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Abstract: Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming
nature. Different saponins have been characterized and purified and are gaining attention in cancer
chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activ-
ities. Several studies have reported the role of saponins in cancer and the mechanism of actions,
including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis
and autophagy. Despite the extensive research and significant anticancer effects of saponins, there
are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed
to a number of limitations, including toxicities and drug-likeness properties. Recent studies have
explored options such as combination therapy and drug delivery systems to ensure increased efficacy
and decreased toxicity in saponin. This review discusses the current knowledge on different saponins,
their anticancer activity and mechanisms of action, as well as promising research within the last two
decades and recommendations for future studies.

Keywords: saponins; anticancer activities; traditional plants; mechanism of action; cell-cycle arrest;
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1. Introduction

Cancer is a group of diseases that is characterized by uncontrolled cell proliferation.
This unconstrained cell growth has the potential to invade nearby and distant tissues
causing life-threatening complications [1]. Cancer is a global health challenge and is
one of the leading causes of death in both developing and developed countries [2]. An
epidemiological study conducted by the World Health Organization (WHO) noted that
cancer accounted for the deaths of 7.6 million individuals in 2018, and this figure was
expected to double by 2030 [2]. Several treatment options have been sought to treat cancer,
the most common of which is chemotherapy. This treatment involves using drugs/chemical
agents to destroy rapidly dividing cells and ultimately prevent the spread to other normal
cells in the body. Despite the success rate of chemotherapy, patients continue to suffer
from several side effects, such as general weakness, fatigue, loss of appetite and infections.
In addition, the lack of selectivity and toxicity of Food and Drug Administration (FDA)-
approved anticancer drugs has resulted in a significant drawback in the treatment of
cancer [3]. Therefore, the search for alternative therapeutic agents in the treatment of cancer
is imperative.

Traditional plants contain phytochemical compounds, which are mainly secondary
metabolites used by plants to ensure survival and fecundity. Phytochemical compounds of
medicinal importance include glucosinolates, alkaloids, triterpenoid, flavonoids, saponins,
pigments and tannins. Various studies investigated the use of secondary plant metabolites
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in traditional medicine. These secondary metabolites displayed different biological activi-
ties, such as antimicrobial, anti-inflammatory, cardioprotective, antiviral and anticancer
properties. Approximately 60% of anticancer drugs in clinical use and preclinical trials
(vinca alkaloids (vinblastine and vincristine), etoposide, paclitaxel, camptothecin, topote-
can, irinotecan, curcumin, resveratrol, genistein, allicin, lycopene, diosgenin, beta-carotene,
dactinomycin, bleomycin and doxorubicin, paclitaxel and camptothecin) are derived from
plants [4–6]. These plant-derived anticancer drugs are widely accepted and generally
perceived as relatively safe in terms of toxicity. The significant success achieved so far in
using natural compounds as chemotherapeutic alternatives has spurred research interest
in other secondary metabolites, such as saponins.

Saponins are a class of structurally diverse phytochemicals that are naturally found in
higher plants, marine organisms and microorganisms. This group has displayed various
pharmacological properties, including anti-inflammatory, antiviral, cardioprotective, im-
munoregulatory effects and anticancer activity [7,8]. The profound impact of saponins on
cancer cells has gained significant research interest in the pharmaceutical sector. These com-
pounds have demonstrated outstanding potential in inhibiting different cancer cells under
in vitro and in vivo conditions. Despite the substantial progress made in recent years, the
use of saponins as an anticancer agent has faced certain drawbacks, mainly due to their
toxicity and poor pharmacokinetic properties. Therefore, this review comprehensively
explores the potential of saponins as an anticancer agent by using various mechanisms; this
includes the poorly studied pathways, such as those involved in ferroptosis and necrop-
tosis. Furthermore, the current knowledge on the use of saponins as a chemotherapeutic
agent and the window of opportunities it presents for future research were also explored.

2. Classification of Saponins
2.1. Sources of Saponins

Saponins can be obtained from two primary sources, namely natural and synthetic.
Saponins acquired from natural organisms are termed “natural”, while those derived from
the artificial route via laboratory synthesis are known as “synthetic”.

2.1.1. Synthetic Saponins

Saponins are synthesized artificially by derivatization of saponins obtained from natu-
ral sources or via de novo synthesis. Various natural saponins, such as oleanane, ursane,
lupane, dammarane, cholestane, spirostane, furostane and cardenolide can be synthesized
chemically, using numerous techniques [9]. However, there are some drawbacks to these
methods, such as low yield, toxicity and stringent reaction conditions. In recent years, the
use of Schmidt trichloroacetimidate in activating sugars has shown great potential [10].
Although the mechanisms involving the chemical synthesis of saponins are beyond the
scope of this review, it should be noted that the synthetic approach associated with saponin
purification from a natural source forestalls the challenge of low yield and purity [11].
Additionally, this methodology allows for a structure-based optimization that will enable
the design of saponins equipped with desirable structural features.

2.1.2. Natural Sources of Saponins

Historically, saponins were primarily derived from vegetables and herbs. Saponins
from herbs include soapwort, ginseng, ginsenosides, gypenosides, soapberry rhizomes
from the Liliaceae, Dioscoreaceae, Agavaceae, Primulaceae, Sapotaceae and Caryophyllaceae
families [12,13]. Furthermore, different types of saponins can be isolated within the same
plant species. Saponins were initially thought to be endemic to plants but were later
discovered in non-plant sources. In the last three decades, marine organisms have been
identified as significant sources of saponins. More specifically, organisms belonging to the
phylum Echinodermata are rich sources of saponins. Tian et al. identified three groups
of saponins (asterosaponins, cyclic glycosides and polyhydroxysteroidal glycosides) in
starfish and sea cucumbers [14].
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2.2. Classification Based on the Structure

A typical saponin molecule is made up of distinct structural components consisting of
an isoprenoid unit and a sugar residue. The former is referred to as the aglycone component,
while the latter is called glycone. Acid hydrolysis of the glycosidic bond between glycone
and aglycone of saponins can be used to separate these structural units. The biological
activities of saponins are due to their unique structure and amphiphilic nature. It consists
of a hydrophilic sugar moiety and a hydrophobic genin (called sapogenin). Additionally,
aglycones may possess steroids or triterpenes structure, which is used to classify saponins.

