
Systematic Review

Comparative Efficacy and Safety of Immunotherapeutic
Regimens with PD-1/PD-L1 Inhibitors for Previously Untreated
Extensive-Stage Small Cell Lung Cancer: A Systematic Review
and Network Meta-Analysis

Koichi Ando 1,2,* , Ryo Manabe 1, Yasunari Kishino 1, Sojiro Kusumoto 1, Toshimitsu Yamaoka 3 ,
Akihiko Tanaka 1, Tohru Ohmori 1, Tsukasa Ohnishi 1 and Hironori Sagara 1

����������
�������

Citation: Ando, K.; Manabe, R.;

Kishino, Y.; Kusumoto, S.; Yamaoka,

T.; Tanaka, A.; Ohmori, T.; Ohnishi, T.;

Sagara, H. Comparative Efficacy and

Safety of Immunotherapeutic

Regimens with PD-1/PD-L1

Inhibitors for Previously Untreated

Extensive-Stage Small Cell Lung

Cancer: A Systematic Review and

Network Meta-Analysis. Curr. Oncol.

2021, 28, 1094–1113. https://

doi.org/10.3390/curroncol28020106

Received: 8 January 2021

Accepted: 22 February 2021

Published: 27 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of
Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; r.manabe@med.showa-u.ac.jp (R.M.);
ookiyookiy@med.showa-u.ac.jp (Y.K.); k-sojiro@med.showa-u.ac.jp (S.K.); tanakaa@med.showa-u.ac.jp (A.T.);
ohmorit@med.showa-u.ac.jp (T.O.); tohnishi@med.showa-u.ac.jp (T.O.); sagarah@med.showa-u.ac.jp (H.S.)

2 Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Showa University Senzoku
Campus, 2-1-1 Kita-Senzoku, Ohta-ku, Tokyo 145-8515, Japan

3 Advanced Cancer Translational Research Institute (Formerly Institute of Molecular Oncology),
Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; yamaoka.t@med.showa-u.ac.jp

* Correspondence: koichi-a@med.showa-u.ac.jp; Tel.: +81-3-3784-8532; Fax: +81-3-3784-8742

Abstract: Improving therapeutic strategies for extensive-stage small cell lung cancer (ES-SCLC)
remains a challenge. To date, no reports have directly compared the efficacy and safety of immune
checkpoint inhibitors plus platinum–etoposide (ICIs+EP) with platinum–irinotecan (IP) or directly
compared different ICIs+EP for previously untreated ES-SCLC. This study used a Bayesian approach
for network meta-analysis to compare efficacy and safety between ICIs+EP and IP and between
each pair of three ICIs+EP. The six treatment arms were: pembrolizumab plus platinum–etoposide
(Pem+EP), durvalumab plus platinum–etoposide (Dur+EP), atezolizumab plus platinum–etoposide
(Atz+EP), platinum–amrubicin (AP), IP, and platinum–etoposide (EP). No significant differences in
overall survival were observed between ICIs+EP and IP and between each pair of three ICIs+EP. The
incidence of ≥grade 3 adverse events (G3-AEs) was significantly higher in ICIs+EP than IP, whereas
no significant difference was found in G3-AEs between each pair of three ICIs+EP. The incidence of
≥grade 3 neutropenia and thrombocytopenia was significantly higher in ICIs+EP than IP, whereas
the incidence of ≥grade 3 diarrhea was significantly lower in ICIs+EP than IP. These findings will
help clinicians better select treatment strategies for ES-SCLC.

Keywords: small cell lung cancer; immune checkpoint inhibitor; systematic review; network
meta-analysis

1. Introduction

Lung cancer is responsible for most cancer-induced mortality worldwide, with small
cell lung cancer (SCLC) accounting for 15% of newly diagnosed lung cancer cases [1–3].
The prognosis is unfavorable for extensive-stage SCLC (ES-SCLC), which accounts for
80% to 85% of newly diagnosed SCLC, with a reported median survival time of 7 to 10
months and a 5-year survival rate of not more than 8%, despite a systemic cancer treatment
response rate of more than 50% [1–5]. Therefore, new treatment strategies for ES-SCLC are
urgently required [2–4].

Recently, the efficacy of immune checkpoint inhibitors (ICIs) such as Programmed Cell
Death-1 (PD-1)/Programmed Death-Ligand 1 (PD-L1) inhibitors (pembrolizumab (Pem),
durvalumab (Dur), or atezolizumab (Atz)) plus platinum–etoposide (EP) for previously
untreated ES-SCLC has been reported [6–8]. Compared with EP treatment alone, Pem+EP,
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Dur+EP, or Atz+EP treatment has been shown to significantly improve overall survival
(OS) and progression-free survival (PFS) [6–8], highlighting them as new treatment options
for previously untreated ES-SCLC [3,9,10]. In North America, based on the results of the
SWOG S0124 study [11], (platinum–irinotecan) IP is not as commonly used as EP, whereas
in Japan, IP is currently one of the leading treatment options for previously untreated
ES-SCLC based on the results of previous phase III studies and meta-analysis [12–15].

