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Abstract: In this paper, a new three-parameter Pareto distribution is introduced and studied.
We discuss various mathematical and statistical properties of the new model. Some estimation
methods of the model parameters are performed. Moreover, the peaks-over-threshold method is used
to estimate Value-at-Risk (VaR) by means of the proposed distribution. We compare the distribution
with a few other models to show its versatility in modelling data with heavy tails. VaR estimation
with the Burr X Pareto distribution is presented using time series data, and the new model could be
considered as an alternative VaR model against the generalized Pareto model for financial institutions.

Keywords: Burr X distribution; Pareto distribution; maximum likelihood estimation; heavy tail
distribution; value-at-risk

1. Introduction

The Pareto (P) distribution is very versatile, and a variety of uncertainties can be usefully modelled
by it. It has several applications in actuarial science, economics, finance, life testing, survival analysis
and telecommunications because of its heavy tail properties. The probability density function (pdf)
and cumulative distribution function (cdf) of the P distribution are given (for x > β) by:

g(x; α, β) =
α

x

(
x
β

)−α

and G(x; α, β) = 1−
(

x
β

)−α

,

where β > 0 is a scale parameter and α > 0 is a shape parameter. This distribution is a special form of
the Pearson Type VI distribution. Since the P distribution has a reversed-J pdf shape and a decreasing
hazard rate function (hrf), it may sometimes be insufficient to model data. Generally, practical problems
require a wider range of possibilities for the medium risk, for example when the lifetime data present
a bathtub-shaped hrf, such as human mortality and machine life cycles. For this reason, researchers
developed various extensions and modified forms of the P distribution to obtain a more flexible
model with different numbers of parameters. Some of them can be cited as follows: Exponentiated
P (EP) (Stoppa 1990; Gupta et al. 1998), Beta P (BP) (Akinsete et al. 2008), Kumaraswamy P (KwP)
(Bourguignon et al. 2013), Kumaraswamy generalized P (Nadarajah and Eljabri 2013), P ArcTan (PAT)
(Gómez-Déniz and Calderín-Ojeda 2015), exponentiated Weibull P (Afify et al. 2016) and Weibull P
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(WP) distributions (Tahir et al. 2016). On the other hand, Yousof et al. (2016) defined the cdf of the
Burr X-G(BX-G) family (for x ∈ <) by:

F(x; δ, ξ) =

(
1− exp

{
−
[

G(x; ξ)

G(x; ξ)

]2
})δ

, (1)

where δ > 0 is the shape parameter and ξ = ξk = ( ξ1, ξ2, . . . ) is a parameter vector. The BX-G density
function becomes:

f (x; δ, ξ) =
2δg(x; ξ)G(x; ξ)

G(x; ξ)3
exp

{
−
[

G(x; ξ)

G(x; ξ)

]2
}(

1− exp

{
−
[

G(x; ξ)

G(x; ξ)

]2
})δ−1

. (2)

This generator can supply the flexibility of pdf and hrf to any baseline distribution model
(Yousof et al. 2016).

In this paper, we introduce a new extended P distribution, called the Burr X Pareto (BXP) model,
based on the BX-G family. With this idea, we construct the new BXP distribution as more flexible than
the P distribution and provide a comprehensive description of some of its mathematical properties.
We prove empirically that the BXP model provides better fits than some extensions and generalizations
of the P, some of which have one extra model parameter, and the others have the same number of
parameters, by means of two applications to real data. We hope that the new distribution will attract
wider applications in reliability, engineering and other areas of research.

The rest of the paper is organized as follows. In Section 2, we define the BXP model. In Section 3,
we provide a useful mixture representation for its pdf. In Section 4, we derive some of its general
mathematical properties. Some estimation methods of the model parameters are performed in Section 5.
In Section 6, simulation results to assess the performance of the proposed maximum likelihood
estimation procedure are discussed. In Section 7, we provide two applications to real data to illustrate
the importance and flexibility of the new family. Value-at-Risk estimation with the BXP distribution is
presented in Section 8. Finally, some concluding remarks are presented in Section 9.

