
S87Current Oncology, Vol. 27, Supp. 2, April 2020 © 2020 Multimed Inc.

REVIEW ARTICLE

A review of cancer immunotherapy: 
from the past, to the present, to the future
K. Esfahani md msc,* L. Roudaia md,* N. Buhlaiga md,* S.V. Del Rincon phd,† N. Papneja md,*  
and W.H. Miller Jr md phd*

ABSTRACT

Compared with previous standards of care (including chemotherapy, radiotherapy, and surgery), cancer immuno-
therapy has brought significant improvements for patients in terms of survival and quality of life. Immunotherapy 
has now firmly established itself as a novel pillar of cancer care, from the metastatic stage to the adjuvant and 
neoadjuvant settings in numerous cancer types. In this review article, we highlight how the history of cancer immu-
notherapy paved the way for discoveries that are now part of the standard of care. We also highlight the current 
pitfalls and limitations of cancer checkpoint immunotherapy and how novel research in the fields of personalized 
cancer vaccines, autoimmunity, the microbiome, the tumour microenvironment, and metabolomics is aiming to 
solve those challenges.
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INTRODUCTION

The field of immuno-oncology has been transformational 
in the care of cancer patients. William B. Coley, now widely 
accepted as the father of immunotherapy, first attempted 
to harness the power of the immune system for treating 
cancer in the late 19th century. As an orthopedic surgeon 
who operated on patients with bone sarcomas, he noticed 
that some patients with significant postoperative wound 
infections—a common occurrence when aseptic technique 
had not yet been optimized—would undergo spontaneous 
regression of their unresected tumours. Beginning in 1891, 
Coley injected more than a thousand patients with mix-
tures of live and inactivated bacteria such as Streptococcus 
pyogenes and Serratia marcescens with the hope of inducing 
sepsis and strong immune and antitumour responses. His 
cocktail of bacteria became widely known as “Coley’s toxin” 
and represents the first documented active cancer immu-
notherapy intervention1. Coley achieved durable complete 
remissions in several types of malignancies, including 
sarcoma, lymphoma, and testicular carcinoma. However, 
the lack of a known mechanism of action for Coley’s toxin 
and the risks of deliberately infecting cancer patients with 
pathogenic bacteria caused oncologists to adopt surgery 
and radiotherapy as alternative standard treatments early 
in the 20th century2.

It would take more than half a century before a better 
understanding of the key mediators of sepsis would shed 
some light on the mechanisms of action of Coley’s toxin. 
Those mediators constitute a cytokine family including 
interleukins, interferons, and chemokines3. Once again, 
the race was on to apply those novel discoveries to cancer 
therapy4. Physicians and researchers achieved modest 
success with this novel approach, occasionally inducing 
clinical remissions with high-dose interleukin 2 (il-2) in 
metastatic renal cell carcinoma5 and debatable respons-
es with interferon in stages iii and iv melanoma6. Those 
modest successes were often counterbalanced with signifi-
cant adverse events. Although novel methods of delivery 
such as pegylation would abate some of the toxicities, the 
sporadic and unpredictable immune responses seen with 
those therapies meant that only a small, carefully selected 
subgroup of cancer patients would benefit.

The next revolutionary wave in cancer immunother-
apy came with the better understanding of the process 
of immune surveillance, by which innate immune cells 
eliminate cancer cells. The recent discovery of T cell im-
mune checkpoints, such as ctla-4 and PD-1, propelled the 
field of immuno-oncology into its current era and saw the 
awarding of the 2018 Nobel prize in Physiology or Medicine 
to Drs. Allison and Honjo. Those hardwired signals have the 
crucial task of maintaining a fine balance between immune 
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surveillance against foreign pathogens or abnormal cells 
and autoimmunity. Blocking those T cell surface recep-
tors results in enhanced autoimmunity that induces an 
immune response against tumours, but can also increase 
the chance of autoimmune reactions.

In this review article, we highlight the current stan-
dards of care in cancer immunotherapy, with a strong focus 
on immune checkpoint inhibitors (icis), their limitations 
and pitfalls, and promising novel approaches.

REVIEW

Overview of Checkpoint Inhibitors
Cancer immuno-editing is the process by which various 
immune system components protect the host against 
primary tumour development or enhance tumour escape, 
or both, either by sculpting tumour immunogenicity or 
attenuating antitumour immune responses7. The pro-
cess is tightly regulated by immune checkpoints, which 
are immune-cell surface receptors controlling either 
the activation or the inhibition of immune responses. 
Activation of the immune system is, on the one hand, the 
desired outcome to achieve tumour control, but on the 
other hand, responsible for autoimmunity. The discovery 
and development of monoclonal antibodies against the 
inhibitory immune checkpoints ctla-4 and PD-1 have 
resulted in dramatic antitumour responses by the up-
regulation of immune activation at various stages of the 
immune cycle.