Triterpenoid saponins (basic) consist of four or five rings, with a 30-carbon backbone
structure derived from 2,3-oxidosqualene [15]. The pentacyclic triterpenoids are the most
abundant in plants, and they include oleananes, lupanes, ursanes and derivatives (such as
saikosaponins) (Figure 1).

The less common tetracyclic triterpenoid saponins are dammaranes and their deriva-
tives (including ginsenosides), while the steroidal sapogenins are 27-carbon sugar conju-
gates of steroids consisting of a five- or six-ring skeleton known as spirostane and furostane,
respectively. These include dioscin, diosgenin, polyphyllin D, timosaponin AII, cardenolide
and cholestane (Figure 2).

Saponins also differ in structural composition, linkage and the number of sugar chains.
Usually, the sugar chain may consist of one or more monosaccharide residues attached at
C-3 [16]. Based on the number of sugar residues, saponins are classified as monodesmodic,
bidesmodic and polydesmodic, if they contain one, two and more than two sugar residues,
respectively. Saponins are also named based on the nature of the sugar residue present
on their chain. Glucose containing saponins are regarded as glucosides, while galactose
containing saponins are galactosides.
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3. Anticancer Mechanisms of Saponin

The anticancer activities of saponins include anti-proliferation, anti-metastasis, anti-
angiogenesis and reversal of multidrug resistance (MDR). These effects are brought about
by induction of apoptosis, promotion of cell differentiation, immune-modulatory effects,
bile acid–binding and amelioration of carcinogen-induced cell proliferation [17]. Different
molecular mechanisms are involved in the anticancer activity of saponins (Table 1). It
should be noted that the mechanism of anticancer action of saponins is strongly related to
the nature of the structural moieties, including the aglycone moiety, the length and linkage
of the glycosidic chain, the presence of a functional carboxylic group on the aglycone
chain, the number of sugar molecules and hydroxyl group, position of the hydroxyl group,
stereo-selectivity and the type of sugar molecule on the glycine chain [18–20]. This section
considers the critical processes in cancer-cell development and how different saponins help
to inhibit cancer at various stages.

Table 1. Anticancer activities of saponins and sapogenins.

Compound Cells/Tissue Type Molecular Target References

Diosgenin MCF-7, breast cancer
The activation of p53, disruption of

intracellular Ca2+ homeostasis, generation of
ROS and caspase activation

[21,22]

Dioscin

Leukemia, lung cancer, gastric
carcinoma, hepatocellular

carcinoma, cervical cancer, breast
cancer

Upregulates FADD, p53, Bid and Bax.
Downregulates CDK2,Bcl-2,

Clap-1 and Mcl-1
[23–25]

Polyphyllin D Ovarian cancer, cervical cancer,
breast cancer, glioblastoma, glioma

Upregulates p53, p21, PDI and JNX.
Downregulates CDK1, Bcl-2, HIF- and VEGF [26–29]

Oleandrin
Pancreatic cancer, prostate cancer,

breast cancer, lymphoma,
melanoma, osteosarcoma

Upregulates Akt, ERK and ROS.
Downregulates NF-κB, MAPK,

JNK, pS6,
p4EPB1, PI3K/Akt and mTOR.

[30]

Ginsenoside Rg3

Lung cancer, esophageal carcinoma,
gastric cancer, colon cancer,

hepatoma, renal cancer, bladder
cancer, breast cancer, ovarian cancer,

prostate cancer and melanoma

Upregulates p63,p21, Bax and Smac
Downregulates VEGF, p38 and P13K, [17]

Ginsenoside Rh2

Leukemia, colon cancer,
hepatocellular carcinoma, breast
cancer, ovarian cancer, prostate

cancer

Upregulates p53, p21, p27 and p16
Downregulates AKT, CDK4, CDK6 and AP-1. [17]

Saikosaponin A Hepatocellular carcinoma, breast
cancer, colon cancer

Upregulates p15, p16, ERK and cleaved-PARP
Downregulates Bcl-2, XIAP, Clap2 and Pgp [31]

Saikosaponin D
Lung cancer, hepatocellular

carcinoma, prostate cancer, thyroid
cancer

Upregulates p53, p21, Fas and Bax,
Downregulates Bcl-2, CDK2, COX-2 and

STAT3
[32]

Polyphyllin D Human non-small-cell lung cancer
NCI-H460 cell line.

ER stress-mediated apoptosis, induction of
tumor suppressor p53, disruption of

mitochondrial membrane and activation of
caspase-9 and caspase-3

[33]

Timosaponin AIII (TAIII)

Breast, prostate, HepG2, pancreatic
and osteosarcoma cancer cells.

PANC-1 cell xenograft nude mice
model

ER stress induction, activation of caspase-3,
downregulation of Bcl-2, X-linked inhibitor of

apoptosis protein (XIAP), Mcl-1 and IAPs,
induction of cytochrome c and stimulation of

caspases 3, 7, 8 and 9

[34–36]

OSW-1(3β,16β,17α-trihydroxycholest-5-
en-22-one16- O -(2- O

-4-methoxybenzoyl-β- D
-xylopyranosyl)-(1→3)-(2- O -acetyl-α- L

-arabinopyranoside)

Leukemia cancer and pancreatic
cancer cells

Mitochondria membrane permeabilization.
Intrinsic apoptosis. Calcium-dependent

GRP78 (survival factor) cleavage. Binding to
oxysterol binding protein to activate the Golgi

stress response leading to apoptosis

[37–39]
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3.1. Chemoprevention and Saponin

Chemoprevention is the use of a chemotherapeutic agent to halt or restrict tumor
development before the onset of cellular invasion. The chemopreventive action of saponins
involves anti-inflammation, redox potential modulation and cell proliferation inhibition
through different pathways (Figure 3).