2. The New Model

In this section, we define the BXP model and provide some plots for its pdf and hrf. The BXP cdf
is given by:

F(x; δ, α, β)=

(
1− exp

{
−
[(

x
β

)α

− 1
]2
})δ

, x > β > 0, α, δ > 0. (3)

The pdf corresponding to (3) is given by:

f (x; δ, α, β) = 2δ α
x

(
x
β

)2α
[

1−
(

x
β

)−α
]

exp
{
−
[(

x
β

)α
− 1
]2
}

×
(

1− exp
{
−
[(

x
β

)α
− 1
]2
})δ−1

.
(4)

Lemma 1 provides random number generations from the BXP and some relations and of the BXP
distribution with the well-known Burr X and uniform distributions.

Lemma 1. (a) If a random variable Y follows the Burr X distribution with shape parameter δ and scale parameter
one, then the random variable X = β(1 + Y)(1/α) follows the BXP(δ, α, β) distribution.
(b) If a random variable Y follows the uniform distribution on [0,1], then the random variable:

X = β

(
1 +

√
− log

(
1−Y1/δ

))1/α

follows the BXP(δ, α, β) distribution.



J. Risk Financial Manag. 2018, 11, 1 3 of 16

Proof. The proofs of (a) and (b) are obtained by the transformation method.

The hrf, reversed hazard rate function and cumulative hazard rate function of X are given,
respectively, by:

h(x; δ, α, β) =

2δ α
x

(
x
β

)2α
[

1−
(

x
β

)−α
]

exp
{
−
[(

x
β

)α
− 1
]2
}(

1− exp
{
−
[(

x
β

)α
− 1
]2
})δ−1

1−
(

1− exp
{
−
[(

x
β

)α
− 1
]2
})δ

,

r(x; δ, α, β) =

2δ α
x

(
x
β

)2α
[

1−
(

x
β

)−α
]

exp
{
−
[(

x
β

)α
− 1
]2
}

(
1− exp

{
−
[(

x
β

)α
− 1
]2
})

and:

H(x; δ, α, β) = −

log

(
1− exp

{
−
[(

x
β

)α

− 1
]2
})δ

.

In Figure 1, we sketched the possible pdf and hrf shapes of the BXP distribution for some selected
parameter values. Figure 1 shows that the BXP distribution has various pdf and hrf shapes.
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Figure 1. Plots of the Burr XPareto (BXP) pdf (top) and plots of the BXP hazard rate function
(hrf) (bottom).
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3. Expansions of pdf and cdf

In this section, we provide a very useful linear representation for the BXP density function.
If |z| < 1 and b > 0 is a real non-integer, the power series holds:

(1− z)b−1 =
∞

∑
i=0

(−1)i Γ(b)
i! Γ(b− i)

zi. (5)

For simplicity, ignoring the dependence of G(x) and g(x) on ξ and applying (5) to (4), we have:

f (x) = 2δ
α

x

(
x
β

)2α
[

1−
(

x
β

)−α
]

∞

∑
i=0

(−1)i Γ(δ)
i! Γ(δ− i)

exp

{
−(i + 1)

[(
x
β

)α

− 1
]2
}

. (6)

Applying the power series to the term exp
{
−(i + 1)

[(
x
β

)α
− 1
]2
}

, Equation (6) becomes:

f (x) = 2δ
α

x

(
x
β

)−α ∞

∑
i,j=0

(−1)i+j (i + 1)jΓ(δ)
i! j!Γ(δ− i)

[
1−

(
x
β

)−α
]2j+1

(
x
β

)−α(2j+3)
. (7)

Consider the series expansion:

(1− z)−b =
∞

∑
k=0

Γ(b + k)
k!Γ(b)

zk, |z| < 1, b > 0. (8)

Applying the expansion in (8) to (7) for the term
(

x
β

)−α(2j+3)
, Equation (7) becomes:

f (x) =
∞

∑
j,k=0

Ωj,k π2(j+1)+k(x; α, β), (9)

where:

Ωj,k =
2δ(−1)jΓ(δ)Γ(2j + k + 3)
j!k!Γ(2j + 3)(2j + k + 2)

∞

∑
i=0

(−1)i (i + 1)j

i! Γ(δ− i)

and:
π2(j+1)+k(x; α, β) = [2(j + 1) + k]g(x; α, β)G(x; α, β)2j+k+1.