However, to date, no randomized study has compared ICIs+EP (Pem+EP, Dur+EP, or
Atz+EP) with IP. Therefore, the efficacy and safety profile of ICIs+EP compared with that
of IP for previously untreated ES-SCLC has not been fully evaluated. Although ICIs+EP is
the available treatment option for previously untreated ES-SCLC [6–8], there is currently
limited justification for selecting ICIs+EP over the other existing regimens, including IP.
Furthermore, to date, there are no reports of randomized controlled trials (RCTs) that
directly compare the efficacy and safety between Pem+EP, Dur+EP, and Atz+EP regimens.
Therefore, there is little basis for oncologists to choose the most appropriate regimen among
these immunotherapeutic regimens.

Direct head-to-head RCTs are primarily used for comparing the efficacy and safety
of drugs. However, RCT studies are labor-intensive, time-consuming, and expensive.
Therefore, we aimed to conduct a network meta-analysis (NMA) using data mined from the
literature [16] to enable comparisons among pairs of treatments in the absence of existing
head-to-head RCTs and rank the efficacy and safety of each therapeutic regimen using less
time, effort, and expense [16–24]. In this systematic review of data (registered UMIN-CTR
number: UMIN000041702), we compared and ranked the efficacy and safety of Pem+EP,
Dur+EP, Atz+EP, platinum–amrubicin (AP), IP, and EP as first-line treatments for patients
with previously untreated ES-SCLC using the statistical Bayesian NMA method. This not
only facilitates a comparison between ICIs+EP and IP but also allows for a comparison
of all treatment groups, including the ICIs (Pem, Dur, or Atz)+EP treatment groups. Our
findings may provide oncologists with valuable information to better select therapeutic
strategies for patients and develop new treatment strategies.

2. Materials and Methods
2.1. Systematic Review

A global literature review of four databases (PubMed [25], Embase [26], CENTRAL [27],
and SCOPUS [28]) was performed in December 2020 to identify RCTs assessing ICIs+EP
(Pem+EP, Dur+EP, or Atz+EP), IP, AP, or EP treatments for advanced SCLC, particularly
ES-SCLC, published from 1 January 1946 onwards. No restrictions were placed on the
publication date in the electronic database used for the literature search, other than the
publication date had to be after 1 January 1946. The search strategy was selected using
keywords such as “extensive stage”, “small cell lung cancer”, “immune checkpoint in-
hibitor”, “pembrolizumab”, “durvalumab”, “atezolizumab”, “irinotecan”, and “etoposide”,
and their Medical Subject Headings (MeSH) terms. We restricted our search to English-
language publications alone. Appendix A lists the search strategy used to search PubMed.
In addition to searching for relevant articles, we also reviewed the references listed in
the papers to avoid the risk of overlooking related studies that may satisfy the inclusion
criteria, find all pertinent studies, and minimize publication bias. The search was based
on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
Statement for Systematic Review and Meta-analysis [29] and the PRISMA extension of the
NMA [30]. The literature search was conducted independently by two researchers (K.A.
and Y.K.). Any disagreements that arose were resolved by discussions with a third author
(T.Y.). The inclusion and exclusion criteria for the studies searched were collated using the
Patients, Intervention, and Comparison, Outcome, and Study (PICOS) approach to address
methodological or conceptual heterogeneity across studies and to secure the firmness of
the NMA.
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2.2. Quality Evaluation

We evaluated the qualities of the RCTs included in the NMA using the risk of bias
tool 2 (RoB2) recommended by the Cochrane Collaboration [31]. We assessed the following
parameters as being low risk, having some concerns, or high risk: (1) bias arising from the
randomization process, (2) bias due to deviations from intended interventions, (3) bias due
to missing outcome data, (4) bias in the outcome measurement, and (5) bias in the selection
of the reported result.

2.3. Inclusion and Exclusion Criteria (Predefined PICOS)
2.3.1. Patients

The purpose of this study was to compare the efficacy and safety of ICIs+EP (Pem+EP,
Dur+EP, or Atz+EP) and IP in adult patients with previously untreated ES-SCLC and to
compare the efficacy and safety of ICI-containing regimens (Pem+EP, Dur+EP, or Atz+EP)
with each other. We established inclusion criteria to accurately reflect the objectives of this
study and included adult patients aged ≥18 years that were previously untreated, had
histologically or cytologically confirmed ES-SCLC, and a performance status (PS) of 0–2
(on a 5-point scale, with higher values indicating greater disability).

2.3.2. Interventions/Comparisons

Patients received at least one of the following treatments: (1) Pem+EP, (2) Dur+EP, (3)
Atz+EP, (4) AP, (5) IP, or (6) EP. We included PD-1/PD-L1 in our analysis, and we excluded
regimens containing ICIs other than PD-1/PD-L1 from this analysis. The above regimens
were adopted for ES-SCLC based on recommended dosages or those reported in phase III
trials. EP was the commonly selected comparator as it is a standard therapeutic that was
used before the emergence of molecular cancer therapy or immunotherapy for previously
untreated ES-SCLC [3].

Network meta-analysis was performed not only for the four treatment groups, the
ICIs+EP group (combined populations of Pem+EP, Dur+EP, and Atz+EP groups), AP
group, IP group, and EP group, but also for the six groups of Pem+EP, Dur+EP, Atz+EP,
AP, IP, and EP to compare between each pair of treatment groups.

