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Abstract: Background: tRNA-derived RNA fragments (tRFs) are a novel class of small ncRNA that
are derived from precursor or mature tRNAs. Recently, the general relevance of their roles and
clinical values in tumorigenesis, metastasis, and recurrence have been increasingly highlighted.
However, there has been no specific systematic study to elucidate any potential clinical significance
for these tRFs in prostate adenocarcinoma (PRAD), one of the most common and malignant cancers
that threatens male health worldwide. Here, we investigate the clinical value of 5′-tRFs in PRAD.
Methods: Small RNA sequencing data were analyzed to discover new 5′-tRFs biomarkers for PRAD.
Machine learning algorithms were used to identify 5′-tRF classifiers to distinguish PRAD tumors
from normal tissues. LASSO and Cox regression analyses were used to construct 5′-tRF prognostic
predictive models. NMF and consensus clustering analyses were performed on 5′-tRF profiles
to identify molecular subtypes of PRAD. Results: The overall levels of 5′-tRFs were significantly
upregulated in the PRAD tumor samples compared to their adjacent normal samples. tRF classifiers
composed of 13 5′-tRFs achieved AUC values as high as 0.963, showing high sensitivity and specificity
in distinguishing PRAD tumors from normal samples. Multiple 5′-tRFs were identified as being
associated with the PRAD prognosis. The tRF score, defined by a set of eight 5′-tRFs, was highly
predictive of survival in PRAD patients. The combination of tRF and Gleason scores showed a
significantly better performance than the Gleason score alone, suggesting that 5′-tRFs can offer PRAD
patients additional and improved prognostic information. Four molecular subtypes of the PRAD
tumor were identified based on their 5′-tRF expression profiles. Genetically, these 5′-tRFs PRAD
tumor subtypes exhibited distinct genomic landscapes in tumor cells. Clinically, they showed marked
differences in survival and clinicopathological features. Conclusions: 5′-tRFs are potential clinical
biomarkers for the diagnosis, prognosis, and classification of tumor subtypes on a molecular level.
These can help clinicians formulate personalized treatment plans for PRAD patients and may have
similar potential applications for other disease types.
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1. Introduction

Prostate adenocarcinoma (PRAD) is one of the most common and malignant cancers
that threatens male health worldwide. In China, PRAD cases are increasing, with an
estimated 125,646 new cases and 56,239 deaths in 2022 [1]. The lifetime probability of
a PRAD diagnosis in men also increases significantly with age. Although the overall
survival rate of PRAD is generally better than other cancers, its recurrence rate is also
higher [2], and the majority of patients develop castration-resistant PRAD at advanced
stages [3]. Despite great advances in the diagnosis and prognosis of PRAD [4], clinical
parameters such as serum prostate-specific antigen (PSA) lack specificity for diagnosis and
cannot definitively indicate individual prognosis [5]. Over recent years, increased numbers
of other biomarkers have been used for the clinical diagnosis and prognosis of PRAD.
Of note, urine levels of 8-OHdG and 8-Iso-PGF2α before and after surgery in patients
with PRAD can help predict radicality (and possibly local recurrence) after robot-assisted
radical prostatectomy [6]. However, clear biomarkers that facilitate accurate diagnosis,
prognosis, and subtype classification are still lacking [7]. The identification of new, more
definitive diagnostic and therapeutic biomarkers for PRAD would therefore be of great
clinical significance.

tRNA-derived RNA fragments (tRFs) are a novel class of small noncoding RNAs
(ncRNAs) that are derived from precursor or mature tRNAs. So far, many thousands
of tRFs have been identified. These tRFs are broadly classified into six categories based
on the cleavage sites at their parental tRNA: 5′-tRFs, 3′-tRFs, 5′-tRNA halves, 3′-tRNA
halves, i-tRFs, and 3′U-tRFs (also known as tsRNAs or 1-tRF) [8,9]. RNase Z and ELAC2
cleave the 3′ end of the precursor tRNAs to generate 1-tRF [10]. The other three classes of
tRFs are generated from different parts of mature tRNAs, with 5′ ends in the D-loop for
5′-tRFs, 3′ end in TψC loop for 3′-tRFs, and internal sites for i-tRFs [11]. In contrast, tRNA
halves (including 5′-tRNA halves and 3′-tRNA halves) are generated from endonucleolytic
cleavage of mature tRNA in the anti-code loop under angiogenin (ANG). These are also
called tRNA-derived stress-induced RNAs [12].