Equation (9) reveals that the density of X can be expressed as expansions of the EP densities.
Therefore, several mathematical properties of the new family can be obtained by knowing those of
the EP distribution. Similarly, the cdf of the BXP family can also be expressed as a mixture of EP cdfs
given by:

F(x) =
∞

∑
j,k=0

Ωj,k Π2(j+1)+k(x; α, β) (10)

where:
Π2(j+1)+k(x) = G(x; α, β)2(j+1)+k

is the cdf of the EP family with power parameter 2(j + 1) + k.
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4. Properties

In this section, we will provide some mathematical properties of the BXP distribution.

4.1. Moments

The r-th ordinary moment of X is given by µ′r = E(Xr) =
∫ ∞
−∞ xr f (x)dx. By using Equation (9),

we obtain:

µ′r =
∞

∑
j,k=0

Ωj,k E(Yr
2(j+1)+k),

E(Yr
2(j+1)+k) is the r-th ordinary moment of EP distribution with power parameter 2(j + 1) + k.

The j-th order central moment can be obtained by the following relationship:

µj = E[(X− µ)j] =
j

∑
r=0

(
j
r

)
µr
′(−µ)j−r for j = 2, 3, . . . ,

where µ = E(X).
For the skewness and kurtosis coefficients, we have:

√
β1 =

√
µ2

3

µ3
2

and β2 =
µ4

µ2
2

.

The values for mean, variance,
√

β1 and β2 for selected values of δ, α and β are shown in Table 1.
We can say that the BXP model can be useful for various data modelling in terms of skewness
and kurtosis.

Table 1. Mean, variance, coefficients of skewness and kurtosis for different values of parameters.

(δ, α, β) µ Var(X)
√

β1 β2

(0.5, 0.5, 0.5) 1.2801 1.1395 0.7311 4.4238
(1, 1, 1) 1.6330 0.9671 −1.2539 3.2132
(2, 2, 2) 2.5365 1.7311 −1.9644 4.3986
(1, 2, 3) 2.9606 5.9323 −0.8355 1.3785

(4, 2, 0.5) 0.7411 0.0415 −4.1218 17.7934
(10, 2, 0.25) 0.4074 0.0011 −6.3710 97.4674
(0.25, 5, 2) 0.4962 1.2671 1.4287 2.6058
(0.9, 5, 1.8) 1.0633 1.5440 0.0255 0.7191

4.2. Residual and Reversed Residual Life

The n-th moment of the residual life, say mn(t) = E[(X − t)n | X > t], n = 1, 2, . . . , uniquely
determines F(x). The n-th moment of the residual life of X is given by:

mn(t) =
1

1− F(t)

∫ ∞

t
(x− t)ndF(x).

Therefore,

mn(t) =
1

1− F(t)

∞

∑
j,k=0

n

∑
r=0

Ωj,k

(
n
r

)
(−t)n−rβn[2(j + 1) + k]Bt

(
1− n

α
, 2(j + 1) + k

)
, ∀ n ≤ α.

where:
Bz(a, b) =

∫ z

0
wa−1(1− w)b−1dw
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is the incomplete beta function.
The Mean Residual Life (MRL) function or the life expectation at age t defined by

m1(t) = E[(X− t) | X > t] follows by setting n = 1 in the last equation.
The n-th moment of the reversed residual life, say Mn(t) = E[(t− X)n | X ≤ t] for t > 0 and

n = 1, 2, . . . uniquely determines F(x). We obtain:

Mn(t) =
1

F(t)

∫ t

0
(t− x)ndF(x).

Then, the n-th moment of the reversed residual life of X becomes:

Mn(t) =
1

F(t)

∞

∑
j,k=0

n

∑
r=0

Ωj,k(−1)r
(

n
r

)
tn−rβn[2(j + 1) + k]Bt

(
1− n

α
, 2(j + 1) + k

)
, ∀ n ≤ α.

The mean inactivity time (MIT) or mean waiting time is given by M1(t) = E[(t− X) | X ≤ t],
and it can be obtained easily by setting n = 1 in the above equation.

4.3. Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Let X1, . . . , Xn be a random sample from the BXP of distributions, and let X(1), . . . , X(n) be the
corresponding order statistics. The pdf of the i-th order statistic, say Xi:n, can be written as:

fi:n(x) =
f (x; δ, α, β)

B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
Fj+i−1(x). (11)

Using (3), (4) and (10), we get:

f (x) F(x)j+i−1 =
∞

∑
w,k=0

tw,kπ2(w+1)+k(x),

where:

tw,k =
2δ(−1)wΓ(2w + k + 3)

w!k!Γ(2w + 3)(2w + k + 2)

∞

∑
m=0

(−1)m(m + 1)w
(

δ(j + i)− 1
m

)
.