2.3.3. Outcomes

The primary and secondary efficacy endpoints were OS and PFS, respectively, which
were expressed in terms of hazard ratio (HR) and 95% credible interval (CrI). The primary
safety endpoint was the incidence of ≥grade 3 adverse events (G3-AEs), which was
expressed as risk ratio (RR) and 95% CrI. The secondary safety endpoints were the incidence
of ≥grade 3 neutropenia (G3-NP), ≥grade 3 anemia (G3-AN), ≥grade 3 thrombocytopenia
(G3-TP), and ≥grade 3 diarrhea (G3-diarrhea), which were expressed as RR and 95% CrI.
To rank the efficacy and safety of each treatment, the surface under the cumulative ranking
curve (SUCRA) values were calculated for each outcome. These predefined endpoints were
only analyzed if data were available from the studies included.

2.3.4. Study Design

For inclusion in this NMA, randomized, parallel design trial phase III studies were
eligible. The exclusion criteria included trials on children, observational studies, case
reports, and non-RCTs. A parallel design trial is defined as a type of clinical research
in which for two separate predefined intervention groups (intervention A group and
intervention B group), one group is given only intervention A and the other group is given
only intervention B.

2.4. Statistical NMA Method

We conducted Bayesian NMA per a robustly established methodology developed
by the National Institute for Health and Care [21–23,32,33]. There are two main statisti-
cal methodologies for NMA: the frequentist approach and the Bayesian approach. We
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adopted the standard Bayesian model described by Dias et al. [34–36], which presupposes
inconsistency and heterogeneity among the included studies. We estimated the posterior
distribution for effect size by conducting Gibbs sampling based on the Markov Chain
Monte Carlo method, adopting a noninformative prior distribution. We set the number
of iterations to 50,000 and considered the first 10,000 as a burn-in sample to eliminate the
effect of the initial value. Effect sizes were expressed as HR and RR with their 95% CrIs;
when the 95% CrI did not include 1, the difference in the effect size between the treatment
groups was considered statistically significant. We calculated the SUCRA values to estimate
the ranking of efficacy and safety outcomes; these values ranged from 0% to 100%, with
higher SUCRA values indicating a more favorable treatment outcome [37]. We used the
Brooks–Gelman–Rubin (BGR) diagnostic method to perform a convergent diagnosis of
all comparisons [38,39]. To confirm the convergence of the model, both visual diagnosis
and BGR diagnostics were conducted. The analysis was performed using OpenBUGS 1.4.0
(MRC Biostatistics Unit, Cambridge Public Health Research Institute, Cambridge, UK),
and STATA (ver. 14, StataCorp, College Station, TX, USA) was utilized for the graphical
presentation of the results.

2.5. Sensitivity Analysis

When conceptual heterogeneity was noted among the included studies, a sensitivity
analysis was conducted by excluding the studies that showed heterogeneity. This allowed
us to evaluate whether the inclusion/exclusion of studies with conceptual heterogeneity
affected the final conclusions.

2.6. Assessment of Heterogeneity and Inconsistency

We statistically assessed heterogeneity and inconsistency of included studies to ensure
the robustness of this analysis. Heterogeneity was assessed by using I2 statistics among
studies with direct comparisons [35]. Heterogeneity was judged to be low when I2 was
<40%, moderate when I2 was ≥40% and <60%, substantial when I2 was ≥60% and <75%,
and considerable when I2 was >75% [31]. Additionally, global inconsistency in the overall
network model was assessed by using the statistical global inconsistency test [16,18,22,34].
This test was used to test for significance, and a value of p < 0.05 was considered to indicate
the presence of significant inconsistency [16,18,22]. For statistical analysis of heterogeneity
and inconsistency, we used the “metan” command and the “network” command of the
STATA (ver. 14, StataCorp, College Station, TX, USA), respectively.

2.7. Ethical Aspects

Informed consent and approval by the institutional review board were waived owing
to the nature of the systematic review conducted in the present study.

3. Results
3.1. Systematic Review

Among the 3903 articles identified through systematic literature review (734 from
PubMed [25], 474 from Embase [26], and 909 from the Cochrane Central Register of
Controlled Trials (CENTRAL) [27], and 1786 from SCOPUS [28]) that met the search
criteria, 2790 articles were selected after removing duplicates.

Applying the PICOS design approach reduced the number of included studies in
the present NMA to 10 articles (totaling 3879 patients), of which one study each com-
pared Pem+EP and EP [6], Dur+EP and EP [7], Atz+EP and EP [8], AP and EP [40], and
AP and IP [41]. The other five studies compared the effects of IP and EP administra-
tion [11,15,42–44]. Figure 1 illustrates the study selection process, Table S1 lists the key
inclusion criteria, and Table S2 shows the detailed principal characteristics of the studies
included. The data obtained from these studies were sufficient to perform an NMA using
the predefined primary efficacy endpoint (OS), secondary efficacy endpoint (PFS), and
secondary safety endpoints (G3-NP, G3-AN, G3-TP, G3-diarrhea) but not using the primary
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safety endpoint (G3-AEs). Therefore, the G3-AEs were compared among the five treatment
groups—Pem+EP, Dur+EP, Atz+EP, IP, and EP. In the analyses, the preferred model conver-
gence was verified both visually and using the BGR method [38,39]. Maps of the NMA are
shown in Figures 2 and 3.
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3.2. Assessment of Risk of Bias and Heterogeneity/Inconsistency

We assessed the quality of the included studies using the Cochrane-recommended
RoB2 [31]; no study was considered to have a high risk of bias, although four studies had
some concerns for “bias due to deviations from intended interventions”, as they were
open-label studies (Figure S1).

