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