The pdf of Xi:n can be expressed as:

fi:n(x) =
∞

∑
w,k=0

n−i

∑
j=0

(−1)j (n−i
j )bw,k

B(i, n− i + 1)
π2(w+1)+k(x).

Then, the density function of the BXP order statistics is a mixture of EP densities. Based on the
last equation, we note that the properties of Xi:n follow from those properties of Y2w+k+2. For example,
the moments of Xi:n can be expressed as:

E
(

Xq
i:n

)
=

∞

∑
w,k=0

n−i

∑
j=0

(−1)j (n−i
j )tw,k

B(i, n− i + 1)
βq[2(w + 1) + k]B

(
1− q

α
, 2(w + 1) + k

)
, ∀ q ≤ α. (12)
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5. Estimation Methods

In this section, we consider the maximum likelihood, least square and weighted least square
estimation of the parameters of the BXP distribution.

5.1. Maximum Likelihood Estimation

We consider the estimation of the unknown parameters of the BXP model from complete samples
by the maximum likelihood method. The maximum likelihood estimators (MLEs) of the parameters of
the BXP (δ, α, β) model are now discussed. Let x1, . . . , xn be a random sample of this distribution with
parameter vector Θ = (δ, α, β)ᵀ. The log-likelihood function for δ is given by:

` = n log 2 + n log δ + n log α− 2α log β +
n

∑
i=1

log
(
1− βαx−α

i
)

+(2α− 1)
n

∑
i=1

log xi +
n

∑
i=1

log si + (δ− 1)
n

∑
i=1

log(1− si),

where si = exp
{
−
[(

xi
β

)α
− 1
]2
}

.

The last equation can be also maximized either by using the different programs such as
R (optim function), SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations obtained by
differentiating `. We note that since x ∈ (β, ∞), the MLE of the β parameter cannot be obtained in the
usual way. Hence, the MLE of β is the first order statistic X(1) (Johnson et al. 1994).

The components of the score vector, U(Θ) = ∂`
∂Θ =

(
∂`
∂δ , ∂`

∂α

)ᵀ
, are:

Uδ =
n
δ
+

n

∑
i=1

log

(
1− exp

{
−
[(

xi
β

)α

− 1
]2
})

,

and:

Uα =
n
α
− 2 log β−

n

∑
i=1

(
x
β

)−α
log
(

x
β

)
1− βαx−α

i
+ 2

n

∑
i=1

log xi +
n

∑
i=1

mi
si
− (δ− 1)

n

∑
i=1

mi
1− si

where:

mi = −2si

[(
xi
β

)α

− 1
](

xi
β

)α

log
(

xi
β

)
.

For fixed β, the interval estimation of the model parameters requires the 2 × 2 observed
information matrix J(Θ) = {Jij} for i, j = δ, α. The multivariate normal N2(0, J(Θ̂)−1) distribution,
under standard regularity conditions, can be used to provide approximate confidence intervals for
the unknown parameters, where J(Θ̂) is the total observed information matrix evaluated at Θ̂. Then,
approximate 100(1− δ)% confidence intervals for δ and α can be determined by:

δ̂ ± zζ/2

√
Ĵδδ and α̂ ± zζ/2

√
Ĵαα , where zζ/2 is the upper ζ-th percentile of the standard

normal model.

5.2. Ordinary and Weighted Least Squares

In this section, we use the least square (LS) and weighted least square (WLS) estimators
(Swain et al. 1988) to estimate the parameters of the BXP distribution. Let X(1), . . . , X(n) be the order
statistics of a random sample of size n from the BXP defined in (4), then the least square estimators
(LSEs) of the unknown parameters δ, α and β of the BXP distribution can be obtained by minimizing:

n

∑
i=1

(1− exp

{
−
[( x(i)

β

)α

− 1
]2
})δ

− i
n + 1

2

,
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with respect to unknown parameters δ, α and β.
The weighted least square estimators (WLSEs) of the unknown parameters δ, α and β follow

by minimizing:

n

∑
i=1

(n + 1)2(n + 2)
n− i + 1

(1− exp

{
−
[( x(i)

β

)α

− 1
]2
})δ

− i
n + 1

2

,

with respect to unknown parameters δ, α and β.