Pathophysiology 2021, 28 7 
 

stimulation of caspases 3, 7, 

8 and 9  

OSW-1(3β,16β,17α-tri-

hydroxycholest-5-en-

22-one16- O -(2- O -4-

methoxybenzoyl-β- D 

-xylopyranosyl)-

(1→3)-(2- O -acetyl-α- 

L -arabinopyranoside) 

Leukemia cancer and pancreatic 

cancer cells 

Mitochondria membrane 

permeabilization. Intrinsic 

apoptosis. Calcium-depend-

ent GRP78 (survival factor) 

cleavage. Binding to oxys-

terol binding protein to acti-

vate the Golgi stress re-

sponse leading to apoptosis 

[37–39] 

3.1. Chemoprevention and Saponin 

Chemoprevention is the use of a chemotherapeutic agent to halt or restrict tumor 

development before the onset of cellular invasion. The chemopreventive action of sapo-

nins involves anti-inflammation, redox potential modulation and cell proliferation inhibi-

tion through different pathways (Figure 3). 

 

Figure 3. Anticancer effects of saponins. 

3.1.1. Anti-Inflammatory Activity 

The immune system triggers an inflammatory response to foreign invaders as part of 

the body’s defense mechanism. Nonetheless, excessive or chronic inflammation is associ-

ated with different pathological conditions, one of which is cancer [40]. Due to the link 

between cancer and inflammation, several anti-inflammatory drugs help to decrease the 

incidence of cancer. Most inflammatory drugs have been designed to selectively target 

proteins, such as nuclear factor Kappa B (NF-κB), IL-6/STAT3, IL-23/Th-17 and cyclooxy-

genase-2 (Cox-2), which are responsible for inflammatory response. Similar to other anti-

inflammatory drugs, some saponins can regulate the expression of a number of these pro-

teins. 

The inducible transcription factor, NF-κB, stimulates the expression of pro-inflam-

matory and pro-survival genes. These can be activated via a canonical pathway involving 

TNF-α, T-cell and B-cell receptors. Triggering this protein in cancer cells leads to activa-

Figure 3. Anticancer effects of saponins.

3.1.1. Anti-Inflammatory Activity

The immune system triggers an inflammatory response to foreign invaders as part
of the body’s defense mechanism. Nonetheless, excessive or chronic inflammation is
associated with different pathological conditions, one of which is cancer [40]. Due to the
link between cancer and inflammation, several anti-inflammatory drugs help to decrease
the incidence of cancer. Most inflammatory drugs have been designed to selectively
target proteins, such as nuclear factor Kappa B (NF-κB), IL-6/STAT3, IL-23/Th-17 and
cyclooxygenase-2 (Cox-2), which are responsible for inflammatory response. Similar to
other anti-inflammatory drugs, some saponins can regulate the expression of a number of
these proteins.

The inducible transcription factor, NF-κB, stimulates the expression of pro-inflammatory
and pro-survival genes. These can be activated via a canonical pathway involving TNF-α,
T-cell and B-cell receptors. Triggering this protein in cancer cells leads to activation of cell-
cycle proteins, metalloproteinase and apoptotic proteins. Reports have identified saponins
that inhibit NF-κB and inhibitory kappa B kinase (IKK). For instance, Paris saponin II, a
steroidal saponin, inhibits IKK-b, a protein involved in the canonical pathway of NF-κB
activation, leading to cell-cycle arrest and apoptosis activation [41]. Moreover, Raddeanin
A, a triterpenoid, inactivates NF-κB by preventing the phosphorylation of Ikkb-α. A
study by Xia et al. likewise reported the downregulation of the NF-κB signaling path-
way by saponins of Patrinia villosa, which led to a significant inhibition in colorectal cell
proliferation, invasion and metastasis [42].

In addition, saponin fractions from marine spiny brittle starfish extract were found to
inhibit TNF-α and Cox-2 [43]. Triterpenoid saponin from Conyza blinii showed heightened
anticancer activity via p65-dependent NF-κB inhibition [44]. Dammarane triterpenoid
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isolated from Cyclocarya paliurus mediates anti-inflammatory activity by lowering TNF-α,
PGE2 and IL-6 expression [45]. Structure-dependent activity studies of different triter-
penoid isoforms revealed cyclocarioside X as a potent chemopreventive agent, which shows
significant inhibition of COX-2, iNOS (inducible nitric oxide synthase) and NF-κB/p65
in raw 264.7 cells. The role of saponins in regulating proteins involved in inflammatory
pathways undermines its critical chemopreventive potentials.

3.1.2. Modulation of Redox Potential

Reactive oxygen species (ROS) encompass free radical oxygen intermediates involved
in tumor cell proliferation, genomic instability, resistance to apoptosis and tumor inva-
sion [46]. An imbalance between free-radical production and the antioxidant defense
system leads to oxidative stress implicated in cancer initiation. By acting as free radical
scavengers, modulating the redox signaling pathway and increasing the expression of
antioxidant enzymes, saponins can help to correct the redox imbalance [47]. Purified
bacosides, a triterpenoid saponin from Bacopa monnieri, has shown significant 2,2-diphenyl-
1-picrylhydrazyl (DPPH) radical scavenging activity. Moreover, Choudhry et al. reported
that saponin based nano-emulsification improves the antioxidant properties of Vitamins
A and E in AML-12 cells [48]. Furthermore, saponins derived from Panax notoginseng
increase the expression of the antioxidant enzyme heme oxygenase-1 by increasing the
phosphorylation of AKT protein and the activity of Nrf2 [49].

Saponins have also shown pro-oxidant activity in cancer cells in addition to their
antioxidative activity. Dysregulation of redox signaling is a feature in most cancer cells.
Cancer cells survive oxidative burst by upregulating the antioxidant defense system via an-
tioxidant response element (ARE). Blocking cancer-cell antioxidant defense systems would
increase ROS-induced oxidative damage, resulting in cancer-cell death [50]. Triterpenoid
saponins from Ardisia gigantifolia cause cell death in triple-negative breast cancer cells by
increasing the generation of reactive oxygen species, activating ERK and AKT and induc-
ing apoptosis via the intrinsic pathway [51]. Kim et al. also observed that hederagenin
obtained from Hedera helix mediates cell damage in head and neck cancer cells by reducing
glutathione reductase activity, increasing ROS and inhibiting the Nrf2-ARE pathway [52].