Rather than random degradation products of tRNAs, tRFs are highly abundant and
conserved across species, and their cleavages are site-specific [9]. Mounting evidence
suggests that these small ncRNAs play important roles in cancer development and progres-
sion [13]. Aberrant expression of tRFs has been found to be involved in cell proliferation,
invasive metastasis, and the progression of several human malignancies [9]. For example,
CU1276 is involved in suppressing proliferation and modulating molecular responses to
DNA damage by repressing endogenous RPA1 in B cell lymphoma [14]. tRFGlu, tRFAsp,
tRFGly, and tRFTyr can play tumor suppressive roles by destabilizing oncogenic transcripts
by binding to YBX1 in breast cancer cells [15]. LeuCAG3′tsRNA can promote hepatocellular
carcinogenesis by binding to two ribosomal protein mRNAs (RPS28 and RPS15) to enhance
their translation [16]. Likewise, previous studies have also identified multiple tRFs involved
in various aspects of prostate cancer [17]. tRNA-halves (also called SHOT-RNAs) from
tRNAAsp-GUC, tRNAHis-GUG, and tRNALys-CUU have been noted as promoters of cellular
proliferation in breast cancer and PRAD in a sex hormone-dependent manner [18]. tRF-1001
is required for cell proliferation, resulting from the cleavage of the Ser-TGA tRNA precursor
transcript by tRNA 3′-endonuclease ELAC2 cutting in PRAD [8]. tRF-315, derived from
tRNA-Lys-CTT, prevents cisplatin-induced apoptosis and attenuates cisplatin-induced
mitochondrial dysfunction in PRAD cells [19]. The expression of tRFs is also affected
during cancer development and progression, due to the activation of oncogenes and the
inactivation of tumor suppressors [20,21].
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In this regard, aberrantly expressed tRFs have great potential as new biomarkers for
cancer diagnosis, prognosis, and tumor subtypes [9,13]. To assess the clinical significance
of new tRF biomarkers for PRAD, this study analyzed small RNA sequencing data from
499 tumor tissues and 52 adjacent normal tissues of PRAD from The Cancer Genome Atlas
(TCGA) dataset.

2. Methods
2.1. Data Collection

Small RNA sequencing datasets of 499 tumor tissues and 52 adjacent normal tissues,
and PRAD somatic mutation datasets from TCGA, were downloaded from the Genomic
Data Commons Portal (https://portal.gdc.cancer.gov/, accessed on 24 April 2021). The
corresponding PRAD mRNA expression profiles (read counts) and patients’ clinical in-
formation, including survival time, age, and tumor stage, were downloaded from the
International Cancer Genome Consortium (ICGC) Data Portal (https://dcc.icgc.org, ac-
cessed on 26 April 2021). Gene annotations and corresponding sequences for 610 nuclear
tRNA genes in humans were downloaded from GtRNAdb (https://gtrnadb.ucsc.edu, ac-
cessed on 26 April 2021). The sequences and positions of 22 mitochondrial tRNA genes were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/251831106, accessed on
26 April 2021). All these datasets were further processed before subsequent analysis.

2.2. Identification and Quantification of 5′-tRFs in PRAD

A tRF annotation database for mapping and quantifying tRFs was built as previously
described [22]. Using the created tRF annotation database, 5′-tRFs were detected and
quantified from the small RNA sequencing datasets of PRAD. Briefly, reads in these BAM
files were first remapped to sequence sets of our CCA-tRNA and pre-tRNA annotations
using the burrows-wheeler transform (BWA) algorithm (http://biobwa.sourceforge.net/,
accessed on 23 February 2021), allowing for no mismatches per read. These remapped
reads were then used to count the number of reads belonging to each of the candidate
5′-tRFs. Finally, the expression level of 5′-tRFs was quantified as reads per million (RPM) of
total mapped reads. To obtain robust 5′-tRFs, the 5′-tRFs with 90th quantile RPM < 1 were
filtered, and those remaining were treated as detectable 5′-tRFs in PRAD. Furthermore, the
expression level of 5′-tRFs was log2-transformed and then the upper-quantile normalized
across samples before being used for downstream analysis.

2.3. Quantification of mRNA Expression Levels

mRNA expression levels from the corresponding PRAD samples in TCGA were
normalized using the read per kilobase per million mapped reads (RPKM). Similarly,
low-expressed genes with 90th quantile RPKM < 1 were removed and the remaining
log2-transformed RPKM values were used for downstream analysis.

2.4. Identification of 5′-tRFs Dysregulated in PRAD

Expression levels of 5′-tRFs were compared between tumor tissues and adjacent nor-
mal tissues using a two-sample unpaired Wilcoxon rank sum test. Differentially expressed
5′-tRFs were detected using the Benjamini–Hochberg corrected p-value (i.e., false discovery
rate, FDR) < 0.01 and |log2FC| > 1 between tumor and normal samples (Table S1). Next,
the 13 most upregulated 5′-tRFs with |log2FC| > 2 and FDR < 0.01 were selected as tRF
classifiers for the diagnosis of PRAD. Then, mathematical models were constructed to
distinguish PRAD tumor tissues from normal tissues using different machine learning
algorithms, such as random forest (RF), support vector machine (SVM), generalized linear
model (GLM), and partial least squares (PLS). The receiver operation characteristic (ROC)
was used to assess the sensitivity and specificity of the 5′-tRFs classifier at various classi-
fication thresholds. The area under the ROC curve (AUC) was calculated to evaluate the
overall performance of tRF classifiers.

https://portal.gdc.cancer.gov/
https://dcc.icgc.org
https://gtrnadb.ucsc.edu
https://www.ncbi.nlm.nih.gov/nuccore/251831106
http://biobwa.sourceforge.net/
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2.5. Inference of Potential Functions of 5′-tRFs

Studying the function of 5′-tRF is always problematic due to a lack of “prior” knowl-
edge. To infer the functional role of dysregulated 5′-tRFs in PRAD, guilt by association
(GBA) analysis was performed. Based on co-expression patterns, GBA has been widely
used to study long non-coding RNAs [23]. Briefly, Pearson’s correlations (r) between expres-
sion of mRNA genes and dysregulated 5′-tRFs were estimated. mRNA genes co-expressed
with dysregulated 5′-tRFs were identified when |r| > 0.3 and FDR < 0.05 were satisfied.
Then, gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses of mRNA genes co-expressed with upregulated 5′-tRFs were performed using the
web portal Metascape (https://metascape.org/ accessed on 28 March 2022).