6. Simulation Study

Here, we perform the simulation study for MLEs of the BXP distribution. We generate N = 1000
samples of sizes n = 50, 100, 200 from selected BXP distributions. The random numbers generation is
simulated by:

x = β

(
1 +

√
− log

(
1− u1/δ

))1/α

,

where u is a uniform random number on [0,1]. We also calculate the empirical mean, standard
deviations (sd), bias and mean square error (MSE) of the MLEs. The empirical bias and MSE are
calculated by:

Biasĥ =
1
N ∑N

i=1

(
h− ĥi

)
and:

MSEĥ =
1
N ∑N

i=1

(
h− ĥi

)2

respectively, where h = (δ, α, β). All results of MLEs were obtained using the optim-CG routine in the
R programme. The empirical results of this simulation study are reported in Table 2. Table 2 shows
that when the sample size increases, the empirical means approach the true parameter value. For the
same case, the standard deviations, biases and MSEs decrease in all the cases as expected. Therefore,
the MLE method works very well to estimate the model parameters of the BXP distribution.

Table 2. The empirical means, sds (given in (·)), biases (given in [·]) and MSEs (given in {·}) for the
special BXP distributions.

Parameters n = 50 n = 100 n = 200

δ, α, β δ̂ α̂ β̂ δ̂ α̂ β̂ δ̂ α̂ β̂

3, 1.5, 2

3.0144 1.5495 2.0286 2.9995 1.5247 2.0159 3.0001 1.5125 2.0060
(0.1831) (0.1585) (0.1155) (0.0399) (0.1059) (0.0757) (0.0400) (0.0648) (0.0485)
[0.0144] [0.0494] [0.0286] [−0.0005] [0.0247] [0.0160] [0.0001] [0.0125] [0.0059]
{0.0330} {0.0270} {0.0140} {0.0016} {0.0117} {0.0060} {0.0016} {0.0043} {0.0023}

3, 2, 1

3.0772 2.0550 1.0040 3.0019 2.0093 1.0021 3.0016 2.0073 1.0013
(0.2928) (0.2053) (0.0443) (0.0212) (0.0976) (0.0211) (0.0203) (0.0851) (0.0182)
[0.0772] [0.0550] [0.0040] [0.0019] [0.0093] [0.0021] [0.0016] [0.0073] [0.0013]
{0.0900} {0.0443} {0.0020} {0.0004} {0.0095} {0.0004} {0.0004} {0.0072} {0.0003}

5, 0.5, 5

5.0863 0.5111 5.1216 5.0044 0.5012 5.0065 4.9954 0.4996 4.9970
(0.2792) (0.0290) (0.3641) (0.0404) (0.0095) (0.0490) (0.0400) (0.0084) (0.0439)
[0.0863] [0.0111] [0.1216] [0.0044] [0.0012] [0.0065] [−0.0046] [−0.0004] [−0.0030]
{0.0838} {0.0010} {0.1447} {0.0072} {0.00008} {0.0071} {0.0054} {0.00007} {0.0070}

10, 30, 20

10.0407 30.0438 20.0024 10.0009 30.0013 19.9998 9.9984 29.9980 20.0001
(0.2318) (0.2809) (0.0101) (0.0110) (0.0130) (0.0086) (0.0101) (0.0120) (0.0059)
[0.0406] [0.0438] [0.0024] [0.0009] [0.0013] [−0.0002] [−0.0016] [−0.0020] [0.0001]
{0.0543} {0.0793} {0.0001} {0.0001} {0.0001} {0.00007} {0.0001} {0.0001} {0.00004}

4, 0.5, 0.5

3.9077 0.5147 0.5265 4.0179 0.5121 0.5203 4.0012 0.5052 0.5079
(0.1261) (0.0532) (0.0926) (0.1010) (0.0411) (0.0711) (0.0878) (0.0246) (0.0440)

[−0.0923] [0.0147] [0.0265] [0.0179] [0.0121] [0.0203] [0.0012] [0.0052] [0.0079]
{0.0356} {0.0030} {0.0100} {0.0164} {0.0018} {0.0054} {0.0076} {0.0006} {0.0019}
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7. Real Data Modelling