Immune checkpoint inhibitor therapies are now widely 
indicated in numerous cancer types (Table i). Furthermore, 

numerous ongoing clinical trials are assessing the poten-
tial of other agonistic or inhibitory checkpoints to affect 
tumour-related outcomes (Table ii). The checkpoints are 
not equal in their potential. For example, the agonistic 
OX40 antibody has modest clinical activity, but the CD28 
antibody—even at very subtherapeutic doses—resulted 
in massive cytokine syndrome and the intensive-care 
hospitalization of the first 6 healthy volunteers treated8. In 
that light, finding the right combination of ici therapy to 
induce the optimal amount of immune activation remains 
an active area of clinical research.

Modulating and Predicting Immune Toxicity 
for Better Efficacy
Immunotherapies are often limited by their immune- 
related adverse events (iraes), an immune activation and 
inflammatory response against the host’s healthy tissues. 
Immune activation against the host’s tumour is the desired 
outcome, but iraes are challenging to predict, diagnose, and 
treat. In the setting of metastatic melanoma, the addition 
of a ctla-4 antibody to PD-1 blockade is associated with 
only an incremental increase in survival, but at the cost 
of more than double the rate of serious iraes9. A recent 
meta-analysis reported a fatality rate of up to 1 patient in 
every 77 treated using an ici combination10. For specific 
iraes, such as immune-related myocarditis, the mortality 
rate is as high as 50% in treated patients11. Numerous 
predictors of iraes have been proposed (baseline lymph-
openia and eosinophilia, B cell changes, T cell repertoire, 
circulating il-17, and gut microbiota changes12–17), but few 
have been prospectively validated.

TABLE I Indications for immune checkpoint inhibitors in advanced-stage cancers, as currently approved by Health Canadaa

Agent Melanoma NSCLC RCC SCHNN Bladder Merkel 
cell 

carcinoma

Hepato- 
cellular 

carcinoma

Hodgkin 
lymphoma

CTLA-4 inhibitor

Ipilimumab All lines 
of Tx

PD-1 inhibitors

Pembrolizumab All lines 
of Tx

All lines 
of Tx

2nd line Tx After ASCT

Nivolumab All lines 
of Tx

2nd line Tx 2nd line Tx 2nd line Tx 2nd line Tx After ASCT

PD-L1 inhibitors

Atezolizumab 2nd line Tx 2nd line Tx

Avelumab 2nd line Tx

Durvalumab After CTxRT 
in stage III  

disease

2nd line Tx

Combination CTLA-4 
and PD-1 inhibition

Ipilimumab–nivolumab 1st line Tx 1st line Tx

a Obtained 25 May 2019 from Health Canada’s Drug Product Database (https://www.canada.ca/en/health-canada/services/drugs-health-products/
drug-products/drug-product-database.html).

NSCLC = non-small-cell lung cancer; RCC = renal cell carcinoma (clear cell); SCCHN = squamous-cell carcinoma of head and neck; Tx = treatment; 
ASCT = autologous stem-cell transplantation; CTxRT = chemoradiotherapy.

https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/drug-product-database.html
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/drug-product-database.html
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TABLE II Agonistic and antagonistic immune checkpoint modulators currently under investigation

Target Drug Company Clinical 
phase

Costimulatory or agonist antibodies

4-1BB (CD137) Utomilumab Pfizer Canada, Kirkland, QC I
Urelumab Bristol–Myers Squibb, New York, NY, U.S.A. I/II
INBRX-105 Inhibrx, San Diego, CA, U.S.A. I

ICOS (CD278) GSK3359609 GlaxoSmithKline, Mississauga, ON I/II
JTX-2011 Jounce Therapeutics, Cambridge, MA, U.S.A. I/II

GITR (CD357) TRX 518-001 Leap Therapeutics, Cambridge, MA, U.S.A. I/II
MK-4166 Merck, Kenilworth, NJ, U.S.A. I

BMS-986156 Bristol–Myers Squibb, New York, NY, U.S.A. I/II
INCAGN01876 Incyte Biosciences International, Wilmington, DE, U.S.A. I/II