3.1.3. Cell-Cycle Arrest

Cell progression through the cell cycle is mediated by crucial proteins such as cyclins
and cyclin-dependent kinases (CDK) and regulated by checkpoint kinases such as Polo-
like kinase, aurora kinase and CDK inhibitors [53]. Cancer cells often show mutations in
protein kinases (CDK2, CDK4, CDK6, chk1, Wee1 and PLK1) involved in cell proliferation.
Targeting these proteins have become an attractive chemopreventive strategy to mitigate
abnormal cell proliferation in cancer cells [54]. Recently, saponins have shown attractive
anticancer potentials by modulating cell-cycle proteins, including cyclins, cyclin-dependent
kinases and checkpoint proteins, to terminate cancer-cell progression.

Prior to proliferative stimulus, cells in the resting stage (G0) progresses through the
G1, S, G2 and M phase of the cell cycle. Different saponins regulate cell progression at each
phase of the cell cycle. Furostan-type steroidal genin from edible spears of triguero HT
asparagus decreased the expression of cyclin A, D and E by mediating G0/G1 arrest in
human colon cancer cells [55]. A similar cell-cycle suppression at the G0/G1 phase has
also been observed in Paris saponin VII treated human leukemia cells (K562/ADR) [56].
Saponins also decrease cyclin B1/D1 and CDK2/4/6 protein expression. Chikusetsu
saponin IV, a methyl ester of a ginsenoside purified from Panacis japonica, has similarly
shown the capacity to decrease cell-cycle progression through the S-phase [57]. Moreover,
the compound was shown to inhibit the expression of cyclin D1, CDK2 and CDK6. Yaoming
et al. reported cell-cycle arrest in the S-phase by triterpenoid saponin from Camellia
sinensis in the human ovarian cancer cell [58]. The cellular inhibition was achieved by
downregulating Cdc25A, Cdk2 and CyclinD1 expression. More so, Paris saponin I have
shown G2/M1 arrest in gastric cancer cells by upregulating the activity of p21, a checkpoint
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protein [59]. Recently, a steroidal saponin purified from the rhizome of Paris polyphylla
var. latifolia was shown to induce the expression of p21 and downregulated the expression
of cdc25C, Cyclin B1 and cdc2, thereby inducing G2/M phase arrest in human colorectal
cancer [60].

In a normal cell, damage to cellular components (such as DNA damage) will prevent
the progress of the cell through the cell cycle. However, cancer cells are unresponsive to
proteins associated with the regulation of the cell cycle. Targeting checkpoint proteins such
as ChK (checkpoint protein), p21 and Wee1 have become an interesting therapeutic target
by many anticancer drugs [53]. Treatment of HepG2 cells with hellebrigenin causes DNA
damage activating ATM, Chk1, Chk2 and CDK1/Cyclin B1 kinase resulting in G2/M-phase
cell-cycle arrest [61]. Diosgenin has similarly shown activation of Cdc25C phosphatase,
which triggers the Cdc2-cyclin B pathway mediating G2/M cell-cycle arrest in breast
cancer [62].

3.2. Cytotoxicity Effects of Saponins

In addition to side their chemopreventive actions, saponins show cytotoxic effects in
cancer cells. Saponin treatment in cancer cells can stimulate autophagic cell death, decrease
nitric oxide production and cause cytoskeleton integrity disassembly. Their cytotoxic effects
can be initiated either by apoptosis or non-apoptotic stimulation of cell death. Extensive
literature search has revealed the significant ability of saponins to induce cancer-cell death
through apoptosis, ferroptosis, oncotic necrosis, necroptosis and autophagy.

3.2.1. Apoptosis

Apoptosis is a programmed form of cell death characterized by cell shrinkage, chro-
matin condensation, nuclear fragmentation and membrane blebbing. It may be initiated
either at the plasma membrane (extrinsic pathway) or inside the cell and is critical in
regulating tissue development and homeostasis [63]. Apoptosis is the most studied form
of cell death, and unlike other forms of cell death, it is well regulated and not accompanied
by an inflammatory response. The induction of apoptosis of tumor cells is an effective way
of treating tumours. Compelling evidence has shown that most cytotoxic agents used in
cancer therapy can induce apoptosis [63].

Saponins can induce apoptosis through a series of reactions involving the activation
of a protease family of enzymes known as caspase. Other caspases independent apoptosis
pathways have also been described in the mechanism of cell death by saponins. In this
section, we consider the cellular mechanism of cell death by saponins and elucidate the
underlying molecular mechanism of the induction (Figure 4).

Saponins and Caspase-Dependent Apoptosis

Caspases are cysteine dependent aspartate specific proteases that mediate the initiation
and execution phase of apoptosis. These enzymes are synthesized in their inactive form
known as pro-enzyme or zymogens and can be activated via a receptor-mediated pathway
or the mitochondria-dependent pathway. While the former is known as the extrinsic
pathway, the latter also called the intrinsic pathway. Saponins can initiate a caspase-
dependent pathway of apoptosis via both the extrinsic and intrinsic pathway.
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Extrinsic Pathway and Saponins

The extrinsic pathway is initiated by the binding of ligand to members of the TNF
superfamily of protein, including Fas receptor, TNF-α and TRAIL. Saponins can activate
the extrinsic pathway of apoptosis by activating the Fas receptor leading to the recruitment
of adaptor molecule called Fas-associated death domain (FADD) [64]. The recruitment
of FADD triggers the conscription of Pro-caspase 8 in saponin treated cancer cells to
form death induced signaling complex (DISC) [63,65]. Upon recruitment, procaspase-8 is
released from DISC as the active caspase-8 via a proximity-induced activation mechanism.
Activation of caspase-8 leads to downstream activation of the executioner caspase-3 and
cleavage of poly-ADP-ribose polymerase (PARP) mediating the proteolysis of cellular
components [66]. Caspase-8 activation is the defining factor in the extrinsic apoptosis
pathway, and activation of this protein can be induced by different saponins [67].