In this section, we present two applications based on the real datasets to show the flexibility of
the BXP distribution. The BXP model is compared with the WP, BP, KwP, PAT and P distributions.
The cdfs of the above distributions are given (for x > β and a, α, δ > 0) by:

FWP(x) = 1− exp
{
−
[
(x/β)α − 1

]δ
}

,

FKwP(x) = 1−
{

1−
[
1− (x/β)−α

]a}δ
,

FEP(x) =
[
1− (x/β)−α

]δ
,

FPAT(x) = 1− tan−1
[
α(β/x)δ

][
tan−1 α

]−1

and:

FBP(x) =
1

B(a, δ)

∫ 1−(βx−1)
α

0
wa−1(1− w)δ−1dw.

In order to see the best model, we obtain the Akaike Information Criteria (AIC), Corrected Akaike
Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan–Quinn Information
Criterion (HQIC) and Kolmogorov–Smirnov (KS) goodness of-fit statistic to see the fitting of the
models to dataset. In general, the best model can be chose as the one that has the smallest values of the
AIC, CAIC, BIC, HQIC and KS statistics. All computations of the MLEs are performed by the maxLik
routine in the R program.

The first dataset gives the survival times, in weeks, of 33 patients suffering from acute
myelogenous leukaemia. These data have been introduced by Feigl and Zelen (1965) and analysed by
Mead et al. (2017). The data are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17,
7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. This dataset is well known as being bathtub hrf-shaped.

The second data-set shows the time intervals of the successive earthquakes in the last century
in the North Anatolia fault zone between 39.00◦ to 42.00◦ north latitude and 39.00◦ to 40.00◦ east
longitude. This dataset was introduced and analysed by Kuş (2007). This dataset is well known as
being decreasing hrf-shaped.

For both datasets, the estimated parameters based on the MLE method are given in Table 3,
whereas the values of the information criteria and goodness-of-fit statistics are given in Table 4.
Since MLE of the β equals the minimum order statistics, we suppose it as known to be the minimum
value the dataset. Table 4 shows that the BXP distribution has the lowest values of these statistics
among all the fitted models. Hence, it could be chosen as the best model under these criteria for
both datasets.

The histogram of these datasets and the estimated pdfs and cdfs of the application models are
displayed in Figures 2 and 3. From the this figure, we show that the BXP model provides the best fit to
these datasets as compared to other models.
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Table 3. MLEs and their standard errors (in parentheses) for both datasets. P, Pareto; PAT, P ArcTan;
KwP, Kumaraswamy P; WP, Weibull P; BP, Beta P; EP, Exponentiated P.

Leukaemia Data

Model δ̂ α̂ â β̂

BXP 0.8505 0.1900 1(0.1785) (0.0146)

PAT 0.8603 12.6124 1(0.1428) (6.6619)

KwP 2.3992 0.0007 1,828,015 1(0.0291) (0.0001) (5.9317)

WP 1.8274 0.1994 1(0.2846) (0.0145)

BP 51.9800 0.0239 3.8540 1(0.1240) (0.0048) (0.6551)

EP 4.3606 0.7089 1(1.3221) (0.1192)

P 0.3319 1
(0.0596)

Earthquake Data

BXP 1.9916 0.1678 9(0.5622) (0.0117)

PAT 1.1704 168.1574 9(0.0667) (5.9619)

WP 2.9843 0.1408 9(0.4949) (0.0074)

BP 60.8341 0.0428 12.5592 9(1.0981) (0.0053) (0.9570)

EP 26.9837 0.8707 9(5.7196) (0.0770)

P 0.2264 9(0.0472)

Table 4. Goodness-of-fit statistics for both datasets. CAIC, Corrected Akaike Information Criterion;
HQIC, Hannan–Quinn Information Criterion.

