
Journal of

Risk and Financial
Management

Article

A New Generalization of the Pareto Distribution and
Its Application to Insurance Data

Mohamed E. Ghitany 1,*, Emilio Gómez-Déniz 2 and Saralees Nadarajah 3

1 Department of Statistics and Operations Research, Faculty of Science, Kuwait University, Safat 13060, Kuwait
2 Department of Quantitative Methods and TiDES Institute, University of Las Palmas de Gran Canaria,

35017 Gran Canaria, Spain; emilio.gomez-deniz@ulpgc.es
3 School of Mathematics, University of Manchester, Manchester M13 9PL, UK;

Saralees.Nadarajah@manchester.ac.uk
* Correspondence: meghitany@yahoo.com

Received: 26 November 2017; Accepted: 2 February 2018; Published: 7 February 2018

Abstract: The Pareto classical distribution is one of the most attractive in statistics and particularly
in the scenario of actuarial statistics and finance. For example, it is widely used when calculating
reinsurance premiums. In the last years, many alternative distributions have been proposed to obtain
better adjustments especially when the tail of the empirical distribution of the data is very long.
In this work, an alternative generalization of the Pareto distribution is proposed and its properties are
studied. Finally, application of the proposed model to the earthquake insurance data set is presented.
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1. Introduction

In general insurance, only a few large claims arising in the portfolio represent the largest part
of the payments made by the insurance company. Appropriate estimation of these extreme events is
crucial for the practitioner to correctly assess insurance and reinsurance premiums. On this subject,
the single parameter Pareto distribution (Arnold 1983; Brazauskas and Serfling 2003; Rytgaard 1990),
among others has been traditionally considered as a suitable claim size distribution in relation to
rating problems. Concerning this, the single parameter Pareto distribution, apart from its favourable
properties, provides a good depiction of the random behaviour of large losses (e.g., the right tail of
the distribution). Particularly, when calculating deductibles and excess–of–loss levels for reinsurance,
the simple Pareto distribution has been demonstrated convenient, see for instance (Boyd 1988;
Mata 2000; Klugman et al. 2008), among others.

In this work, an alternative to the Pareto distribution will be carried out. Properties and applications
of this distribution will be studied here. As far as we know, these properties have not been studied for
this distribution. In particular, we concentrate our attention to results connected with financial risk
and insurance.

The paper is organized as follows. In Section 2, the new proposed distribution is shown, including
some of its more relevant properties. Section 3 presents some interesting results connecting with
financial risk and insurance. Next, Section 4 deals with parameter estimation, paying special attention
to the maximum likelihood method. In Section 5, numerical application by using real insurance data is
considered. Finally, some conclusions are given in the last section.
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2. The Proposed Distribution

2.1. Probability Density Function

A continuous random variable X is said to have a generalized truncated log-gamma (GTLG)
distribution if its probability density function (p.d.f.) is given by

f (x) =
θλ

αΓ(λ)

( x
α

)−θ−1 (
log

x
α

)λ−1
, x ≥ α, α, θ, λ > 0, (1)

where Γ(z) =
∫ ∞

0 tz−1 exp(−t) dt is the Euler gamma function. Note that, for all α, θ > 0, we have

f (α) =


∞, if 0 < λ < 1,
θ/α, if λ = 1,
0, if λ > 1,

f (∞) = 0.

As it can be easily seen, the parameter α marks a lower bound on the possible values that (1) can
take on. When α = 1, the GTLG distribution reduced to the log-gamma distribution proposed by
Consul and Jain (1971) with p.d.f.

fZ(z) =
θλ

Γ(λ)
z−θ−1 (log z)λ−1, z > 1, θ, λ > 0.

Note that Consul and Jain (1971) considered only the case λ ≥ 1. For this case, they derived the
raw moments and the distribution of the product of two independent log-gamma random variables.
The p.d.f. (1) can now be obtained by the transformation X = αZ.