Cellular activation of caspase-8 by saponins via the intrinsic pathway might not be
sufficient to induce apoptosis [64]; as a result, some saponins rely on cell death machinery
via the BCl-2 family of protein (Bid) which mediates crosstalk with the intrinsic apop-
tosis pathway [68]. Caspase-8 activates tBid by protein cleavage to form an active Bid,
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which subsequently activates downstream pro-apoptotic proteins, Bax and Bak, causing
mitochondria membrane permeabilization and activation of effector caspases [69]. Fur-
thermore, since p53 mutation in cancer cells can inhibit apoptosis in the intrinsic pathway,
this pathway of cell death offers an alternative route of eliminating cancer in p53 mutant
cells [69].

Intrinsic Pathway and Saponins

The intrinsic pathway is a mitochondria-dependent pathway of apoptosis, and it is the
most reported mechanism of apoptosis induction by chemotherapeutic agents. Saponins
can stimulate the release of pro-apoptotic factors, cytochrome C, Ca2+ and Smac/DIABLO,
from the mitochondria via cytotoxic action or ROS production [70,71]. These ROS/cytotoxic
stimuli disrupt the mitochondria to initiate the apoptosis process. Pro-apoptotic cytochrome
C binds Apaf-1 to form the apoptosome complex required for the activation of pro-caspase-
9. Upon activation, caspase-9 cleaves executioner caspase-3, activating the protein and
the downstream apoptosis process. Activation of apoptosis by saponins via the intrinsic
route involves the inhibition of anti-apoptotic protein Bcl-2 and activation of pro-apoptotic
proteins caspase-9 and caspase-3 [72].

Saponins also mediate the intrinsic pathway via mechanisms involving the activation
of p53 proteins [73]. Activation of p53 can be achieved by the inhibition of MDM2 via direct
interaction or by binding to the alternative reading frame (ARF) [74]. Activation of p53
causes the inhibition of anti-apoptotic Bcl-2 and activation of pro-apoptotic Bax, Noxa and
Bad, leading to depolarization of mitochondria and the release of cytochrome C from the
mitochondria [64]. This protein then mediates executioner caspase -3 and -9 activation [65].
Furthermore, saponins can stimulate Smac/Diablo to subsequently inhibits the activity of
XIAP (inhibitor of executioner caspase-3), thereby stimulating apoptosis [67].

Saponin and Caspase Independent Apoptosis

Saponins are capable of inducing cell death via pathways independent of caspases
but show morphological features typical of apoptotic cell death. In this form of cell death,
caspases are not activated, and their stimulation may not play any active roles in mediating
cell death [75]. Before the permeabilization of the mitochondria, different pro-apoptotic
factors are released into the inter-membrane space, some of which are cytochrome C, Ca2+,
Smac/DIABLO, HtrA2/Omi, AIF (Apoptosis-inducing factor) and Endonuclease G. While
some of the proteins mediate apoptosis via the intrinsic pathway as earlier discussed, AIF,
HtrA2/Omi and Endo G translocate into the nucleus where they bind to DNA resulting in
chromatin condensation.

Preceding the release of pro-apoptotic proteins (such as AIF) is the permeabilization
of the membrane—this process plays a critical role in the overall apoptosis process and is
termed as the committed steps. One of the alternative pathways of cell death induction by
saponins involve pore formation on the membrane [76]. Saponins are capable of binding to
the cholesterol-rich segment of the membrane or the membrane lipid raft. The cytotoxicity
of some saponins can be greatly influenced by the cholesterol content [77]. The binding of
saponins to the lipid raft may be the initial upstream process of mediating cytotoxic activity
in multidrug-resistant cancer cells before the release of pro-apoptotic Endo-G and AIF [78].

AIF and Endo G have become attractive targets due to their role in caspase-independent
apoptosis. Saponins, including dioscin, can induce caspase-independent apoptosis by ac-
tivating AIF [25]. Although the activation of AIF by saponins is linked to increased ROS
generation, a ROS-independent mechanism activation has also been described [25,79–81].
Also, saponins can stimulate the release of Endo G, resulting in their migration to the
nucleus, where these bind to chromatin and break the phosphodiester linkage in the nu-
cleotide chain to generate nucleosomal fragments [82,83]. In addition to the pivotal role
played by Endo G and AIF, HtrA2/Omi also mediates caspase-independent apoptosis.
This pathway of death mechanism may prove an invaluable tool to destroy cancer cells
resistant to caspase activation.
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3.2.2. Ferroptosis, Oncotic Necrosis and Necroptosis

Ferroptosis is an iron-dependent programmed cell death characterized by the accu-
mulation of lipid peroxides [84]. Different saponins such as ardisiacrispin B, spirostanol
saponin, diosgenin saponin, oleanane triterpenoid saponin derivatives and ruscogenin
have demonstrated iron-dependent programmed cell death following treatment on cancer
cells [85–87]. Cancer cell depends on iron for DNA synthesis—an essential step in the cell
cycle. Iron overload, however, can cause oxidative damage in cancer cells via the Fenton
reaction [84]. This mechanism holds great promise to prevent both drug-sensitive and
resistant cancer cells from proliferating [87].

Furthermore, Gao et al. discovered a novel form of cell death in tumor cells in
which exposure to trisaccharide saponin derivatives induced cell swelling followed by
cell membrane perturbation and destruction of the cytoskeletal network in the form of
cell death known as oncotic necrosis [88]. Polyphyllin D and progenin III can induce
programmed necrosis/necroptosis in cancer cells [26,89,90]. The molecular mechanism by
which saponins exert necroptosis is not fully known, but similar to apoptotic cell death, it
involves the activation of Caspase 8 as observed in the extrinsic pathway of apoptosis [26].