In addition, we examined for potential heterogeneity and inconsistency in the NMA
performed here. The heterogeneity of the direct comparison was calculated from the results
of an integrated analysis of five studies [11,15,42–44] in a two-group comparison of IP vs.
EP and from the results of an integrated analysis of three studies [6–8] in a two-group
comparison of ICIs+EP vs. EP. The results were expressed as the I2 statistic. The result was
I2 = 33.2% (IP vs. EP) and I2 = 0% (ICIs+EP vs. EP), indicating that heterogeneity had little
impact on the final conclusions (Figures S2 and S3).
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Furthermore, global inconsistency in this NMA was evaluated using the statistical
global inconsistency test. As a result, no significant inconsistency was detected (p = 0.731).
Thus, we considered the heterogeneity or inconsistency to be unlikely to have influenced
the final conclusions and that this NMA is valid.
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3.3. OS as the Primary Efficacy Endpoint

The primary efficacy endpoint of OS was compared between each pair of treatments
across four treatment groups, including ICIs+EP (combined population of Atz+EP treated
group, Dur+EP treated group, and Pem+EP treated group), AP, IP, and EP.

The results revealed no significant difference in OS between ICIs+EP group and IP
group, with HR (95% CrI) of 0.896 (0.761–1.047), whereas OS was significantly better
in ICIs+EP group than EP or AP group, with HRs (95% CrI) of 0.749 (0.655–0.852) and
0.772 (0.612–0.961), respectively (Figure 4).

To compare the efficacy in OS between each pair of three ICIs+EP regimens, an anal-
ysis of six treatment arms of three ICIs+EP regimens (Pem+EP, Dur+EP, Atz+EP), AP,
IP, and EP was performed. The OS was significantly higher for patients treated with IP
than for those treated with EP, with a HR (95% CrI) of 0.838 (0.765–0.916). The OS in the
groups treated with Atz+EP, Dur+EP, or Pem+EP was significantly higher than that in
groups treated with EP, with HRs (95% CrI) of 0.706 (0.539–0.908), 0.734 (0.588–0.906), and
0.805 (0.647–0.990), respectively. OS of groups treated with Atz+EP or Dur+EP was signifi-
cantly higher than that of groups treated with AP, with HRs (95% CrI) of 0.728 (0.521–0.989)
and 0.757 (0.565–0.996), respectively, whereas no significant differences in OS were ob-
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served between any other pairs of treatments—i.e., the groups receiving AP and EP, AP
and IP, Atz+EP and IP, Dur+EP and IP, Pem+EP and IP, Pem+EP and AP, Dur+EP and
Atz+EP, Pem+EP and Atz+EP, and Pem+EP and Dur+EP (Figure S4).
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Additionally, we ranked the efficacy and safety of the four treatment arms of ICIs+EP,
AP, IP, and AP (Table S3), and of the six treatment arms of Pem+EP, Dur+EP, Atz+EP, AP, IP,
and AP (Table S4) by assessing the surface under the cumulative ranking curve (SUCRA).
Higher SUCRA values indicate better outcomes [37].

3.4. PFS as the Secondary Efficacy Endpoint

The secondary efficacy endpoint of PFS was compared between each pair of treatments
across four treatment groups, including ICIs+EP (combined population of Atz+EP treated
group, Dur+EP treated group, and Pem+EP treated group), AP, IP, and EP. The results
revealed no significant difference in PFS between ICIs+EP group and IP group (HR: 0.889,
95% CrI: 0.766–1.025), whereas PFS was significantly better in ICIs+EP group than EP or
AP group, with HRs (95% CrI) of 0.768 (0.683–0.860) and 0.702 (0.567–0.859), respectively
(Figure 5).

To compare the efficacy in PFS between each pair of three ICIs+EP regimens, and
analysis of six treatment arms of three ICIs+EP regimens (Pem+EP, Dur+EP, and Atz+EP),
AP, IP, and EP was performed. The PFS with IP was significantly superior to EP, with an
HR (95% CrI) of 0.866 (0.792–0.946). Additionally, PFS of the Atz+EP, Dur+EP, and Pem+EP
groups was significantly improved compared with the EP group, with HRs (95% CrI) of
0.775 (0.618–0.959), 0.783 (0.649–0.938), and 0.754 (0.614–0.916), respectively. The PFS with
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AP was significantly inferior to IP, with an HR (95% CrI) of 1.275 (1.078–1.499). In addition,
PFS was also significantly higher in the Atz+EP, Dur+EP, and Pem+EP groups than in the
AP group (HR (95% CrI): 0.708 (0.529–0.927), 0.716 (0.551–0.914), and 0.689 (0.524–0.889),
respectively). No significant differences were observed in PFS between the AP and EP,
Atz+EP and IP, Dur+EP and IP, Pem+EP and IP, Dur+EP and Atz+EP, Pem+EP and Atz+EP,
and Pem+EP and Dur+EP groups (Figure S5).
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3.5. The Incidence of G3-AEs as a Primary Safety Endpoint

The data for AP were insufficient for inclusion as a treatment group in the NMA for
the primary safety endpoint of the incidence of G3-AEs. Therefore, the incidence of G3-AEs
was compared between ICIs+EP (combined population of Pem+EP, Dur+EP, and Atz+EP
treated group) and IP, and between ICIs+EP and EP. The results revealed no significant
difference in incidence of G3-AEs between the ICIs+EP group and EP group, with an RR
(95% CrI) of 0.983 (0.893–1.079), whereas the incidence of G3-AEs was significantly more
frequent in the ICIs+EP group than the IP group, with an RR (95% CrI) of 1.262 (1.095–1.448)
(Figure 6).