2.6. Construction of Prognostic Predictor of 5′-tRFs

The association of 5′-tRF expression with PRAD prognosis was analyzed using the
univariate Cox proportional hazards regression model. As a result, a set of 16 5′-tRFs that
were significantly correlated with progression-free survival (PFS) was identified (p-value
from both Wald test and log rank test <0.05). The hazard ratio (HR) and its 95% confidence
interval (CI), Z-score, and p-value for each of these 16 5′-tRFs are listed in Table S2.

The least absolute shrinkage and selection operator (LASSO) was performed to select
prognostic 5′-tRFs candidates using the R package ‘glmnet’ (v4.1-1). The optimal lambda
was determined by 10-fold cross-validation, ultimately leading to the identification of
13 5′-tRFs by the LASSO analysis. These selected 5′-tRFs were further analyzed using a
multivariate Cox regression model, of which eight 5′-tRFs remained statistically significant.
To construct a prognostic model for PRAD, these eight 5′-tRFs were combined into one tRF
score by summing their expression values multiplied by their corresponding coefficients in
a multivariate Cox model. PRAD patients were divided into two groups according to the
median tRF score. Kaplan–Meier curves of PFS and DFS were plotted for low and high tRF
score groups, as implemented in the R package ‘survival’. The survival differences between
two groups were assessed using a log rank test. The AUC metric was used to evaluate the
overall performance of the tRF prognostic models for predicting 1-year, 3-year, and 5-year
PFS and DFS using the R package ‘timeROC’ (v0.4). The association of clinical features (age,
Gleason score, PSA, and the combination of Gleason and TS scores) with patient prognosis
was also analyzed using the Cox regression models.

2.7. Identification of Tumor Subtypes Based on tRF Expression

The non-negative matrix factorization (NMF) method and consensus clustering analy-
sis were performed on 5′-tRF expression profiles to identify molecular subtypes of PRAD.
The consensus clustering with K-means method was then implemented in the R package
‘ConsensusClusterPlus’ (v1.58.0). Low-variation 5′-tRFs with interquartile ranges (IQRs) of
<0.5 were filtered before NMF and cluster analyses. The optimal number of subtypes was
determined according to the cophenetic and dispersion correlation coefficients. Kaplan–
Meier curves of PFS and DFS were plotted for these 5′-tRFs expression subtypes. The
log-rank test was used to evaluate the statistical differences in survival between different
tRF subtypes.

2.8. Mutational Data Analysis

Segment files of PRAD derived from SNP 6.0 Affymetrix arrays were downloaded
from TCGA. The segment files were divided into four categories (including tF-1, tF-2, tF-3,
and tF-4), and then input into the online web portal Hiplot for the detection of amplifica-
tion and deletion in each tumor’s genome (https://hiplot-academic.com/, accessed on
30 March 2022). The gene mutation data from PRAD were retrieved from the MAF file of
TCGA, including single nucleotide variants (SNPs) and small insertions (INS) or deletions
(DEL). These were then analyzed using the R package maftools (v. 2.10.5). The tumor
mutational burden (TMB) was calculated by counting the number of non-synonymous
somatic mutations per mega-base in protein-coding regions. DNA damages in PRAD

https://metascape.org/
https://hiplot-academic.com/


Curr. Oncol. 2023, 30 985

tumor cells, including aneuploidy and homologous recombination deficiency (HRD), were
quantitatively measured [24]. The HRD score was measured by summing three DNA-based
measures of genomic instability: large (>15 Mb) non-arm-level regions with LOH, large-
scale state transitions (breaks between adjacent segments of >10 Mb), and subtelomeric
regions with allelic imbalance. The aneuploidy score (AS) for each tumor was measured by
counting the number of arm-level gains and losses for a tumor, adjusted for ploidy [25].

2.9. Statistical Analysis

Continuous data were expressed as mean ± standard deviation (SD). Categorial data
were presented as counts and frequencies. The Wilcoxon rank sum test was used to compare
continuous variables between two groups. The Kruskal–Wallis H test was performed to
compare continuous variables among more than two groups. The Chi-squared test was
used to evaluate categorical data among several groups. p < 0.05 was considered statistically
significant. For multiple comparisons, the Benjamini–Hochberg procedure was used for
correcting p-values (i.e., FDR). All statistical analyses were performed using the R statistical
package (v4.0.2).