3.2.3. Autophagy and Saponin

Autophagy is a mechanism adopted by cells to remove dysfunctional or redundant
cellular components, which are later recycled to meet the metabolic needs of starving
cells. It plays a dichotomous role in cancer-cell death and pro-survival mechanisms [91].
Autophagy can cause apoptotic cell death, but it may also help cancer cells survive ox-
idative stress and metabolic stress by recycling defective cell components. Despite the
significant progress made to understand the mechanism of autophagy, the question of
whether to stimulate or inhibit autophagy in cancer therapeutics remains debatable [92].
Several studies on cancer have shown that autophagy promotes cell survival in cancer cells;
however, excessive autophagy exceeding cellular repair capacity stimulates cell death [93].
While most anticancer agents seem to inhibit autophagy, some have also shown an ability to
stimulate autophagy. Purified Pulsatilla saponin D (SB365) from Pulsatilla chinensis showed
a dual role by inducing the early event of autophagy (autophagosome formation) and
inhibiting the latter stage of autophagy (autophagic flux) [94]. Zhang et al. noted that SB365
increased microtubule-associated protein 1A/1B-light chain 3 (LC3) and p62 expressions
in HeLa cells [94]. The LC3 protein is involved in the formation of autophagosome, while
p62 can degrade LC3 protein to inhibit autophagic flux. The authors, however, concluded
that the inhibition of autophagic flux by increasing p62 expression might play a significant
role in the anticancer activity of SB365 against HeLa cells.

Different molecular pathways, including mTOR, MAPK, AMPK and JNK, are impli-
cated in the regulation of autophagy [95]. However, the PI3/Akt/mTOR signaling pathway,
which mediates crosstalk between autophagy and apoptosis, appears to be the most stud-
ied [93,96]. Xie et al. reported the induction of autophagy by Paris saponins from Paris
polyphyllae through the downregulation of Akt/mTOR in breast cancer cells [97]. Triter-
penoid glycosides are also reported to induce apoptosis in hepatocellular carcinoma by
modulating the PI3K/Akt/mTOR signaling pathway [98]. Promoting autophagy through
mTOR inhibition might be an effective way of cancer chemoprevention by preventing the
accumulation of metabolic stress [93,99].

The cytotoxic stress response is another mechanism through which autophagy can
be activated. This process involves the P13/AKT pathway and can be stimulated by
saponin [100]. The saponins extracted from Camellia sinensis flowers induced ROS depen-
dent autophagy in ovarian cancer cells, resulting in the activation of the MAPK signaling
pathway [101]. Recent evidence has suggested that a specific protein known as AMPK
can act downstream of MAPK to induce autophagy [102]. The AMPK protein is an energy
stress response protein that facilitates metabolic activity in cells to generate more ATP,
which in turn causes oxidative stress through the generation of ROS. In NSCLC cells,
treatment with Paris saponin VII was shown to increase the expression of AMPK and its
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downstream effector, ulk1, which are critical in inducing autophagy [103]. In vitro and
in vivo studies have also demonstrated the induction of autophagy by saponins via the
JNK pathway [104,105].

Due to autophagic flux often associated with the growth of tumours, recent studies
have primarily focused on identifying autophagy inhibitors [91,92,106]. Moreover, inhibit-
ing autophagy help in preventing tumor immune invasion [92]. A study by Liu et al.
identified triterpenoid saponins from Conyza blini capable of eliciting cytotoxic activity
in HeLa cells through the inhibition of autophagy [107]. Paradoxically, activation of au-
tophagy has been shown to trigger T-cell cytotoxicity reducing cancer-cell growth [108].
Therefore, further studies are needed to understand how saponins modulate autophagy to
prevent cancer progression.

3.3. Metastasis and Saponins

In chronic cases, tumor cells migrate from their primary site through the lymphatic or
blood system and subsequently colonize distant tissues and organs [109]. This process is
known as tumor metastasis, and it accounts for 90% of cancer-associated mortality [110].
Metastatic cancer cells have acquired multiple genetic alterations that enable them to
survive at a distant site. The processes involved in metastasis are quite complex because
these entail different alterations that result in stimulation of angiogenesis, local invasion
attachment, basement membrane disruption, matrix proteolysis and stimulation of growth
factors among others [111].

Angiogenesis is the formation of new blood vessels from pre-existing vessels to deliver
nutrients and oxygen to a distant site, and it is critical for the colonisation of secondary
tumours. Saponins have been identified with the potential to inhibit the formation of new
blood vessels in tumor cells [112]. For example, ginsenoside-Rb2, a dammarane saponin,
slows down tumor metastasis of B16-BL6 by inhibiting tumor-induced angiogenesis [113].
Chan et al. highlighted that polyphyllin D suppresses the proliferation and migration of en-
dothelial cells in vitro and inhibits intersegmental vessel (ISV) formation in zebrafish [114].
Similarly, Panax notoginseng has also been shown to restore defective ISV in zebrafish
larva [115].

Yang et al. also reported that Paris saponin II (PSII) inhibited angiogenesis at low
concentration in cancer cells and showed no toxicity to normal endothelial cells [116]. The
anti-angiogenic activity was linked to the potential of PSII to modulate the expression of
NF-κB. By downregulating NF-κB expression, PSII reduced the activity of the downstream
proteins such as VEGF, Bcl-2 and Bcl-xL. The VEGF protein has been implicated in an-
giogenesis and lymphogenesis, and its activity is mediated by binding VEGF receptor (a
tyrosine kinase receptor). Raddeanin A (RA) is an active triterpenoid saponin from the
traditional Chinese medicinal herb Anemone raddeana which inhibits the phosphorylation
of VEGFR2 by VEGF [117]. The authors noted that RA binds to the ATP binding pocket
of VEGFR2 and hinders its phosphorylation by VEGF, thereby preventing the activation
of downstream effector proteins such as PLCγ1, JAK2, FAK, Src and Akt [117]. Addition-
ally, sulfated saponin purified from sea cucumber can inhibit the phosphorylated form of
VEGFR2 and the consequent downstream signaling pathway required for the mitogenic
activity of VEGF in the endothelial cell [118].