CD70 ARGX-110 (cusatuzumab) Argenx, Breda, Netherlands I/II

CD27 CDX-1127 (varlilumab) Celldex Therapeutics, Hampton, NJ, U.S.A. I/II

OX40 (CD134) PF-0451860 Pfizer Canada, Kirkland, QC I/II
MEDI0562/6469/6383 AstraZeneca Canada, Mississauga, ON I

GSK3174998 GlaxoSmithKline, Mississauga, ON I
BMS-986178 Bristol–Myers Squibb, New York, NY, U.S.A. I/II

CD40 CP870893 Pfizer Canada, Kirkland, QC I
APX005M Bristol–Myers Squibb, New York, NY, U.S.A. I/II

Co-inhibitory or antagonist antibodies

VISTA (B7-H5) CA-170 Curis, Lexington, MA, U.S.A. I

CCR4 (CD194) Mogamulizumab Kyowa Kirin, Tokyo, Japan I/II

B7-H3 (CD276) MGD009 Novartis Pharmaceutical, Ottawa, ON I
8H9 Y-mAbs Therapeutics, New York, NY, U.S.A. I

TIM-3 TSR-022 Tesaro, Waltham, MA, U.S.A. I
MBG453 Novartis Pharmaceutical, Ottawa, ON I/II
Sym023 Symphogen A/S, Ballerup, Denmark I

MEDI9447 (oleclumab) AstraZeneca Canada, Mississauga, ON I

LAG-3 (CD223) BMS-986016 (relatlimab) Bristol–Myers Squibb, New York, NY, U.S.A. I/II
IMP321 (eftilagimod alpha) Prima BioMed, Sydney, Australia II

LAG525 Novartis Pharmaceutical, Ottawa, ON I/II

KIR (2DL1–3) Lirilumab Bristol–Myers Squibb, New York, NY, U.S.A. I/II

IDO-1,2 Indoximod NewLink Genetics, Ames, IA, U.S.A. II
Epacadostat Incyte Biosciences International, Wilmington, DE, U.S.A. II

TIGIT Tislelizumab BeiGene, Beijing, P.R.C. I/II/III
BMS-986207 Bristol–Myers Squibb, New York, NY, U.S.A. I/II
MTIG7192A Genentech, San Francisco, CA, U.S.A. II/III

AB154 Arcus Biosciences, Hayward, CA, U.S.A. I/II

A2aR Ciforadenant Corvus Pharmaceuticals, Burlingame, CA, U.S.A. I

Transforming growth factor β M7824 EMD Serono, Rockland, MA, U.S.A. I/II
Galunisertib Eli Lilly and Company, Indianapolis, IN, U.S.A. II

CD47 TTI-621 Trillium Therapeutics, Mississauga, ON I

CD73 MEDI9447 (oleclumab) AstraZeneca Canada, Mississauga, ON I
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For serious iraes, guidelines recommend broad immu-
nosuppression consisting of corticosteroids, followed by 
one or more biologics (tumour necrosis factor inhibitors) 
or T cell suppressants (such as mycophenolate mofetil)18–20. 
Very little prospective knowledge has been developed about 
the consequences of those therapies for cancer-related 
outcomes. An analysis of the baseline use of corticosteroids 
in patients with lung cancer reported an association with 
worse survival outcomes21. Similarly, the use of high-dose 
steroids in the setting of immune-related hypophysitis in 
patients with metastatic melanoma was also associated 
with worse survival22. On the other hand, the use of corti-
costeroids in other clinical settings in which patients ex-
perience iraes was not associated with a reduced response 
to ici therapy or with survival23. More studies are needed 
to assess the optimal immunosuppression regimen to be 
used with icis to avoid impairing their efficacy. The use of 
mtor (mechanistic target of rapamycin) inhibitors shows 
promise to abate toxicities without impairing ici efficacy in 
the specific setting of organ transplantation24–26.

Modulating cytokines in the setting of an ici is a dual- 
edged sword. Many of those soluble factors, such as tu-
mour necrosis factor α and il-17, are called “pleiotropic 
cytokines” for the dual roles they play in immunity: on the 
one hand, they promote tumour surveillance; on the other 
hand, they can be key mediators of autoimmune reactions. 
As discussed earlier, circulating il-17 is a biomarker for the 
prediction of ici-induced colitis16. The addition of the il-17 
monoclonal antibody secukinumab for the treatment of 
immune-related colitis and psoriasis, while effective at 
abating immune toxicities, has been reported to induce 
tumour escape27. The same effect has not yet been reported 
for tumour necrosis factor α or il-6. Tumour necrosis factor 
blockade seems not only to be safe for the treatment of 
ici-related colitis, but in animal models of melanoma, also 
adds synergistic antitumour efficacy to PD-1 inhibition28,29. 
Those early observations collectively highlight the import-

ance of further study of the role of various cytokines and 
immune cells in the pathogenesis of iraes.