3. Results
3.1. 5′- tRFs Are Dysregulated in PRAD

We analyzed small RNA-sequencing data from 499 tumor tissues and 52 adjacent
normal tissues of PRAD from TCGA. To obtain robust 5′-tRF profiles, 5′-tRFs with a 90th
quantile RPM < 1 were filtered. As a result, 292 5′-tRFs were detected in these PRAD
samples. Globally, 5′-tRFs tended to be upregulated in PRAD tumor samples compared to
their adjacent normal samples (Figure 1A), of which 63 were significantly upregulated and
7 were significantly downregulated (FDR < 0.01 and |log2FC| > 1) (Figure 1B and Table S1).
Whilst a similar analysis for 3′-tRFs was performed, very few 3′-tRFs were detected as
differentially expressed between PRAD tumors and adjacent normal tissues and thus this
research direction was not pursued further in our study.

To infer the functional roles of these upregulated 5′-tRFs, a causal association analysis
based on co-expression patterns was performed for PRAD samples. It is well known that
a group of co-expressed genes tend to have similar functions or be involved in common
biological processes. This analysis yielded a total of 2008 protein-coding genes that were
significantly co-expressed with these 5′-tRFs (FDR < 0.05 and |r| > 0.3). These genes
were mainly enriched in areas of focal adhesion, cGMP-PKG, Rap1, and Hippo signaling
(Figure 1C), and in several molecular functions such as glycosaminoglycan binding, kinase
binding, and integrin binding (Figure S1). In other words, these upregulated 5′-tRFs were
potentially involved in the above-mentioned signaling pathways and molecular functions.

3.2. 5′- tRFs Are Novel Biomarkers for Diagnosis of PRAD

5′-tRFs showed distinct expression patterns between PRAD tumors and adjacent
normal tissues (Figures 2A and S2). Of note, 63 of the 70 dysregulated 5′-tRFs were
abnormally upregulated in PRAD tumors and thus considered to have great potential as
clinical biomarkers for the diagnosis of PRAD. To evaluate whether these upregulated
5′-tRFs could indeed be used as clinical diagnostic biomarkers for PRAD, we selected
the top 13 upregulated 5′-tRFs with fold changes >4 to build 5′-tRFs classifiers (Table S1).
First, we randomly divided 551 PRAD tumor samples in TCGA into a training set (70%)
and a testing set (30%). Next, we constructed mathematical models for the diagnosis of
PRAD using four machine learning algorithms, including random forest (RF), support
vector machine (SVM), generalized linear model (GLM), and partial least squares (PLS)
analyses (Figure 2B). Then, the receiver operation characteristic (ROC) was used to assess
the performance of the 5′-tRFs classifier at various classification thresholds. The area
under the ROC curve (AUC) of the 5′-tRFs classifier defined by RF, GLM, SVM, or PLS
achieved 0.912, 0.943, 0.954, or 0.963, respectively (Figure 2C). These results demonstrated
that 5′-tRFs have great potential as valuable diagnostic biomarkers and that these 5′-tRFs
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classifiers consistently exhibit high sensitivity and specificity towards distinguishing PRAD
tumor samples from normal samples.
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between PRAD tumors and normal tissues.
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3.3. 5′- tRFs Are Novel Biomarkers for Prognosis of PRAD

Next, we evaluated whether these 5′-tRFs could be used as clinical prognostic biomark-
ers for PRAD. Firstly, the association of each individual 5′-tRF with PRAD prognosis was
examined using a univariate Cox regression model. Secondly, the identified 5′-tRFs with
marginal significance (p < 0.05) were subjected to variable selection using the least abso-
lute shrinkage and selection operator (LASSO) according to their prognostic predictive
values (Figure S3A). This LASSO analysis identified a set of 5′-tRFs (13 5′-tRFs in total)
that were strongly associated with clinical outcomes in PRAD (Table S2). Thirdly, this set
of 5′-tRFs was further assessed using a multivariate Cox regression model. As a result,
eight 5′-tRFs collectively showed significant prognostic values in predicting PFS in PRAD
patients (Table S3 and Figure S3B).

The eight 5′-tRFs were then combined into one tRF score (TS) as a prognostic signature
for PRAD by summing their expression values multiplied by their corresponding coef-
ficients in multivariate Cox models (Table S3). Kaplan–Meier survival curves were then
plotted for groups of patients stratified by the median tRF score (Figure 3A,B). Patients with
a lower tRF score had a significantly longer PFS (log rank test, p = 6.85 × 10−9) and DFS
(p = 1.50 × 10−7) than those with a higher tRF score. For PFS, the hazard ratio for the tRF
score reached 1.67 (CI, 1.42–1.96), while the hazard ratios for two common clinical parame-
ters, the Gleason score (GS) and PSA, were 2.47 (1.95–3.13) and 1.02 (1.00–1.03), respectively
(Figure 3C). For DFS, the hazard ratio for the tRF score reached 1.90 (1.47–2.46), while the
hazard ratios for the two clinical parameters were 2.39 (1.66–3.44) and 1.01 (0.96–1.06),
respectively (Figure 3D). When considering the associations of tRF score, Gleason score,
or PSA with PRAD patient outcomes in the same multivariate Cox regression model, tRF
score and Gleason scores remained statistically significant, but PSA did not (Figure S3C,D).
These results suggested that 5′-tRFs are valuable prognostic biomarkers, and increased tRF
scores are associated with poor prognosis in PRAD patients.