Expression (1) is a particular case of the generalized truncated log–gamma distribution proposed
in Amini et al. (2014) and related with the family proposed by Zografos and Balakrishnan (2009).
When λ = 1, we obtain the famous Pareto distribution. In addition, when λ = 2, we obtain a
distribution reminiscent of the distribution proposed in Gómez-Déniz and Calderín (2014). Properties
and applications of this distribution will be studied here. In particular, we concentrate attention to
results connecting with financial risk and insurance.

Theorem 1. For all α, θ > 0, f (x) is decreasing (increasing-decreasing) if 0 < λ ≤ 1 (λ > 1).

Proof. The first derivative of f (x) given by

f ′(x) =
ï
−(θ + 1) +

λ− 1
log(x/α)

ò
f (x)

x
,

which can be seen to be strictly negative if 0 < λ ≤ 1 and has a unique zero at
xm = α exp [(λ− 1)/(θ + 1)] , if λ > 1.

Note that the mode of f (x) is given by α if 0 < λ ≤ 1 (xm if λ > 1).
Figure 1 shows the p.d.f. (1) for selected values of λ and θ when α = 1.
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Figure 1. Probability density function of GTLG distribution for selected values of θ and λ when α = 1.

2.2. Hazard Rate Function

The survival function (s.f.) of the GTLG distribution is given by

F(x) = P(X > x) =
Γ
(
λ, θ log

( x
α

))
Γ(λ)

, x ≥ α. (2)

where Γ(a, z) =
∫ ∞

z ta−1 exp(−t) dt is the incomplete gamma function. When λ is a positive integer,
we have

F(x) = (x/α)−θ
λ−1∑
k=0

[θ log(x/α)]k

k!
, x ≥ α.

The hazard rate function (h.r.f.) of the GTLG distribution is given by

h(x) =
f (x)
F(x)

=
θλ

αΓ(λ, θ log
( x

α

)
)

(x
α

)−θ−1 (
log

x
α

)λ−1
, x ≥ α, α, θ, λ > 0. (3)

Note that, h(α) = f (α) and h(∞) = 0.

Theorem 2. For all α, θ > 0, h(x) is decreasing ( increasing-decreasing) if 0 < λ ≤ 1 (λ > 1).

Proof. Let

η(x) = − f ′(x)
f (x)

=

ï
(θ + 1)− λ− 1

log(x/α)

ò
1
x

.

It is straightforward to show that η(x) is decreasing if 0 < λ ≤ 1 and η(x) is increasing-decreasing
if λ > 1. Now by Glaser (1980), h(x) is decreasing if λ ≤ 1 and increasing-decreasing if λ > 1,
since f (α) = h(α) = 0 when λ > 1.

Figure 2 shows the h.r.f. (3) for selected values of λ and θ when α = 1.
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Figure 2. Hazard rate function of GTLG distribution for selected values of θ and λ when α = 1.

2.3. Mean Residual Life Function

For the GTLG(α, λ, θ), we have∫ ∞

x
y f (y)dy = µ

∫ ∞

x
fθ−1(y)dy = µ Fθ−1(x), x > α, θ > 1.

where, for θ > 1, µ = E(X) = α
Ä

1− 1
θ

ä−λ
is the mean of the GTLG distribution, and fθ−1(x) (Fθ−1(x))

is the p.d.f. (1) (s.f. (2)) when θ is replaced by θ − 1.
The mean residual life function (m.r.l.f.) of the GTLG distribution is given by

e(x) = E(X− x|X > x)

=
1

F(x)

∫ ∞

x
y f (y) dy − x

= µ
Fθ−1(x)

Fθ(x)
− x, x > α, θ > 1.

(4)

Theorem 3. For all α > 0, θ > 1, the m.r.l.f. e(x) is increasing ( decreasing-increasing) if 0 < λ ≤ 1 (λ > 1).

Proof. Since h(x) is decreasing for 0 < λ ≤ 1, it follows that, in this case, e(x) is increasing.
In addition, since h(x) is increasing-decreasing for λ > 1 and f (α)e(α) = 0, it follows that, in this case,
e(x) is decreasing-increasing, by Gupta and Akman (1995).