A New Era for Tumour-Specific Vaccines  
in Combination with ICIs
Despite promising results with icis, single-agent PD-1 inhib-
itor has an objective response rate that varies from almost 
nonexistent in pancreatic cancer and microsatellite-stable 
colonic adenocarcinoma, to an average of 15%–30% in most 
other tumour types, but 50%–80% in melanoma, Hodgkin 
lymphoma, squamous-cell carcinoma of the skin, and 
Merkel cell carcinoma. The addition of an anti–ctla-4 agent 
increases the response rate, but comes with a significantly 
higher toxicity rate. A rational approach to achieving a 
higher  response rate without increasing autoimmunity has 
been to combine an ici with a therapy that can sensitize the 
host’s immune system to the tumour in advance. Recent 
studies have shown that personalized neoantigen-based 
tumour-specific vaccines hold considerable promise.

Unlike hematologic malignancies, in which a com-
mon antigen is uniformly expressed on the surface of 
all malignant cells, making them amenable to targeted 
therapies such as therapy with chimeric antigen receptor 
T cells, solid tumours either lack such an antigen or un-
dergo mutations under natural selection when exposed to 
therapeutic interventions such as monoclonal antibodies. 
Traditional cancer vaccines have failed for a number of 
potential reasons, including improper selection of a target 
antigen, lack of immunogenicity, or inadequate patient 
selection. In the new era of cancer vaccines, efficacy relies 
on computational pipelines geared to identify personal 
candidate neoantigens in real time. Comprehensive mu-
tation analysis is performed by whole-exome sequencing, 
and based on affinity predictions, neo-epitopes encoded 
by somatic mutations in the tumour are selected given 
their probability of being presented by the individual’s 
major histocompatibility class molecules30–34. One of the 

TABLE II Continued

Target Drug Company Clinical 
phase

Other pathways

Toll-like receptors Poly-ICIC Ludwig Institute for Cancer Research, New York, NY, U.S.A. I
MGN1703 (lefitolimod) Mologen, Berlin, Germany I

SD-101 Dynavax Technologies Corporation, Emeryville, CA, U.S.A. I/II
DSP-0509 Boston Biomedical, Cambridge, MA, U.S.A. I/II

Rintatolimod Hemispherx Biopharma, Philadelphia, PA, U.S.A. II
CMP-001 Checkmate Pharmaceuticals, Cambridge, MA, U.S.A. II

Interleukin 2 receptor NKTR-214 Nektar Therapeutics, San Francisco, CA, U.S.A. I/II/III
RO6874281 Hoffmann–La Roche, Basel, Switzerland I/II
THOR-707 Synthorx, La Jolla, CA, U.S.A. I/II

Arginase inhibitors CB-1158 Incyte Corporation, Wilmington, DE, U.S.A. I/II

Oncolytic peptides LTX-315 Lytix Biopharma, Oslo, Norway II

Interleukin 10 AM0010 (pegilodecakin) Eli Lilly and Company, Indianapolis, IN, U.S.A. I/II

Poly-ICLC = polyinosinic-polycytidylic acid–poly–L-lysine carboxymethylcellulose.
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most commonly used prediction algorithms for major his-
tocompatibility class i binding, NetMHCpan (DTU Health 
Tech, Technical University of Denmark, Kongens Lyngby, 
Denmark), relies on state-of-the-art neural networks, put-
ting the spotlight on the current power of bioinformatics 
for guiding precision immuno-oncology35. The concept has 
been translated to multiple phase i clinical trials evaluat-
ing neoantigen-based vaccines36–38. Other clinical trials 
are testing this novel vaccination strategy in combination 
with ipilimumab (NCT02950766 at https://ClinicalTrials.
gov/) or nivolumab (NCT02897765), or as a personalized 
messenger rna mutatome vaccine in combination with the 
PD-L1 inhibitor atezolizumab (NCT03289962).