The NMA for G3-AEs was performed by including the five treatment regimens—
Pem+EP, Dur+EP, Atz+EP, IP, and EP—and comparing each of the three ICIs+EP regimens
with each other as the main objective. The incidence of G3-AEs in the IP group was
significantly lower than in the EP group (risk ratio (RR) (95% CrI): 0.781 (0.704–0.866)). The
incidence of G3-AEs in the Atz+EP group and Pem+EP group was significantly higher than
in the IP group (RR (95% CrI): 1.301 (1.059–1.581) and 1.339 (1.113–1.598), respectively).
No significant differences were observed in the incidence of G3-AEs between Atz+EP and
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EP, Dur+EP and EP, Pem+EP and EP, Dur+EP and IP, Dur+EP and Atz+EP, Pem+EP and
Atz+EP, and Pem+EP and Dur+EP groups (Figure S6).
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Atz+EP treated group, Dur+EP treated group and Pem+EP treated group), EP, and IP, for previously
untreated ES-SCLC. Comparisons are shown as ICIs+EP vs. CT (EP or IP). Data are expressed
as risk ratio (RR) and 95% CrI. ICIs+EP, immune checkpoint inhibitors plus platinum–etoposide;
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3.6. Secondary Safety Endpoint: The Incidence of G3-NP, G3-AN, and G3-TP

The incidence of G3-NP, G3-AN, and G3-TP was compared between ICIs+EP (com-
bined population of Pem+EP, Dur+EP, and Atz+EP treated group) and AP, between ICIs+EP
and IP, and between ICIs+EP and EP.

The results revealed that there was no significant difference in G3-NP between the
ICIs+EP group and EP or AP group, with RRs (95% CrI) of 0.900 (0.767–1.047) and
0.822 (0.666–1.004), respectively, whereas the incidence of G3-NP was significantly higher
in ICIs+EP group than the IP group, with an RR (95% CrI) of 1.411 (1.181–1.670) (Figure
7a). The results also revealed that there was no significant difference in G3-AN between
the ICIs+EP group and EP, IP, or AP group, with RRs (95% CrI) of 0.898 (0.666–1.182),
1.014 (0.687–1.442), and 0.689 (0.410–1.086), respectively (Figure 7b). There were no signifi-
cant differences in the incidence of G3-TP between ICIs+EP and EP, with RRs (95% CrI) of
1.011 (0.710–1.392), whereas the incidence of G3-TP was significantly higher in the ICIs+EP
group than that in the IP group, and was lower in the ICIs+EP group than that in the
AP group, with RRs (95% CrI) of 2.205 (1.356–3.389) and 0.372 (0.178–0.688), respectively
(Figure 7c).
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We also compared the safety in G3-NP, G3-AN, and G3-TP among six treatment
arms of the Pem+EP group, Dur+EP group, Atz+EP group, AP group, IP group, and EP
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group. The incidence of G3-NP in the IP group was significantly lower than in the EP
group (RR: 0.639, 95% CrI: 0.591–0.688). G3-NP incidence was also significantly lower
in the Dur+EP group than in the EP or AP group (RR (95% CrI): 0.717 (0.538–0.936), and
0.656 (0.476–0.882), respectively). The incidence of G3-NP in the AP, Atz+EP, and Pem+EP
groups was significantly higher than in the IP group (RR (95% CrI): 1.722 (1.520–1.944),
1.514 (1.039–2.133), and 1.611 (1.265–2.023), respectively). Furthermore, the incidence of
G3-NP was significantly higher in the Pem+EP group than in the Dur+EP group (RR: 1.461,
95% CrI: 1.004–2.048). However, no significant differences were observed in the incidence
of G3-NP between AP and EP, Atz+EP and EP, Pem+EP and EP, Dur+EP and IP, Atz+EP
and AP, Pem+EP and AP, Dur+EP and Atz+EP, and Pem+EP and Atz+EP (Figure S7a).

The incidence of G3-AN in the Dur+EP group was significantly lower than in the
EP, AP, and Atz+EP groups (RR (95% CrI): 0.569 (0.329–0.917), 0.437 (0.217–0.793), 0.513
(0.231–0.989), respectively). The incidence of G3-AN in the AP group was significantly
higher than in the IP group (RR: 1.513, 95% CrI: 1.061–2.099). No significant differences
were observed in the incidence of G3-AN between the IP and EP, AP and EP, Atz+EP and
EP, Pem+EP and EP, Atz+EP and IP, Dur+EP and IP, Pem+EP and IP, Atz+EP and AP,
Pem+EP and AP, Pem+EP and Atz+EP, and Pem+EP and Dur+EP groups (Figure S7b).

The incidence of G3-TP in the IP group was significantly lower than in the EP group
(RR: 0.470, 95% CrI: 0.341–0.632). The incidence of G3-TP in the AP group was significantly
higher than in the EP group (RRs: 2.969, 95% CrI: 1.580–5.126). The incidence of G3-TP
in the AP, Atz+EP, or Pem+EP groups was significantly higher than in the IP group (RRs
(95% CrIs): 6.437 (3.286–11.46), 3.036 (1.399–5.788), and 2.618 (1.390–4.517), respectively).
The incidence of G3-TP in the Dur+EP or Pem+EP group was significantly lower than in
the AP group (RRs (95% CrIs): 0.229 (0.087–0.494)) and 0.442 (0.188–0.887), respectively).
However, no significant differences were observed in the incidence of G3-TP between the
Atz+EP and EP, Dur+EP and EP, Pem+EP and EP, Dur+EP and IP, Atz+EP and AP, Dur+EP
and Atz+EP, Pem+EP and Atz+EP, and Pem+EP and Dur+EP groups (Figure S7c).