From the point of view of a risk manager, the expression e(x) + x = E(X|X > x) is the so-called
Expected Shortfall, that is the conditional mean of X given X exceeds a given quantile value x. This is
a risk measurement appropriate to evaluate the market risk or credit risk of a portfolio.

Figure 3 shows the m.r.l.f. (4) for selected values of λ and θ when α = 1.
It is noted that, unlike the classical Pareto distribution, this expression is not a linear function of x.
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Figure 3. Mean residual life function of GTLG distribution for selected values of θ and λ when α = 1.

2.4. Moments

The GTLG distribution with p.d.f. (1) can be obtained from a monotonic transformation of the
gamma distribution, as it can be seen in the next result.

Theorem 4. Let us assume that Y follows a Gamma(λ, θ) distribution with p.d.f. f (y) ∝ yλ−1 exp(−θy),
where λ > 0 and θ > 0. Then the random variable

X = α eY (5)

has p.d.f. (1).

Proof. The proof follows after a simple change of variable.

Note that Z = eY has a log-gamma distribution over (1, ∞). That is X = αZ as indicated before.
Now, by using representation (5) and the moments of the Gamma distribution, the expression for

the r-th moment about zero of distribution (1) is easily obtained,

µ′r = E(Xr) = αr MY(r) = αr
(

1− r
θ

)−λ
, r = 1, 2, . . . ,

provided θ > r and λ > 0.
In particular, the mean is given by

µ = α

Å
1− 1

θ

ã−λ

, θ > 1, (6)

and the variance is given by

σ2 = α2
ñÅ

1− 2
θ

ã−λ

−
Å

1− 1
θ

ã−2λ
ô

, θ > 2, (7)

Furthermore, by using the representation given by (5) the following result is obtained

E
ï

log
Å

X
α

ãòr
= E(Yr) =

Γ(λ + r)
θrΓ(λ)

, r = 1, 2, . . . . (8)
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Solving the equation

µ = α

Å
1− 1

θ

ã−λ

,

in θ, we obtain

θ =
(µ/α)1/λ

(µ/α)1/λ − 1
, µ > α.

This implies that the covariates can be introduced into the model in a simple way.

2.5. Conjugate Distributions

The following results show that both the inverse Gaussian distribution and the gamma distribution
are conjugate with respect to the distribution proposed in this work.

Theorem 5. Let Xi, i = 1, 2, . . . , n independent and identically distributed random variables following the
p.d.f. (1). Let us suppose that θ follows a prior inverse Gaussian distribution π(θ) with parameters τ and φ,
i.e., π(θ) ∝ θ−3/2 exp

î
− 1

2

Ä
φ

τ2 θ + φ
θ

äó
. Then the posterior distribution of θ given the sample information

(X1, . . . , Xn) is a generalized inverse Gaussian distribution GIG(λ∗, τ∗, φ∗), where

λ∗ = nλ− 1
2

,

τ∗ = τ

Ã
1 +

2τ2

φ

n∑
i=1

log(xi/α),

φ∗ = φ.

Proof. The result follows after some computations by applying Bayes’ Theorem and
arranging parameters.

Theorem 6. Let Xi, i = 1, 2, . . . , n independent and identically distributed random variables following the
p.d.f. (1). Let us suppose that θ follows a prior gamma distribution π(θ) with a shape parameter τ > 0 and
a scale parameter σ > 0, i.e., π(θ) ∝ θτ−1 exp(−σθ). Then the posterior distribution of θ given the sample
information (X1, . . . , Xn) is again a gamma distribution with shape parameter τ + nλ and scale parameter
σ + log(xi/α).

Proof. Again, the result follows after some algebra by using Bayes’ Theorem and
arranging parameters.

2.6. Stochastic Ordering

Stochastic ordering of positive continuous random variables is an important tool for judging the
comparative behavior. We will recall some basic definitions, see (Shaked and Shanthikumar 2007).

Let X and Y be random variables with p.d.f.s f (x) and g(y) (s.f.s F(x) and G(y)) (h.r.f.s h(x) and
r(y) ), respectively.