3.4. 5′- tRFs Provide Independent Prognostic Information for PRAD

Furthermore, we evaluated whether 5′-tRF is suitable as an independent prognostic
factor for PRAD. The AUC values of the tRF score, Gleason score, and PSA for predicting
the risk of a 5-year PFS were 0.733, 0.740, and 0.571, respectively (Figure S4A). The AUC
values of the three biomarkers for predicting the risk of a 5-year DFS were 0.792, 0.731, and
0.573, respectively (Figure S4B). A similar performance of these biomarkers was observed
in predicting the risk of 1-year and 3-year PFS and DFS (Figure S4C–F). Interestingly, the
combination of the tRF and Gleason scores showed significantly better performance than
the Gleason score alone (Figure 4). For instance, the AUC values of the combined tRF and
Gleason scores for predicting a 5-year PFS and DFS were 0.788 and 0.815, respectively,
which were significantly higher than the corresponding AUC values of 0.740 (p = 0.006)
and 0.731 (p = 0.003) for the Gleason score alone (Figure 4A,B). The superiority of the
combination of tRF and Gleason scores was also demonstrated in predicting 1-year and
3-year PFS and DFS (Figure 4C–F).
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their 95% confidence interval (CI) of GS, TS, PSA, and age from the univariate Cox regression model
for PFS (C) and DFS (D). PFS: progression-free survival; DFS: disease-free survival; TS: tRF score; GS:
Gleason score; PSA: serum prostate-specific antigen.

For visualization purposes, nomogram models that incorporate the corresponding tRF
and Gleason scores for predicting 1-year, 3-year, and 5-year PFS and DFS were established
(Figure S4G,H). In these nomogram models, a probability of 1-year, 3-year, and 5-year PFS
and DFS survival could be queried for PRAD patients. Taken together, these results sug-
gested that 5′-tRFs are independent prognostic biomarkers and offer additional prognostic
information independent of the Gleason score for PRAD patients.

3.5. 5′- tRFs Are Novel Biomarkers for the Tumor Classification of PRAD

We then assessed whether these 5′-tRFs could be used as clinical biomarkers for
the tumor classification of PRAD. We conducted a NMF clustering analysis for 5′-tRFs
expression data to identify molecular subtypes and determined four clusters (termed as
tF-1, n = 107; tF-2, n = 82; tF-3, n = 132; and tF-4, n = 169, respectively) as an optimal choice
according to the cophenetic correlation coefficients, each of which has its own specific
5′-tRFs expression pattern (Figures 5A and S5). Meanwhile, consensus clustering was also
carried out on 5′-tRFs data. Interestingly, we found that the result of consensus clustering
was consistent with that of the NMF method (Figure 5B). Furthermore, Kaplan–Meier
survival analyses showed that there were significant differences in the survival times
between these four PRAD molecular subtypes (p = 1.10 × 10−3 for DFS and p = 6.24 × 10−4

for PFS). Among these tRF subtypes, tF-1 had the best clinical outcome, while the tRF-2
had the worst clinical outcome, with tF-3 and tF-4 lying in a mid-range between the above
two (Figure 5C,D).
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Figure 4. Expression of 5′-tRFs provides additional PRAD prognostic information independent of
Gleason score. (A,C,E) ROC curves to evaluate the prognostic performance of 5-year (A), 3-year
(C), and 1-year (E) PFS, using TS, GS, or TS and GS. (B,D,F) ROC curves to evaluate the prognostic
performance of 5-year (B), 3-year (D), and 1-year (F) DFS, using TS, GS, or TS and GS. Bivariate
prognostic models of GS and TS (i.e., GS and TS) were compared with univariate prognostic models
to assess whether TS or GS could provide independent prognostic information. p value less than
0.05 indicates that the performance of the bivariate prognostic models of GS and TS (i.e., GS and TS)
is significantly better than that of the univariate prognostic model. TS: tRF score; GS: Gleason score.
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5′-tRFs in PRAD samples yielded four stable subgroups using a non-negative matrix factorization
(NMF) approach. (B) Tumors were clustered into four subtypes according to 5′-tRF expression
profiles. (C,D) Kaplan–Meier survival analysis of PFS (C) and DFS (D), showing significant prognostic
differences among 5′-tRFs expression subtypes.