Another mechanism through which saponin interferes with metastasis is by inhibit-
ing cell adhesion molecules. Attachment of tumor cell to extracellular matrix (EM) and
other similar cells is important for metastasis. Different proteins such as integrins, CD44,
ICAM and VLA-4 are responsible for the cellular attachment of cancer cells [111]. Paris
polyphylla can decrease the expression of intracellular adhesion molecule-1 (ICAM-1)
in cancer cells [119]. Furthermore, Wang et al. have also reported significant inhibi-
tion of inflammation-induced endothelial adhesion molecule by saponin from Panax no-
togingseng [120]. Likewise, a saponin monomer from dwarf lilyturf tuber inhibits hypoxia-
induced integrin expression in the human breast cancer cell [121].
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Cancer cells undergoing metastasis show a lack of adhesion by inhibiting molecules
such as E-cadherin required for homotypic cell–cell interaction. Reduced expression of
the adhesion molecule E-cadherin in cancer cells increases cell mobility, as such molecules
that increase E-cadherin expression impede tumor metastasis. The activity of E-cadherin
is regulated by protein such as Cdc42 and Rac1 [109]. These proteins are Rho GTPases,
and their expressions are upregulated by saponins. For example, saponin fractions from
Asparagus officinalis activate Cdc42 and Rac1 [109]. Furthermore, Ardipusilloside I also
stimulate the activity of Rac1. By stimulating these upstream proteins, saponins can inhibit
cell migration [122].

Perhaps one of the most studied deregulations in metastasis is tissue remodeling.
It involves a family of proteins known as the matrix metalloproteinase (MMP). During
metastasis, the tumor cell traverses the extracellular matrix (EM) barrier. This process is
critical for cancer-cell invasion, and it includes the proteolytic degradation of the EM by
enzymes such as MMP2 and MMP9. Upregulation of MMP-2 and MMP-9 are particularly
noted in cancer cells. By targeting multiple proteins participating in tissue remodeling
pathways, saponins can significantly reduce cancer metastasis under in vitro and in vivo
conditions [112,123]. Several saponins have been identified with significant potential
to specifically inhibit matrix degeneration protein such as MMP-2, vimentin and MMP-
9 [123,124]. In particular, ginsenoside Rd inhibits the expression of MMP-2, MMP-1 and
MMP-7 [125].

Furthermore, NF-κB and certain protein kinase (such as MAPK, ERK, JNK, p38
and P13/AKT) regulate epithelial-mesenchymal transition (EMT) proteins (MMP and
MMP2). [126]. The inhibitory potential of specific saponins is linked to their ability to
suppress the phosphorylation of some of these protein kinases and inhibit TNF-α induced
NF-κB activation [42,127]. For example, kalopanaxasaponin A, a triterpenoid saponin,
inhibits the expression of MMP-9 in breast cancer cell by modulating P13/AKT and PKC
pathways [128]. Ginseng saponin also inhibits MMP-9 in human astroglioma cell expres-
sion by suppressing activator protein-1 and MAPK [129]. In addition, trillium saponins
downregulate MMP-2 and MMP-9 expression in HuH-7 cells [130].

The activity of matrix metalloproteinase can be further regulated by endogenous in-
hibitors, including tissue inhibitors of metalloproteinase (TIMP) and extracellular inducers
of matrix metalloproteinase (EMMPRIN) [124,131]. While the former works by reducing the
activity of MMP, the latter stimulates the activity of MMP. Diosgenin, a steroidal saponin,
inhibits EMMPRIN and stimulates TIMP-2 expression in PC-3 cells [132]. Moreover, soy-
bean saponins can stimulate TIMP-2 expression in colon cancer cells [131]. Similarly, Shuli
et al. reported the upregulation of tumour cell TIMP-2 expression following Rhizoma paridis
saponin treatment [127]. However, further studies are needed to understand MMP role in
cancer and their regulation by saponins since it has been observed that increased TIMP-2
expression in glioblastoma patients is accompanied by severe adverse effects [133].

At the secondary site, tumor cells rapidly proliferate as a result of increased levels of
growth factors. Different autocrine and paracrine growth factors such as bFGF, IGF-I and
EGF are released by metastatic cells [111]. These growth factors have become therapeutic
targets for certain anticancer drugs since their stimulation is essential for the rapid growth
of cancer cell at distant sites [134]. Saponin DT13 can potentially block metastasis through
the inhibition of tissue factor (TF) [121]. Timosaponin AIII suppresses hepatocyte growth
factor-induced tumor invasion [36]. Zhuang et al. also reported that dihydrodiosgenin
inhibited metastasis by suppressing endothelial cell-derived factor VIII and altering platelet
function [135]. Beyond the direct role of the saponins on multiple pathways involved in
metastasis, saponins can also be broken down in the body to yield secondary metabo-
lites with potential anti-metastasis activity. For example, saponin metabolites from gut
metabolism have shown significant metastasis inhibitory activity [136].
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3.4. Saponin in Multidrug Resistant Cancer

The difficulty associated with drug resistance remains a hurdle in the chemothera-
peutic treatment of cancers. Several reports have documented the anticancer activity of
saponins against drug-sensitive and drug-resistant cancer-cell lines. Drug resistance in
cancer is linked to several determinants, including increased tumor burden and metas-
tasis, multiple chromosomal aberrations, physical barriers to chemotherapeutic agents,
tumor micro-environment, adaptive cancer immune response and untargeted oncogenic
drivers [137]. Saponins have been described as being able to modulate some of the target
effectors, such as pgp (p-glycoprotein) and Ras, to elicit cytotoxic activity against resis-
tant cancer cells. Saponins have shown potent p-glycoprotein (an efflux pump highly
expressed in many cancer resistant cells) inhibiting activity [138,139]. Similarly, in resistant
cell lines, the Ras protein (an oncogenic driver) can be inhibited by Paris saponin VII to
stop colorectal cancer from spreading [140]. Some saponins have also demonstrated the
ability to reverse multidrug resistance in cancer cells and target angiogenesis in resistant
cell lines [123,139]. As a result of their potency to treat multidrug resistance, saponins are
explored in combination therapy with other standard drugs to increase the therapeutic
effect of current anticancer regimens against drug-resistant cancer cells [141].