Leukaemia Data

Model AIC CAIC BIC HQIC KS

BXP 295.0115 295.4401 297.8795 295.9464 0.1328
PAT 301.1477 301.5763 304.0157 302.0826 0.1398
KwP 298.9148 299.8037 303.2167 300.3171 0.1486
WP 295.2830 295.7116 298.1510 296.2179 0.1418
BP 301.5970 302.4859 305.8990 302.9994 0.1494
EP 300.9643 301.3929 303.8323 301.8992 0.1630
P 319.1294 319.2673 320.5634 319.5968 0.2733

Earthquake Data

BXP 381.9004 382.5004 384.1714 382.4715 0.0817
PAT 383.7187 384.3187 385.9897 384.2899 0.0971
WP 382.3901 382.9901 384.6610 382.9612 0.0962
BP 384.5029 385.7661 387.9094 385.3597 0.0819
EP 384.3233 384.9233 386.5943 384.8944 0.1038
P 420.6338 420.8243 421.7693 420.9194 0.4218
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Figure 2. Fitted pdfs (left panel) and cdfs (right panel) of leukaemia data.
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Figure 3. Fitted pdfs (left panel) and cdfs (right panel) of earthquake data.

8. Value-at-Risk Estimation with the BXP Distribution

In this section, the performance of BXP distribution in estimating Value-at-Risk (VaR) is discussed
and compared with the Generalized P (GP) distribution. GP is a widely-used distribution in actuarial
sciences, economics and statistics to model the tail of the distribution that contains extreme events.
VaR is one of the most popular approaches to measure market risk. From a statistical point of view,
the VaR entails the estimation of the quantile of the distribution of returns. The VaR for a long position
(left tail of the distribution function) over a given time horizon tis defined as:

VaRp = F−1(p),

where F is the distribution function of financial losses, F−1 denotes the inverse of F and p is the
quantile at which VaR is calculated.

The Peaks-Over-Threshold (POT) method is used to model the tail of the distribution. POT is
based on the distribution of exceedances over a given threshold. The conditional excess distribution,
Fu, can be defined as follows:

Fu(y) = P(X− u ≤ y/X > u), 0 ≤ y ≤ xF − u, (13)
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where random variable X represents the financial losses, u is the threshold, y = X− u are the excesses
and xF ≤ ∞ is the right endpoint of F. Fu(y) can be re-defined as follows:

Fu(y) =
Pr{X−u≤y,X>u}

Pr(X>u) = F(y+u)−F(u)
1−F(u)

= F(x)−F(u)
1−F(u) .

(14)

The Balkema and De Haan (1974) and Pickands (1975) theorem shows that for a sufficiently high
threshold u, the excess distribution function Fu can be approximated by the GP distribution:

Fu(y) ≈ Gξ,σ(y), u→ ∞

Gξ,σ(y) =

{
1− (1 + ξ

y
σ )
−1/ξ , ξ 6= 0

1− e−y/σ , ξ = 0

, (15)

where y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ σ
ξ for ξ < 0 and ξ and σ are shape and scale parameters of the GP

distribution, respectively. Isolating F(x) from (14), we get:

F(x) = (1− F(u))Fu(y) + F(u), (16)

where Fu(y) is the GP distribution and F(u) = (n− Nu)
/

n. Then, substituting (14) in (16),
the following estimate for F(x) is obtained:

F̂(x) = 1− Nu

n
(1 +

ξ̂

σ̂
(x− û))−1/ξ̂ , (17)

where ξ̂ and σ̂ are maximum likelihood estimates of ξ and σ, respectively. Inverting (17) for a given
probability p, VaRp can be obtained as:

VaRp = û +
σ̂

ξ̂

[(
n

Nu
(1− p)

)−ξ̂

− 1

]
. (18)

Threshold selection is a difficult task and an essential part for tail modelling with the GP
distribution. The most used method is the Mean Excess (ME) plot for the determination of the
threshold. The ME function can be defined as follows:

en(u) =

n
∑

i=1
(Xi − u)

n
∑

i=1
I{Xi>u}

, (19)

where I is the indicator function. When the empirical ME function is a positively sloped straight line
above a certain threshold u, it is evidence that the used dataset follows the GP distribution with a
positive ξ parameter.

Here, the BXP distribution is adopted in the POT method. It is assumed that BXP provides a good
approximation to Fu(y) for a sufficiently high threshold u. Then, substituting the cdf of BXP in (16),
the new estimate for F(x) can be obtained as:

F̂(x) =
(

1− n− Nu

n

)1− exp

 −[( x
β̂

)α̂

− 1

]2
δ̂

+
n− Nu

n
. (20)
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The VaRp can be obtained by inverting (20) for a given probability p, as follows:

VaRp = û + β̂

1 +

[
− log

(
1−

(
n(p− 1)

Nu

) 1
δ̂

)] 1
2


1
α̂

, (21)

where β̂, δ̂ and α̂ are the maximum likelihood estimates of β, δ and α, respectively.