In addition to their different clinical outcomes, these tRF subtypes also showed great
variability in clinicopathological features such as PSA (Kruskal–Wallis H test, p = 0.02),
Gleason score (Kruskal–Wallis H test, p = 2.07 × 10−6), and grade group (Chi-squared
test, p = 3.93 × 10−7). Interestingly, the tF-1 subtype with the best prognosis tended to
have a lower Gleason score, while the tF-2 with the worst prognosis tended to have
a higher Gleason score. Similar trends were observed in grade groups for these tRF
molecular subtypes. These findings indicated that 5′-tRFs are valuable biomarkers for the
tumor classification of PRAD, and these molecular subtypes classified by 5′-tRFs exhibit
significantly different clinicopathological characteristics (Table 1).
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Table 1. Clinicopathological features of four tRF subtypes of PRAD.

tF-1
(n = 107)

tF-2
(n = 82)

tF-3
(n = 132)

tF-4
(n = 169) p Value

Age 60.60 ± 6.72 61.41 ± 6.37 61.60 ± 6.78 60.54 ± 7.01 0.744
PSA 9.22 ± 9.42 11.68 ± 8.83 12.74 ± 15.95 10.53 ± 11.8 0.020

Gleason score 2.07 × 10−6

6 17 (15.89%) 2 (2.44%) 13 (9.85%) 13 (7.69%)
7 69 (64.49%) 36 (43.90%) 51 (38.64%) 87 (51.48%)
8 13 (12.15%) 9 (10.98%) 17 (12.88%) 25 (14.79%)

9/10 8 (7.47%) 35 (42.68%) 51 (38.63%) 44 (26.04%)
Grading group 3.93 × 10−7

1 17 (15.89%) 2 (2.44%) 13 (9.85%) 13 (7.69%)
2 47 (43.93%) 15 (18.29%) 31 (23.48%) 51 (30.18%)
3 22 (20.56%) 21 (25.61%) 20 (15.15%) 36 (21.30%)
4 13 (12.15%) 9 (10.98%) 17 (12.88%) 25 (14.79%)
5 8 (7.47%) 35 (42.68%) 51 (38.64%) 44 (26.04%)

3.6. Genomic Landscapes of 5′-tRFs Tumor Subtypes of PRAD

To depict the genetic landscapes of these four 5′-tRFs PRAD subtypes, we analyzed
somatic mutation data and somatic copy-number variation from TCGA. We first estimated
the tumor mutational burden (TMB) by counting the number of non-synonymous somatic
mutations per mega-base in the protein-coding regions. The tF-2 patients had the highest
TMB, while the tF-1 and tF-4 patients had the lowest TMB among these 5′-tRF subtypes
(Figure 6A). Next, we estimated homologous recombination defects (HRD), characterized by
the inability of cells to effectively repair DNA double-strand breaks using the homologous
recombination repair pathway [26]. Tumor cells from the tF-1 subtype were found to have
fewer HRDs, while tumor cells from the tF-2 subtype had an increased number of HRDs
(Figure 6B). We then estimated the aneuploidy score (AS) for each tumor by counting the
number of arm-level gains and losses for a tumor, adjusted for ploidy. The tF-1 tumor
subtype tended to have a low AS, while the tF-2 tumor subtype tended to have high a AS
(Figure 6C). In addition, we estimated number of segmental duplications on each tumor
genome. More segmental duplications were observed in tF-2 than in tF-1 (Figure 6D).
Consistently, the tF-1 tumor subtype had much fewer copy-number variations than the
tF-2 tumor subtype (Figures 6E and S6). These results suggested that these 5′-tRFs tumor
subtypes of PRAD exhibit distinct genomic landscapes in tumor cells. The best prognostic
tF-1 subtype represented mild genomic alternations, and the worst prognostic tF-2 subtype
represented a far more severe genomic alternation in tumor cells. The other two subtypes,
tF-3 and tF-4, lay somewhere between the other two in this respect.

We also investigated whether these 5′-tRFs tumor subtypes of PRAD were driven by
some key molecular events, such as androgen-regulated fusions of ERG or other ETS family
members, or by other recurrent driver mutations. Interestingly, the tF-1 tumor subtype
tended to have more frequent ETS family gene fusions than the tF-2 tumor subtype. These
four 5′-tRFs tumor subtypes also showed significantly different frequencies of recurrent
mutations in driver genes such as FOXA1 and KMT2D, with tF-2 having the highest
frequency (Table 2). Taken together, these results suggested that these 5′-tRFs molecular
subtypes are genomically distinct subgroups of PRAD. Understanding these genomically
distinct alterations of these 5′-tRFs subtypes will therefore lead to a better diagnosis,
prognosis, and treatment of PRAD.
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Figure 6. Distinct genomic landscapes among 5′-tRFs tumor subtypes. (A) Tumor mutation burden.
The TMB was estimated by the number of non-synonymous somatic mutations (single nucleotide
variants and small insertions/deletions) per Mb in protein-coding regions. (B) Homologous recombi-
nation defects. The HRD score was calculated by summing three DNA-based measures of genomic
instability: large (>15 Mb) non-arm-level regions with LOH, large-scale state transitions (breaks
between adjacent segments of >10 Mb), and subtelomeric regions with allelic imbalance. (C) Ane-
uploidy score. The AS is the total number of arm-level gains and losses for a tumor, adjusted for
ploidy. (D) Number of segments. The number of segments was the total number of segments in each
tumor’s copy number profile. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: nonsignificant. (E)
Somatic copy number variation. Chromosomes are represented along the vertical axis, samples are
arranged horizontally; red indicates copy number amplification and blue indicates copy number loss.