The Crucial Role of the Tumour Microenvironment
An important advance in the field of immuno-oncology 
came from the increased understanding of the crucial 
role of the tumour microenvironment in the modulation 
of anticancer immune responses. In colorectal cancers, 
immune cell infiltration into the tumour microenviron-
ment has been correlated with a strong immune response 
to treatment with icis, with even better correlation than 
for microsatellite instability39,40. Based on those findings, 
the concept of “immune contexture” has been proposed 
and validated, with tumours classified into four pro-
posed categories (hot, excluded, immunosuppressed, and 
cold)41,42. Apart from the presence of tumour-infiltrating 
lymphocytes, additional features such as the expression of 
anti–PD-L1 on tumour-associated immune cells, genomic 
instability, and the presence of a pre-existing antitumour 
immune response have been described as characteristics of 
“hot” tumours, which are associated with a good response 
to icis43. Conversely, apart from being poorly infiltrated, 
“cold” tumours have also been described to be immu-
nologically “ignorant” (scarcely expressing PD-L1) and 
characterized by high proliferation with a low mutational 
burden (low expression of neoantigens) and by low ex-
pression of antigen presentation machinery markers such 
as major histocompatibility class i43. Transforming “cold” 
tumours into fertile “hot” tumours responsive to icis is an 
active area of investigation.

Radiotherapy and chemotherapy have both been 
used in combination with icis to increase the antigenicity 
and priming potential of tumours, which in turn could be 
applied to turn “cold” tumours into “hot” ones. Ionizing 
radiation–induced immunogenic cell death and antigen 
release could potentially turn tumour cells into an in situ 
vaccine44. The outcome of that approach is not only local 
tumour control, but possibly a response at distant tumour 
sites through the abscopal effect45. On the other hand, che-
motherapy can induce mutations, leading to the generation 
of neo-epitopes and therefore increasing the antigenicity 
of tumours46. Other approaches with proven benefit have 
been the local injection of oncolytic viruses into tumour 
beds. These native or genetically modified viruses selec-
tively infect and replicate within tumour cells, eventually 
leading to tumour cell lysis and antigen release47. Again, 
that process results in local priming of the immune system, 
with responses seen both locally and systemically. The 
effect is accentuated when those therapies are combined 
with icis48.

Another key targetable characteristic of “cold” tumours 
is strong expression of mesenchymal and collagen barrier 
molecules that prevent the migration of tumour-infiltrating 
lymphocytes to the tumour bed49,50. As an example, inhi-
bition of transforming growth factor β, a key player in the 
formation of the mesenchymal barrier, when combined 
with an ici resulted in a strong antitumour response 
in mouse models51. That approach is now being tested in 
clinical trials.

Finally, another strategy that can convert a “cold” to a 
“hot” tumour microenvironment uses inhibitors of onco-
genic kinases (reviewed in Guo et al.52). The pi3k/akt path-
way, glycogen synthase kinase 3α/β, and Mnk1 and Mnk2 
are often aberrantly activated in cancer, and appreciation 
for their tumour-extrinsic effects in the cells of the tumour 
microenvironment to promote immune suppression is 
growing. For example, Mnk1 and Mnk2, which are critical 
regulators of messenger rna translation, have important 
immunomodulatory antitumor effects. Inhibitors of Mnk1 
and Mnk2 can block the expression of secreted factors 
such as Nodal and Angptl453,54, inhibiting the survival of 
neutrophils55 and suppressing the expression of PD-L156. 
The Mnk1 and Mnk2 inhibitors are actively being pur-
sued in the clinic (see NCT04261218, NCT03616834, and 
NCT03258398 at https://ClinicalTrials.gov/).

Targeting Tumour Metabolism in the 
Tumour Microenvironment
There is growing evidence that the tumour microenvi-
ronment supports inappropriate metabolic reprogram-
ming, negatively affecting T cell function and resulting 
in attenuated antitumour immune responses57,58. In that 
context, targeting both tumour and T cell metabolism 
can beneficially enhance immunity in an inhospitable 
microenvironment and markedly improve the success of 
immunotherapies. As discussed earlier, tils in the tumour 
microenvironment have significant prognostic and pre-
dictive significance. Their function is limited not only by 
immune checkpoints, but also by increasingly recognized 
“metabolic checkpoints”59.

Rapidly dividing tumour cells show complex and 
dynamic metabolic reprogramming and high glycolytic 
activity, a phenomenon called the “Warburg effect,” which 
is recognized as one of the hallmarks of carcinogenesis60. 
Thus, tumour cells impede the access of T cells to nutrients 
necessary for their activation and generate high levels of 
lactate. The resulting scarcity of nutrients and accumu-
lation of metabolic waste products in the tumour micro-
environment lead to a til metabolic switch that impairs 
optimal proliferation and function61.