8.1. S&P-500

To evaluate and compare the performance of the BXP with GP distribution in terms of VaR
accuracy, the S&P-500 index is used. The used time series data contain 1465 daily log returns from
4 January 2012 to 27 October 2017. The descriptive statistics of S&P-500 are given in Table 4.

Table 5 shows that the mean returns are closed to zero. The Jarque–Bera statistics in Table 5 also
show that the null hypothesis of normality is rejected at any level of significance, as evidenced by the
high excess kurtosis and negative skewness. Thus, it is clear that log returns of S&P-500 indexes have
non-normal characteristics, excess kurtosis and fat tails. The result of the Ljung–Box test indicates that
the raw returns are free from autocorrelation. Therefore, BXP and GP distributions could be applied to
the independent and identically distributed observations.

Table 5. Summary statistics for the S&P-500 index.

Descriptive Statistics S&P-500

Number of observations 1465
Minimum −0.0402
Maximum 0.0383

Mean 0.0004
Median 0.0004

Std.Deviation 0.007
Skewness −0.322
Kurtosis 5.403

Jarque–Bera 377.839 (<0.001)
Ljung–Box 28.516 (0.098)

The ME plot is used to determine the optimal threshold value for the POT method.
Figure 4 displays the ME plot of the S&P-500 dataset. The optimal threshold could be chosen as
0.02 for the used dataset. It is near the 90% quantile value of the S&P-500.
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Figure 4. Mean excess plot of the S&P-500 dataset.
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Table 6 shows the estimated parameters of BXP distribution and GP distribution using the POT
method for the S&P-500 dataset. Based on the figures in Table 6, we conclude that since the BXP
distribution has the lowest values of these statistics, BXP provides better fits than the GP distribution
for tail modelling of S&P-500 indexes. Figure 5 displays the fitted pdf and cdfs of the BXP and GP
distributions. Figure 5 reveals that the BXP distribution provides superior fits to the used dataset.

Table 6. MLEs, corresponding standard errors (in second line) and goodness-of-fit statistics for
the S&P-500.

Models Parameters Goodness-of-Fit

ξ δ σ α β −` KS A∗ W∗

BXP 3.2480 0.1893 4.89818 × 10−5 −93.4016 0.1427 0.3809 0.0556
1.0266 0.0120 -

GP 0.0847 0.0057 −88.7171 0.1498 0.4039 0.0661
0.1996 0.0015
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Figure 5. Fitted pdfs (left) and cdfs (right) of the BXP and GP distribution for the S&P-500 dataset.

Here, VaR is estimated with the GP and BXP distribution using the POT method for values of
p = 0.95, 0.975 and 0.99. The rolling window estimation method is used to evaluate the out-of-sample
performance of the GP and BXP models. The first 1064 daily returns are used as the window length,
and the next 400 data points are considered as out-of-sample period. Figure 6 displays daily VaR
estimates of the BXP and GP models. Based on Figure 6, it is clear that the BXP and GP models produce
similar VaR estimates. Therefore, the BXP model could be considered as an alternative VaR model
against to GP model for financial institutions.

In VaR estimation, using the POT method is applied to raw return data assuming the distribution
to be stationary or unconditional without considering the time-varying volatility. The POT method can
also be considered as a dynamic model, where the conditional distribution of F is taken into account
and the volatility of returns is captured. The dynamic POT method based on the BXP distribution,
combined with the generalized autoregressive conditional heteroscedasticity type process, introduced
by Bollerslev (1986), could be considered as future work of this study.
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Figure 6. Daily VaR estimates of the BXP and GP models.

9. Conclusions

In this study, we proposed a new distribution that was referred to as the Burr X Pareto (BXP)
using the Burr X generator. Some mathematical properties were obtained. The estimation of the model
parameters is performed by the MLE, LS and WLS methods. We compare the distribution with a
few other models using two real datasets. It is expected that the BXP distribution will serve as a
better alternative in modelling real-life datasets. Value-at-Risk estimation with the BXP distribution is
presented using time series data, we showed that the new model could be considered as an alternative
VaR model against the generalized Pareto model for financial institutions.
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