3.7. Secondary Safety Endpoint: The Incidence of G3-Diarrhea

The secondary efficacy endpoint of G3-diarrhea was compared between ICIs+EP
(combined population of Pem+EP, Dur+EP, and Atz+EP treated group) and EP, between
ICIs+EP and IP, and between ICIs+EP and AP. The results revealed no significant difference
in G3-diarrhea between the ICIs+EP group and EP group and between the ICIs+EP and
AP groups, with RRs (95% CrI) of 1.345 (0.525–2.840) and 0.842 (0.130–2.899), respectively,
whereas G3-diarrhea was significantly lower in the ICIs+EP group than IP group, with an
RR (95% CrI) of 0.156 (0.049–0.378) (Figure 8).

We also compared the safety in G3-diarrhea among six treatment arms of the Pem+EP
group, Dur+EP group, Atz+EP group, AP group, IP group, and EP group. The incidence of
G3-diarrhea in the IP group was significantly higher than that in the EP group (RR: 9.391,
95% CrI: 5.050–16.04). G3-diarrhea incidence was also significantly lower in the AP group,
Dur+EP group, Pem+EP group than that in IP group (RR (95% CrI): 0.271 (0.064–0.773),
0.162 (0.021–0.611), and 0.137 (0.032–0.391), respectively). However, no significant differ-
ences were observed in the incidence of G3-diarrhea between the AP and EP, Atz+EP and
EP, Dur+EP and EP, Pem+EP and EP, Atz+EP and IP, Atz+EP and AP, Dur+EP and AP,
Pem+EP and AP, Dur+EP and Atz+EP, Pem+EP and Atz+EP, and Pem+EP and Dur+EP
(Figure S8).
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3.8. Sensitivity Analysis

Of the 10 trials included in this analysis, seven [6–8,11,40,41,43] limited their inclusion
criteria to patients with PSs of 0 or 1, whereas the remaining three [15,42,44] also included
patients with a PSs of 2 (Table S1). To assess the effect of this heterogeneity in the patient
inclusion criteria of PS on the final conclusions, we conducted a sensitivity analysis by
excluding the three trials [15,42,44] with the inclusion criteria that allowed the patients with
PSs of 0 to 2 and we included the seven trials [6–8,11,40,41,43] with the inclusion criteria
that only allowed patients with a PSs of 0 or 1. The sensitivity analysis assessed not only
comparisons between ICIs+EP (combined population of Pem+EP, Dur+EP, and Atz+EP)
and EP, ICIs+EP and IP, and ICIs+EP and AP, but also each pair of six treatment arms of
Pem+EP, Dur+EP, Atz+EP, AP, IP, and EP. The results of the sensitivity analysis for primary
endpoint, OS, showed that the significance of efficacy comparison between any pair of
treatment groups remained unchanged. The SUCRA values and the ranks of each treatment
group were similarly maintained. The detailed results of sensitivity analysis for comparison
between ICIs+EP and EP, between ICIs+EP and IP, and between ICIs+EP and AP and for
ranking assessment are shown in Tables S5 and S6, respectively. The detailed results of
sensitivity analysis for comparison each pair of six treatment arms of Pem+EP, Dur+EP,
Atz+EP, IP, and EP and for ranking assessment are shown in Tables S7 and S8, respectively.

Additionally, we considered that looking at geography as a variable was important.
Of the 10 trials included in this analysis, six [6–8,11,42,43] were international cooperative
studies or performed in Western countries, whereas the remaining four [15,40,41,44] had
been performed in Asian countries. To assess the effect of this heterogeneity in geogra-
phy on the final conclusions, we conducted a sensitivity analysis by excluding the four
trials [15,40,41,44] performed in Asian countries, and included the six trials [6–8,11,42,43]
which was international cooperative studies or performed in Western countries. None of
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these six trials reported validation of AP as a treatment group. Therefore, the AP group
could not be included in this sensitivity analysis. The sensitivity analysis assessed not only
the results of comparison between ICIs+EP (combined population of Pem+EP and Dur+EP)
and EP and between ICIs+EP and IP, but also the results of each pair of five treatment
arms of Pem+EP, Dur+EP, Atz+EP, IP, and EP. The results of the sensitivity analysis for
primary endpoint, OS, showed that the significance of efficacy comparison between any
pair of treatment groups remained unchanged. The SUCRA values and the ranks of each
treatment group were similarly maintained. The detailed results of sensitivity analysis for
comparison between ICIs+EP and EP, between ICIs+EP and IP and for ranking assessment
are shown in Tables S9 and S10, respectively. The detailed results of sensitivity analysis for
comparison between each pair of five treatment arms of Pem+EP, Dur+EP, Atz+EP, IP, and
EP and ranking assessment are shown in Tables S11 and S12, respectively.

Based on these results, we believe that the heterogeneity in PS and in geography for
study inclusion between the studies included in this NMA did not affect the final conclusions.