Curr. Oncol. 2023, 30 994

Table 2. Key driver events in four tRF subtypes of PRAD.

tF-1
(n = 89)

tF-2
(n = 52)

tF-3
(n = 38)

tF-4
(n = 147) p Value

ERG (fusion) 1.24 × 10−4

Yes 34(38.20%) 12(23.08%) 16(42.10%) 84(57.14%)
No 55(61.80%) 40(76.92%) 22(57.90%) 63(42.86%)

FOXA1 (mutation)
Yes 5(5.62%) 5(9.62%) 1(2.63%) 2(1.36%) 0.038
No 84(94.38%) 47(90.38%) 37(97.37%) 145(98.64%)

KMT2D (mutation) 0.0018
Yes 1(1.12%) 7(13.46%) 1(2.63%) 2(1.36%)
No 88(98.88%) 45(86.54%) 37(97.37%) 145(98.64%)

ZMYM3 (mutation) 0.063
Yes 0(0.00%) 3(5.77%) 1(2.63%) 2(1.36%)
No 89(100%) 49(94.23%) 37(97.37%) 145(98.64%)

4. Discussion

tRFs are a relatively newly discovered class of small ncRNAs that result from the
precise cleavage of precursor or mature tRNAs by different types of nucleases. Over the
recent years, their roles and clinical values in tumorigenesis, metastasis, and recurrence
have attracted increasing attention [9]. However, there has been no systematic study to
clarify the potential of these tRFs, especially 5′-tRFs, in the diagnosis, prognosis, and
tumor classification of PRAD. In this study, we analyzed small RNA sequencing data to
systematically assess the clinical values of 5′-tRFs in prostate adenocarcinoma. Our study
demonstrated 5′-tRFs as promising clinical biomarkers for the diagnosis, prognosis, and
classification of tumor molecular subtypes, which show strong potential to aid clinicians in
developing personalized treatment plans for PRAD patients.

The overall levels of 5′-tRFs were significantly upregulated in the PRAD tumor samples
compared to their adjacent normal samples. Interestingly, these aberrantly expressed 5′-
tRFs were noted as those critically involved in many cancer-related pathways such as focal
adhesion, cGMP-PKG, Rap1, and Hippo signaling, as well as in multiple related molecular
functions such as glycosaminoglycan and integrin binding. For example, focal adhesion
kinase is positively associated with the WHO grade group, tumor stage, Gleason score,
perineural invasion, and extracapsular extension in PRAD [27]. Similarly, upregulation
of the Hippo signaling effector YAP1 was noted to contribute to an earlier recurrence
of PRAD [28]. It has also been reported that the increased expression of proteoglycans,
including versican, biglycan, and syndecan-1, is associated with poor PRAD prognosis [29].
These abnormally upregulated 5′-tRFs in PRAD tumors therefore have great potential
as clinical biomarkers for the diagnosis of PRAD. tRF classifiers composed of 13 such
5′-tRFs achieved AUC values as high as 0.963, showing high sensitivity and specificity in
distinguishing PRAD tumor samples from normal samples.

In addition to serving as diagnostic biomarkers, multiple 5′-tRFs were identified as
being associated with the PRAD prognosis. The tRF score, as defined by a set of 8 such
5′-tRFs, was highly predictive of PFS and DFS in PRAD patients. PRAD with high tRF
scores tended to have a worse prognosis than those with low tRF scores. The Gleason
scoring system, the most common prostate cancer grading system, is based on the extent to
which the cancer looks like healthy tissue when viewed under a microscope. In addition to
determining the tumor stage, the Gleason score helps the clinician tailor a patient-specific
treatment plan. PRAD with low Gleason scores tends to be less aggressive and have
better outcomes than those with high Gleason scores. The AUC values of the tRF score,
Gleason score, and PSA for predicting the risk of 5-year PFS were 0.733, 0.740, and 0.571,
respectively, while the AUC values of the three biomarkers for predicting the risk of 5-
year DFS were 0.792, 0.731, and 0.573, respectively. Interestingly, the combination of the
tRF and Gleason scores showed significantly better performance than the Gleason score
alone, suggesting that 5′-tRFs can offer PRAD patients additional accuracy in prognostic
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information. Therefore, integrating the clinically commonly used Gleason score with the
new biomarker tRF score will further improve individualized prognostic assessment and
clinical decision-making in PRAD patients.

5′-tRFs can also serve as biomarkers for the molecular classification of tumor subtypes
in PRAD. Four molecular subtypes of PRAD tumor were identified based on their 5′-tRF
expression profiles. These tRF molecular subtypes exhibited marked differences in survival,
with tRF-1 having the best outcome, tRF-2 having the worst, and both tRF-3 and tRF-4
having an intermediate prognosis. These subtypes classified by 5′-tRFs are also clinically
relevant, characterized by different clinicopathological features. For example, the best
prognostic tF-1 subtype tended to have a small Gleason score and a low-grade tumor, while
the worst prognostic tF-2 tended to have a large Gleason score and a high-grade tumor.