Recent evidence suggests that icis might directly sculpt 
the metabolic landscape in the tumour microenvironment, 
thus affecting the functioning of effector T cells. On the 
one hand, ctla-4 and PD-1 binding to their respective li-
gands impairs the metabolic til phenotype by inhibiting 
glycolysis62, thus causing reduced cytokine secretion and 
leading to an exhausted effector T cell phenotype63. On the 
other hand, icis also have the opposite effect on metabolic 
reprogramming of cancer cells. Ligation of PD-L1 directly 
upregulates glycolysis in cancer cells by promoting glucose 
uptake and production of lactate, thus promoting tumour 

https://ClinicalTrials.gov/
https://ClinicalTrials.gov/
https://ClinicalTrials.gov/
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growth and metastasis64,65. Many therapeutic strategies 
have been proposed to tackle that imbalance.

The pi3k/akt/mtor pathway is well known to play a crit-
ical role in integrating the metabolism signals of cancer and 
immune cells. Recent preclinical evidence suggests that 
rapamycin, in combination with icis, augments cytotoxic 
and memory T cell function24,66. Another promising ther-
apeutic is metformin in combination with icis. Metformin 
is known to target the mitochondrial respiratory complex i 
and to activate ampk pathway signal transduction, a key 
pathway in T cell regulatory and metabolic functioning67,68. 
In a cohort of patients with metastatic melanoma who 
received metformin in combination with icis, favourable 
treatment-related outcomes (objective response rate, dis-
ease control rate, median progression-free survival, and 
median overall survival) were observed69. Those findings 
await further validation in larger randomized studies.

Besides glycolysis, another key element of metabolism 
dictating immune function in the tumour microenviron-
ment is amino-acid catabolism. It is well established that 
l-arginine, tryptophan (Trp), and glutamine play fun-
damental roles in tumour progression and immunity70. 
Targeting those amino acids and their metabolic pathways 
in cancer therapy therefore becomes a promising strategy 
for the development of novel therapeutic agents. As one 
example, the depletion of tryptophan and the increase in 
kynurenine (Kyn) exert an important immunosuppressive 
function by activating T regulatory cells and suppressing 
the functioning of effector T cells71. The catabolic ido1 en-
zyme in the Trp–Kyn–AhR metabolic pathway thus became 
an interesting therapeutic target. Despite promising results 
in early-phase clinical trials in a range of tumour types, a 
phase iii study of the ido1-selective inhibitor epacadostat in 
combination with pembrolizumab in metastatic melanoma 
showed no difference between the epacadostat–pembroli-
zumab group and the placebo–pembrolizumab group72. 
That resulted in a diminution of interest in ido1 inhibitors; 
however, other approaches to inhibiting that pathway 
continue to be considered. Novel Trp–Kyn–AhR pathway 
inhibitors such as Kyn-degrading enzymes, direct AhR 
antagonists, and Trp mimetics are advancing in early-stage 
or preclinical development73. Despite the uncertainty 
surrounding ido1 inhibition, ample preclinical evidence 
supports the continued development of Trp–Kyn–AhR 
pathway inhibitors to enhance ici efficacy.

The Microbiome As a Master Regulator  
of Both ICI Efficacy and Toxicity
The host microbiome plays an important role in the efficacy 
of vaccine immune responses74, the promotion of carcino-
genesis75–81, and the efficacy and toxicity of anticancer 
treatments82–84, including icis82,85. A foundational study 
in mice showed that manipulation of the baseline flora 
of the gut microbiome affects melanoma growth kinetics 
and can enhance ici efficacy86. Other preclinical studies 
showed that the efficacy of anti–ctla-4 therapy can be 
compromised by antibiotic-induced dysbiosis or use of 
germ-free mice87. The efficacy of the ici could be restored 
in antibiotic-treated mice after gavage with Bacteroides 
fragilis or Bacteroides thetaiotaomicron (order Burkholde-
riales), or both, through an enhanced il-12–dependent 

type 1 T helper immune response87. Furthermore, analysis 
of stool from patients with ipilimumab-treated melanoma 
demonstrated selective enrichment of B. fragilis in clinical 
responders, possibly suggesting the presence of a ctla-4 
blockade–induced gut dysbiosis.