A random variable X is said to be smaller than a random variable Y in the

(i) stochastic order (denoted by X �ST Y ) if F(x) ≤ G(x) for all x,
(ii) hazard rate order (denoted by X �HR Y ) if h(x) ≥ r(x) for all x,
(iii) likelihood ratio order (denoted by X �LR Y ) if f (x)

g(x) decreases for all x.

The following implications are well known:

X �LR Y ⇒ X �HR Y ⇒ X �ST Y.
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Members of the family of distributions with p.d.f. (1) are ordered with respect to the strongest
“likelihood ratio” ordering, as shown in the following theorem.

Theorem 7. Let X and Y be two continuous random variables distributed according to (1) with p.d.f.’s given
by f (x) = f (x; α, θ1, λ) and g(x) = f (x; α, θ2, λ), respectively. If θ1 ≥ θ2 > 0, then X �LR Y (X �HR Y)
(X �ST Y)

Proof. Firstly, let us observe that the ratio

f (x)
g(x)

=

Å
θ1

θ2

ãλ

αθ1−θ2 xθ2−θ1

wih derivative Å
f (x)
g(x)

ã′
=

Å
θ1

θ2

ãλ

αθ1−θ2(θ2 − θ1)xθ2−θ1−1 ≤ 0,

for all θ1 ≥ θ2 > 0, proving the theorem.

Properties for higher-order stochastic dominance in financial economics can be obtained following
the line of the work of (Guo and Wong 2016). In this regard, let X and Y be random variables defined
on [a, b] with p.d.f.’s f (x), g(y) and s.f.’s F(x), G(y), respectively, satisfying

FD
j (x) =

∫ b

x
FD

j−1(y)dy, GD
j (x) =

∫ b

x
GD

j−1(y)dy, j ≥ 1,

where FD
0 (x) = f (x), GD

0 (x) = g(x), FD
1 (x) = F(x), and GD

1 (x) = G(x).
A random variable X is said to be smaller than a random variable Y

(i) in the first-order descending stochastic dominance (denoted by X �1 Y) iff FD
1 (x) ≤ GD

1 (x) for
each x ∈ [a, b].

(ii) in the second-order descending stochastic dominance (denoted by X �2 Y) iff FD
2 (x) ≤ GD

2 (x) for
each x ∈ [a, b].

(iii) in the N-order descending stochastic dominance (denoted by X �N Y) iff FD
N (x) ≤ GD

N(x) for each
x ∈ [a, b] and FD

k (a) ≤ GD
k (a) for 2 ≤ k ≤ N − 1, N ≥ 3.

Theorem 8. Let X and Y be two continuous random variables distributed according to (1) with p.d.f.’s given
by f (x) = f (x; α, θ1, λ) and g(y) = f (y; α, θ2, λ), respectively.

(i) If θ1 ≥ θ2 > 0, then X �1 Y.

(ii) If θ1 ≥ θ2 > 0, then X �2 Y.

(iii) If θ1 ≥ θ2 > 1, then X �N Y for N ≥ 3.

Proof. (i) For θ1 ≥ θ2 > 0, we have

FD
1 (x) = Fθ1(x) =

Γ(λ, θ1 log(x/α))

Γ(λ)
≤ Γ(λ, θ2 log(x/α))

Γ(λ)
= Gθ2(x) = GD

1 (x).

Therefore, for θ1 ≥ θ2 > 0, X �1 Y.
(ii) For θ1 ≥ θ2 > 0, we have

FD
2 (x) =

∫ ∞

x
FD

1 (y)dy ≤
∫ ∞

x
GD

1 (y)dy = GD
2 (x).
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Therefore, for θ1 ≥ θ2 > 0, X �2 Y.
(iii) For θ1 ≥ θ2 > 1, we have

FD
3 (x) =

∫ ∞

x
FD

2 (y)dy ≤
∫ ∞

x
GD

2 (y)dy = GD
3 (x).