Another challenge in cancer therapy is the elimination of cancer stem cells. These
cells are capable of growing after effective treatment with chemotherapeutic agents [142].
Interestingly, saponins have shown inhibitory activity against cancer stem cell via a cell
death mechanism involving the Wnt/β- catenin signaling pathway [22].

4. Limitations and Prospects

The number of purified saponins with anticancer activity has increased significantly
over the last two decades. Despite the widespread research and reports on the anticancer
property of saponins and their derivatives, there are no FDA approved saponin-based
anticancer drug [143]. Most of the studies describing the anticancer effect of saponins are
from in vitro experiments, and there are only limited in vivo and clinical trial data currently
available. This limitation is a result of many factors ranging from drug-likeness property to
toxicity index. There have also been concerns about the purity of natural saponins and their
availability. This section considers the factors limiting the success of saponins as anticancer
drugs and the future directions for better outcomes.

Saponins possess a significantly high molecular weight (around 741 to 1808 Da)
and a consequent high number of rotatable hydrogen bonds, total polar surface area
and hydrogen bond donors and acceptors [143]. Generally, drugs with low molecular
weight, high lipophilicity and fewer hydrogen bond donors and acceptor are usually more
bioavailable [144]. Saponin glycone has a notably lower oral bioavailability compared
to aglycone saponin [145]. For several low orally bioavailable drugs, high dose oral
administration or alternative route such as intravenous and intramuscular routes are
usually explored. However, intravenous administration of saponins is not a likely option
to be explored since studies have shown that saponins possess high hemolytic activity,
which may lead to anemia [143]. The hemolytic activities of saponins are mediated by
erythrocyte membrane permeabilization via interaction with the cholesterol of the plasma
membrane [146,147]. This activity is linked to critical carboxylic and hydroxyl functional
groups of triterpenoid saponins [148].

The activity of saponins is dose-dependent, and a significant increase in oral dosage
would mean a significant increase in bioavailability and action, which can significantly
increase saponin toxicity [144]. Sub-acute, acute and chronic dose of saponins is associ-
ated with nephrotoxicity, hepatoxicity and cardiotoxicity [149,150]. There are, however,
reports of non-toxic saponins even at higher concentration following oral administration in
animal models [151,152]. While several saponins are hemolytic, a few recently identified
saponins, including soya sapogenol, Astragalus membranaceus saponins and Bupleurum
chinense saponins, have been shown to be non-hemolytic [153,154].
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Structural optimization of saponin may prove to be very important in improving the
drug-like property of saponins. Several anticancer drugs obtained from plants, such as
paclitaxel, are structural derivatives of plant compounds. A detailed understanding of the
structure-activity relationship of saponins would prove as an invaluable tool to guide the
development of bioavailable saponins as a potential anticancer drug candidate. Studies
on QSAR of saponins to identify the functional groups responsible for the hemolytic and
cytotoxic activity have shown promising outcomes, in addition to structural modification
to ensure selective action of the saponins. For example, QSAR and QSPR studies of
saponins isolated from Pulsatilla chinensis showed that cytotoxic activity of the saponin
was independent of its hemolytic activity. This technique would help to identify potent
cancer-specific drug candidates [146].

Targeted drug delivery is an alternative approach that could be explored further to
increase the efficacy of saponins. Nanoparticles, due to their size, can evade clearance
by plasma binding protein and reticuloendothelial system. Nano-encapsulation not only
extends the drug circulation time, but it also reduces the toxicity to normal cells. For in-
stance, loading saponins into human serum albumin nanocomposites resulted in improved
anticancer drug efficacy and no toxicity to healthy cells [155]. In addition, drug-delivery
vehicles involving micelles, self-assembled nano drugs and liposomes can be functionalized
by targeting moiety, such as cell-penetrating peptides, to improve selectivity and reduce
toxicity [156,157].

One of the most promising areas in saponin anticancer research is combination ther-
apy. There is different evidence that has shown that saponins can be combined with
other chemotherapeutic and radiotherapy treatments to improve efficacy and reduce
toxicity [32,158]. In combination with radiation treatment, saponins induce apoptosis
and cell-cycle arrest in cancer cells, thereby sensitizing resistant cancer cells to radiation
treatment [159,160]. Similarly, Saponins are also utilized as adjuvants to boost the body’s
immunological response against cancer [141,161]. In addition, saponins have also been
shown to have synergistic therapeutic effects when combined with conventional anticancer
drugs [80,162]. Targeted saponin delivery and combination therapy appear to hold the best
promise for developing saponin derived anticancer agents in the near future.

5. Concluding Remarks

The overwhelming evidence from several studies has shown the different anticancer
effects of saponins. Previous research has largely linked the anticancer action to membrane
permeabilization (which leads to apoptosis); however, more recently discovered saponins
have demonstrated enhanced chemopreventive and chemotherapeutic action, utilizing
different cytotoxic pathways. Some of these saponins have been demonstrated to have
antioxidant properties as well as the ability to control the expression of proteins involved
in cell cycle, cancer progression and metastasis. Despite the progress made so far in the
use of saponin for cancer treatment, toxicity and low bioavailability remain significant
obstacles. Moreover, another difficulty is the fact that the role of diverse saponin scaffolds
in anticancer action is unknown, making drug optimization challenging. Combination
therapy and more efficient drug delivery technologies, both of which have been used in
saponins research have shown the best promise so far. The evidence from these studies,
on the other hand, is primarily from in vitro investigations and is quite limited. Further
structure-dependent activity and preclinical and clinical studies are therefore essential to
ensure the translation of saponin based anticancer drugs from bench to bedside.
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