Other key studies have focused on identifying human 
microbiota signatures predictive of clinical ici respons-
es88–92. Patients with metastatic melanoma who were 
responders to anti–PD-1 therapy were shown to have 
enrichment of Bifidobacterium longum, Collinsella aero-
faciens, and Enterococcus faecium in pre-treatment stool 
samples89. Subsequent fecal microbiota transplantation 
(fmt) of “responder” gut flora into germ-free mice was as-
sociated with improved melanoma tumour control through 
a CD8+ T cell immune response89. Furthermore, the ratio of 
“beneficial” to “non-beneficial” bacteria species in patients 
was the best predictor of an antitumour clinical response89. 
Another group identified enrichment of Akkermansia mu-
ciniphila in the microbiota of responders to anti–PD-1 or 
PD-L1 icis in 3 cancer subtypes. They further demonstrated 
that oral supplementation with A. muciniphila, Alistipes 
indistinctus, or Enterococcus hirae could restore ici antitu-
mour efficacy in germ-free mice colonized with bacterial 
species from non-responder fmt88. A third fundamental 
study showed that patients with melanoma responding 
to ici had greater alpha diversity in their gut flora, with 
selective enrichment in order Clostridiales family Rumi-
nococcaceae, especially genus Faecalibacterium90. On the 
other hand, the microbiomes in ici non-responders showed 
a shift toward order Bacteroidales. Taken together, those 
studies demonstrate that the antitumour immune response 
depends on the composition of the gut microbiome and that 
antibiotic-induced dysbiosis is associated with reduced im-
mune priming and primary resistance to immunotherapy. 
The deleterious effect of antibiotics given close to the time 
of ici treatment was confirmed in retrospective analyses 
of ici-treated patients with various cancers (renal cancer, 
non-small-cell lung cancer, urothelial cancer, and melano-
ma)88,93–95. Thus far, a modest overlap in key microbiome 
mediators of response to anti–PD-1 or PD-L1 therapies has 
been observed across cohorts, with an apparent common 
responder signature enriched in A. muciniphila, Clostrid-
iales, E. faecium, Eubacterium species, the Firmicutes, and 
Ruminococcus species96. Although poor overlap between 
study cohorts might be a result of differences in technique 
or tumour type, additional heterogeneity of the gut mi-
crobiome linked to genetics, geography, lifestyle, or prior 
antibiotic and other drug exposure must be considered. 
Ultimately, “responder” gut profiles will likely reflect com-
binations of taxonomic orders and families rather than 
the presence or absence of one or a few particular species.

Besides priming the immune response to icis, the 
microbiome also modulates iraes17,91. For instance, meta- 
genomic sequencing found members of the Bacteroide-
tes phylum (families Bacteroidaceae, Rikenellaceae, and 
Barnesiellaceae) to be more abundant in stools obtained 
before treatment from patients with melanoma who did not 
develop ipilimumab-induced colitis, implying a protective 
effect of those microorganisms17. Importantly, specific 
microbial metabolic pathways (polyamine transport and 
vitamin B synthesis) were found to be predictive of resist-
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ance to ctla-4 blockade–induced colitis17. Another group 
corroborated the protective effect of a Bacteroidetes-rich 
phylotype against ctla-4 blockade–induced colitis in 
patients with melanoma. They further demonstrated 
that favourable clinical responses and susceptibility to 
colitis were both correlated with baseline microbiota 
enrichment in phylum Firmicutes (unclassified Rumino-
coccaceae, Clostridium cluster XIVa, and Blautia) and, in 
particular, Faecalibacterium, which is known to exert an 
anti-inflammatory role in the gut91. Further, the resolution 
of refractory ici-associated colitis in 2 patients with cancer 
was achieved by fmt from a healthy donor97. Thus, a critic-
al goal of microbiome manipulation is to disentangle the 
modulation of toxicity from the preservation or enhance-
ment of ici efficacy98.

There is a strong push to translate those newly ac-
quired basic science findings about the microbiota into 
therapeutic clinical tools. Several trials are evaluating 
safety, efficacy, and immune profile changes in patients 
with ici-resistant cancer treated with “complete responder” 
fmt (see NCT03353402, NCT03341143, and NCT03637803 
at https://ClinicalTrials.gov/). The safety of fmt is par-
ticularly important and under scrutiny, given that fmt 
or bacterial colonization experiments in mice have re-
vealed a potential for transfer of chronic diseases99,100 or 
increased risk of tumorigenesis76,101. Probiotics—loosely 
defined as health-promoting live organisms or fermented 
foods—are so far being assessed mostly in clinical trials 
aiming to reduce anticancer treatment toxicities; only 
one registered trial is testing their efficacy in the context 
of icis (NCT03829111). The optimal probiotic cocktail for 
immunotherapy remains to be determined and might 
vary with the ici or the tumour type. Additionally, reliable 
preparation of probiotics will be essential, likely requiring 
changes to their regulation. Ultimately, clinical studies 
of the effects of the microbiome on ici efficacy or toxicity 
will have to consider other confounding factors known to 
affect the commensal microbiome, such as concomitant 
radiation therapy102, exposure to antibiotics or other drugs 
(proton-pump inhibitors, antipsychotics, antimetabo-
lites)103, and diet (including method and composition).