4. Discussion

In this study, we compared the efficacy and safety profiles between ICIs+EP (combined
population of three ICI-containing regimens) and IP for previously untreated ES-SCLC us-
ing Bayesian NMA; moreover, three ICI-containing treatment regimens (Pem+EP, Dur+EP,
and Atz+EP) were compared with each other. In terms of OS and PFS, results showed no
significant differences between ICIs+EP and IP. Furthermore, the incidence of G3-AEs was
significantly higher in the ICIs+EP, the Pem+EP, and Atz+EP groups than in the IP group,
with a more frequent incidence of G3-NP and G3-TP, whereas the incidence of G3-diarrhea
in the ICIs+EP, Dur+EP, and Pem+EP groups was significantly lower than that in the IP
group. The comparison of efficacy and safety among the three ICI-containing treatment
regimens (Pem+EP, Dur+EP, and Atz+EP) showed no significant differences in primary
efficacy or safety outcomes between any pair of treatment regimens. Regarding secondary
safety outcomes, the incidence of G3-NP was significantly higher in the Pem+EP group
than in the Dur+EP group, and the incidence of G3-AN was significantly lower in the
Dur+EP group than in the Atz+EP group. These results may provide valuable information
to clinicians regarding treatment strategies for previously untreated ES-SCLC.

Previous meta-analyses comparing ICIs plus chemotherapy with chemotherapy al-
one [45,46], and others comparing treatment regimens for previously untreated ES-
SCLC [47–49] have reported that the ICIs+chemotherapy group had a better efficacy profile
than the chemotherapy alone group. However, to date, no study has compared OS and
PFS across six therapeutic regimens, including Pem+EP, Dur+EP, Atz+EP, AP, IP, and EP,
for previously untreated ES-SCLC. Furthermore, no prior report assessed the details of
efficacy and safety profiles of the ICIs+EP compared with IP. To the best of our knowledge,
these results are the first to reveal that, although ICIs+EP had better OS and PFS than EP
and AP, OS and PFS did not significantly differ between ICIs+EP and IP. Moreover, we
found that the incidence of G3-AEs was significantly higher in ICIs+EP, in Pem+EP, or in
Atz+EP than that in IP. In addition, the results revealed that the incidence of G3-NP or
TP was significantly higher in ICIs+EP, in Atz+EP, or in Pem+EP than that in IP, whereas
the incidence of G3-diarrhea was significantly lower in ICIs+EP, in Pem+EP, or in Dur+EP
than that in IP. These new findings can help oncologists select more effective therapeutic
strategies. Our results indicate that IP should be considered for patients for whom ICI is
unavailable or unacceptable.

Although there were no significant differences in efficacy outcome between ICIs+EP
and IP, ICIs+EP was superior to AP or EP, particularly Atz+EP or Dur+EP. The possible
mechanisms underlying the combined effects of chemotherapy and immunotherapy are
shown in Figure 9.

Chemotherapy induces apoptosis in cancer cells, but some chemotherapy-resistant
cancer cells survive. Chemotherapy-induced apoptosis leads to the aggregation of activated
T cells [50,51]. The anticancer activity of aggregated T cells is inhibited by PD-L1, which
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is expressed by cancer cells; conversely, immunotherapy restores the anticancer activity
of T cells by suppressing PD-L1 [50–52]. Owing to these mechanisms, chemotherapy and
immunotherapy are more effective when used in combination than when used separately.
In addition, the tumor mutation burden (TMB) is correlated with ICI sensitivity [53], and
SCLC has been reported to exhibit higher TMB [3,4,9,10,54]. Although further investigation
is warranted to determine whether TMB correlates with tumor susceptibility for ICI-
containing regimens in ES-SCLC, a high TMB of SCLC may explain the increased efficacy
of ICI-containing treatment regimens against ES-SCLC.
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apy. Chemotherapy-induced apoptosis of cancer cells leads to the collection of activated T cells.
Programmed Death-Ligand 1 (PD-L1)-mediated suppression of anticancer T cells by cancer cells is
inhibited by treatment with ICIs, such as Pem, Dur, or Atz, which may restore T cell activation and
induce cancer cell apoptosis. Accordingly, chemotherapy and immunotherapy are more effective
when used as a combination therapy than when used separately.

In terms of ranking assessment, SUCRA values for OS showed that Atz+EP ranked the
highest, followed by Dur+EP, Pem+EP, IP, AP, and EP. Regarding safety outcome, SUCRA
values for G3-AE showed that IP ranked the safest, followed by Dur+EP, EP, Atz+EP,
and Pem+EP (Table S4). We cannot exclusively conclude that all patients with previously
untreated ES-SCLC should be treated with ICIs+EP. Rather, we believe that it is important
to identify patients that may benefit most from each treatment strategy, considering both
efficacy and safety.

Additionally, the results of the present analysis showed that G3-NP was significantly
more frequent in Pem+EP than in Dur+EP, and G3-AN was significantly less frequent
in Dur+EP than in Atz+EP. However, previous evidence in NSCLC suggests that there
is no significant difference in the frequency of hematologic toxicity among ICIs [55–57].
Therefore, we do not believe that we can conclude from our study results that the frequency
of hematologic toxicity in Dur+EP tends to be less than that in other ICIs+EP. Further
studies to validate a more detailed profile of hematologic toxicity in Dur+EP are warranted.