These 5′-tRFs tumor subtypes of PRAD also bear distinct genomic landscapes in tumor
cells. The tF-1 subtype with the best prognosis carried mild genomic alternations in tumor
cells, while the tF-2 subtype with the worst prognosis carried much more severe genomic
alternations in tumor cells. The other two subtypes, tF-3 and tF-4, lay intermediate between
the two in this regard. Furthermore, these 5′-tRFs subtypes were driven by different
key molecular events, such as androgen-regulated fusions of ERG and other ETS family
members or recurrent driver mutations. For example, the tF-1 tumor subtype tended to
have more frequent ETS family gene fusions than the tF-2 tumor subtype.

The molecular subtype classification of PRAD tumors by 5′-tRFs can not only provide
clinicians with additional valuable prognostic information independent of the Gleason score
but can also help clinicians formulate personalized treatment plans. Immunotherapy can
improve the ability of the immune system to detect and destroy tumor cells. Over the recent
years, many patients have benefited from immunotherapy, including some with metastatic
cancers such as melanomas, lung cancer, and renal cell carcinoma. To compensate for the
insufficiency of surgery and radiotherapy, immunotherapy was developed to try to alter the
tumor immune-related microenvironment to treat PRAD [30]. However, only a minority of
prostate cancer patients show positive responses to immunotherapy [30]. The tF-2 subtype
has a higher TMB and more genomic alterations than the other subtypes and therefore may
respond better to immunotherapy.

Furthermore, the tF-1 tumor subtype has more frequent ETS family gene fusions
(such as ERG and ETV1) than the tF-2 tumor subtype. Therefore, the tRF-1 subtype
may be more sensitive to, and therefore preferential for, androgen deprivation therapy
than the tRF-2 subtype [31]. Recent preclinical studies have demonstrated an association
between ETS gene fusions and components of the DNA damage response pathway [32].
Targeting DNA damage response pathways with inhibitors of PARP1, DNAPK, and HDAC1
may also be an alternative therapeutic option for the tRF-1 subtype with frequent EST
gene fusions. HRD scores quantify the extent to which double-strand breaks in DNA in
tumor cells cannot be repaired. Clinical trials have also shown that high levels of these
HRD scores are associated with better responses to PARP inhibitor- or platinum-based
therapy in ovarian and breast cancer [33,34]. Therefore, the tRF-2 subtype may respond
better to PARP inhibitor- or platinum-based therapy than the other tRF subtypes in PRAD
patients. A recent study showed that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN
are associated with trastuzumab resistance in breast cancer [35]. Whether these individual
5′-tRFs also play a role in resistance to PRAD treatments, such as androgen deprivation
therapy, and whether they may be potential clinical biomarkers of drug sensitivity, remains
to be further investigated.

Several caveats about our study should be acknowledged. Firstly, our tRF classifiers,
survival prediction models, and tRF molecular subtypes were established based on the
PRAD data from TCGA. These new findings require further validation from independent
large clinical cohorts before they can be used clinically as diagnostic, prognostic, or sub-
typing biomarkers for PRAD. Although 5′-tRFs may provide additional and improved
prognostic information for PRAD patients independent of the Gleason score, identifying
which group of patients may benefit from the biopsy analysis of these biomarkers requires
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further study. In addition, developing clinically applicable PCR assays for these biomarkers
is not trivial. Secondly, in this study we focused only on 5′-tRFs; other types of tRFs,
including 3′-tRFs, should be further integrated into future investigations. Thirdly, tRFs are
abundant and can be detected in bodily fluids such as blood samples, urine, saliva, and
exosomes, making them promising non-invasive biomarkers for complex diseases such as
cancer [9]. Therefore, the clinical value of these 5′-tRFs in the peripheral blood or urine
of PRAD patients deserves further evaluation. Fourth, functional investigation of these
dysregulated tRFs may help reveal novel mechanisms that underlie the development and
progression of PRAD, and these warrant further research.

5. Conclusions

In summary, our study established a novel class of small ncRNAs-tRFs as potential
clinical biomarkers for the diagnosis, prognosis, and classification of tumors in PRAD
patients. These findings may not only provide clinicians with valuable diagnostic and
prognostic information independent of the Gleason score but may also help clinicians
formulate better treatment plans. Functional investigation of these dysregulated tRFs will
help reveal novel mechanisms of PRAD development and progression.
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Abbreviations

tRFs tRNA-derived RNA fragments
PRAD prostate adenocarcinoma
PSA serum prostate-specific antigen
ncRNAs small noncoding RNAs
ANG angiogenin
TCGA The Cancer Genome Atlas
ICGC International Cancer Genome Consortium
BWA burrows-wheeler transform
RPM reads per million
RPKM read per kilobase per million
FDR false discovery rate
RF random forest
SVM support vector machine
GLM generalized linear model
PLS partial least squares
ROC receiver operation characteristic
GBA guilt by association
GO gene ontology
KEGG Kyoto encyclopedia of genes and genomes
PFS progression-free survival
HR hazard ratio
CI confidence interval
LASSOl east absolute shrinkage and selection operator
NMF non-negative matrix factorization
IQRs interquartile ranges
SNP single nucleotide polymorphism
INS small insertions
DEL deletions
TMB tumor mutational burden
HRD homologous recombination deficiency
AS aneuploidy score
SD standard deviation
TS tRF score
GS Gleason score
DFS disease-free survival
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