SUMMARY

Cancer immunotherapy has dramatically changed survival 
and quality of life for patients. However, not all cancers 
are equal, and very few predictors of response and toxicity 
currently exist. Despite the rapid advances made in the 
field, immuno-oncology is still in its relative infancy, with 
numerous challenges and hurdles yet to be overcome. 
Over time, a realization grew that the standard tools used 
to assess choice of treatments in the era of chemotherapy 
and targeted therapies might not be valid for the new im-
munotherapies. As an example, the Response Evaluation 
Criteria in Solid Tumors (recist) used to assess response to 
treatments were modified to create irecist, which accounts 
for the novel patterns of response seen during immuno-
therapy, including tumour pseudoprogression104. In the 
same way that TNM staging has been crucial in guiding 
treatments in the era of chemotherapy, novel tools are 
required in the era of cancer immunotherapy. The Immu-

noscore has already been validated as adding important 
prognostic information to TNM staging in colon cancer39. 
The fact that T cells are currently widely recognized as the 
key mediators of antitumour efficacy with ici treatment 
suggests that use of the Immunoscore is an attractive op-
tion to help guide treatment selection in other cancer types 
as well. Still, that option does not exclude the possible use of 
additional parameters that might provide further insights 
into the specifics of each case.

It is becoming more challenging to increase the effica-
cy of combination therapies already established in clinical 
practice. In metastatic melanoma, combined ctla-4 and 
PD-1 blockade has achieved an unprecedented five-year 
overall survival above 50%105. In metastatic renal cell car-
cinoma, the same combination has been associated with 
an overall survival rate exceeding 60% at 3 years in the 
intention-to-treat population106,107. In the large landscape 
of ongoing early-phase clinical trials, few novel combina-
tions have achieved a level of efficacy rivalling those new 
standards of care. What certainly remains to be improved 
is their safety profiles.

The approved induction and regimen dose of combina-
tion icis (ipilimumab 3 mg/kg and nivolumab 1 mg/kg every 
3 weeks) in the setting of melanoma is associated with a 
59% rate of grades 3–4 toxicities108. Preliminary results 
from CheckMate 511, which used alternative dosing (ipili-
mumab 1 mg/kg and nivolumab 3 mg/kg every 3 weeks), 
showed a significant improvement in toxicity without loss 
of efficacy109. Given that iraes can sometimes be associat-
ed with mortality and significant lifelong morbidity (for 
example, de novo insulin-dependent diabetes, persistent 
pituitary dysfunction, or immune-related inflammatory 
arthropathies), predictors and novel strategies to abate 
those toxicities are urgently needed.

Another area of urgent need is to find novel treatments 
both for patients who are primary non-responders to icis 
and for those who develop secondary resistance to those 
therapies. Beyond ici failure, very few treatments have been 
studied, and physicians often rely on previously validated 
standards of care for each specific cancer. Early observa-
tional data suggest that exposure to icis might modulate 
the response to standard treatments received after pro-
gression. For instance, exceptionally high response rates 
to chemotherapy have occasionally been documented after 
ici failure110,111. Those observations might be secondary to 
immunotherapy having removed the inhibition initially 
exerted by tumour cells or other immune cells, followed 
by cytotoxic chemotherapy–mediated killing of tumour 
cells. On the other hand, progression-free survival and the 
adverse event profiles associated with exposure to targeted 
therapies (such as braf inhibition in melanoma) might be 
adversely affected by first-line exposure to icis112.

To summarize, the future of cancer immunotherapy 
could rely on combination therapies using checkpoint 
inhibitors not with other novel checkpoint inhibitors, 
but rather with personalized cancer vaccines and novel 
targeted therapies directed at the tumour microenviron-
ment, tumour glycosylation, and the host microbiome, as 
outlined in the present review. Advances in those fields will 
allow movement away from the current broad “shotgun” 
approach, which exposes all comers within the approved 

https://ClinicalTrials.gov/
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indications to icis, to treatments tailored to the factors that 
make each cancer and host a unique pairing.
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