The present study has several limitations. First, as this study was an NMA of RCTs
performed separately, inconsistencies among the studies may have affected the results,
although no statistically significant inconsistency was detected. Second, despite adaptation
of the predefined PICOS approach, there were minor conceptual differences in the inclusion
criteria of subjects for study inclusion in this NMA between the studies included in this
analysis (i.e., differences in PS, in geography, and in platinum products, doses, and dosing
schedules used). For example, seven of the ten trials had an inclusion criterion of patients
with PSs of 0 or 1 [6–8,11,40,41,43]. Conversely, the inclusion criteria of patient PS in the
remaining three trials additionally allowed for patients with PSs of 2 [15,42,44] (Table S1).
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To address this heterogeneity, we conducted a sensitivity analysis by evaluating the effect
of the inclusion/exclusion of these three trials on the final conclusions and found that they
had an insignificant effect. Similarly, a sensitivity analysis was conducted using geography
as a variable, but no change was observed in the final conclusion. However, the possibility
of this heterogeneity effect might be unable to be completely ignored.

5. Conclusions

This study was conducted using Bayesian NMA statistical methods to evaluate and
compare the efficacy and safety of ICIs+EP with that of IP as a first-line treatment for
untreated patients with ES-SCLC. In addition, we compared the efficacy and safety of
different ICIs+EPs with each other. The result revealed that no significant differences in OS
and PFS were observed between ICIs+EP and IP and between each pair of three ICIs+EPs.
The incidence of G3-AEs was significantly higher in ICIs+EP than IP, whereas there was no
significant difference in the incidence of G3-AEs between each pair of the three ICIs+EPs.
The G3-NP or G3-TP were significantly higher in ICIs+EP than that in IP, whereas the
incidence of G3-diarrhea was significantly lower in ICIs+EP than IP.

These results may provide clinically relevant information regarding the efficacy and
safety of these treatment regimens for previously untreated ES-SCLC. Considering that
the present study is an NMA consisting of direct and indirect comparisons, verification
via a direct head-to-head RCT is necessary to confirm our results. Furthermore, the
characterization of patient profiles to identify the appropriate treatment regimen for each
patient is an important topic for future clinical research.
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Appendix A. Search Strategies in PubMed (Searched on 29 December 2020)

((“durvalumab”[ALL] OR “durvalumab”[Supplementary Concept] OR “imfinzi”[ALL]
OR “MEDI-4736”[ALL] OR “atezolizumab”[ALL] OR “atezolizumab”[Supplementary
Concept] OR “tecentriq”[ALL] OR “MPDL3280A”[ALL] OR “pembrolizumab”[ALL] OR
“pembrolizumab”[Supplementary Concept] OR “Keytruda”[ALL] OR “MK-3475”[ALL]
OR “immune checkpoint inhibitor*”[ALL] OR “anti-PD-1”[ALL] OR “anti-PD1”[ALL]
OR “anti-PD 1”[ALL] OR “pd1 inhibitor*”[ALL] OR “pd 1 inhibitor*”[ALL] OR “pd
1 inhibitor nivolumab”[ALL] OR “programmed cell death 1 receptor/antagonists and
inhibitors”[MeSH Terms] OR “programmed cell death 1 receptor antagonists and in-
hibitors”[ALL] OR “programmed cell death 1 receptor antagonist*”[ALL] OR “programmed
cell death 1 receptor inhibitor*”[ALL]) AND ((“cisplatin”[ALL] OR “cisplatin”[Supplementary
Concept] OR “CDDP”[ALL] OR “carboplatin”[ALL] OR “carboplatin”[Supplementary
Concept] OR “CBDCA”[ALL] OR “Platinum”[ALL]) AND (“etoposide”[ALL] OR “etopo-
side”[Supplementary Concept] OR “VP-16”[ALL] OR “Lastet”[ALL] OR “Vepesid”[ALL])))
OR ((“etoposide”[ALL] OR “etoposide”[Supplementary Concept] OR “VP-16”[ALL] OR
“Lastet”[ALL] OR “Vepesid”[ALL] OR “Irinotecan”[ALL] OR “Irinotecan”[Supplementary
Concept] OR “CPT-11”[ALL] OR “Campto”[ALL] OR “Amrubicin”[ALL] OR “Amru-
bicin”[Supplementary Concept] OR “Calsed”[ALL]) AND (“cisplatin”[ALL] OR “cis-
platin”[Supplementary Concept] OR “CDDP”[ALL] OR “carboplatin”[ALL] OR “car-
boplatin”[Supplementary Concept] OR “CBDCA”[ALL] OR “Platinum”[ALL])) AND
((“Small Cell Lung Cancer”[Title/Abstract] OR “Small Cell Lung Carcinoma” [Title/A-
bstract] OR “Small-Cell Lung Carcinoma”[Title/Abstract] OR “Small-Cell Lung Carci-
noma”[Title/Abstract] OR “SCLC”[Title/Abstract]) AND (“Extensive-stage”[Title/Abstract]
OR “Extensive stage”[Title/Abstract] OR “Extensive-disease”[Title/Abstract] OR “Exten-
sive disease”[Title/Abstract] OR “advanced”[Title/Abstract] OR “extensive”[Title/Abstract]))
AND (Randomized Controlled trial[Title/Abstract] OR Controlled clinical trial[Title/Abstract]
OR Randomized[Title/Abstract] OR Placebo[Title/Abstract] OR Randomly[Title/Abstract]
OR Trial[Title/Abstract] OR Drug Therapy[Title/Abstract] OR Groups[Title/Abstract]).

A total of 734 results were obtained.
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