Also, for θ1 ≥ θ2 > 1, we have

FD
2 (α) =

∫ ∞

α
Fθ1(y)dy = µθ1 ≤ µθ2 =

∫ ∞

α
Gθ2(y)dy = GD

2 (α).

Therefore, for θ1 ≥ θ2 > 1, X �3 Y.
Now assume that, for θ1 ≥ θ2 > 1, X �N Y for some N ≥ 3, i.e., FD

N (x) ≤ GD
N(x) for each

x ∈ [a, b] and FD
k (a) ≤ GD

k (a) for 2 ≤ k ≤ N − 1, N ≥ 3.
Now for θ1 ≥ θ2 > 1, we have

FD
N+1(x) =

∫ ∞

x
FD

N (y)dy ≤
∫ ∞

x
GD

N(y)dy = GD
N+1(x).

Also, for θ1 ≥ θ2 > 1, we have

FD
N (α) =

∫ ∞

α
FD

N−1(y)dy ≤ µθ2 =

∫ ∞

α
GD

N−1(y)dy = GD
N(α).

Therefore, for θ1 ≥ θ2 > 1, X �N Y for all N ≥ 3.

3. Some Theoretical Financial Results

The integrated tail distribution function (also known as equilibrium distribution function):

FI(x) =
1

E(X)

∫ x

α
F(y) dy, x > α.

is an important probability model that often appears in insurance and many other applied fields
(see for example Yang 2004).

For the GTLG(α, λ, θ), we have∫ x

α
y f (y)dy = µ

∫ x

α
fθ−1(y)dy = µ Fθ−1(x), x > α, θ > 1.

The integrated tail distribution of the GTLG (α, λ, θ) is given by

FI(x) =
1
µ

∫ x

α
Fθ(y)dy

=
1
µ

ß
x Fθ(x)− α + µ

∫ x

α
fθ−1(y)dy

™
=

1
µ

{
x Fθ(x)− α + µ Fθ−1(x)

}
, x > α, θ > 1.

(9)

Under the classical model (see Yang 2004) and assuming a positive security loading, ρ, for the
claim size distributions with regularly varying tails we have that, by using (3), it is possible to
obtain an approximation of the probability of ruin, Ψ(u), when u → ∞. In this case the asymptotic
approximations of the ruin function is given by

Ψ(u) ∼ 1
ρ

FI(u), u→ ∞.
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where FI(u) = 1− FI(u).
The use of heavy right-tailed distribution is of vital importance in general insurance. In this

regard, Pareto and log-normal distributions have been employed to model losses in motor third
liability insurance, fire insurance or catastrophe insurance. It is already known that any probability
distribution, that is specified through its cumulative distribution function F(x) on the real line, is heavy
right-tailed if and only if for every t > 0, etxF(x) has an infinite limit as x tends to infinity. On this
particular subject, (1) decays to zero slower than any exponential distribution and it is long-tailed since
for any fixed t > 0 (see Rytgaard 1990) it is verified that

F(x + t) ∼ F(x), x → ∞.

Therefore, as a long-tailed distribution is also heavy right-tailed, the distribution introduced in
this manuscript is also heavy right–tailed.

Another important issue in extreme value theory is the regular variation (see Bingham 1987;
Rytgaard 1990). A distribution function is called regular varying at infinity with index −β if

lim
x→∞

F(tx)
F(x)

= t−β,

where the parameter β ≥ 0 is called the tail index.

Theorem 9. The GTLG distribution is regularly varying at infinity with index −θ.

Proof. Using L’Hospital rule, we have

lim
x→∞

F(tx)
F(x)

= lim
x→∞

Γ(λ, θ log tx
α )

Γ(λ, θ log x
α )

= lim
x→∞

−
(
θ log tx

α

)λ−1 e−θ log tx
α

Ä
θ
x

ä
−
(
θ log x

α

)λ−1 e−θ log x
α

Ä
θ
x

ä
= lim

x→∞

Ç
1 +

log t
log x

α

åλ−1

t−θ = t−θ ,

for all α, θ, λ > 0.

As a consequence of this result we have that if X, X1, . . . , Xn are i.i.d. random variables with
common s.f. (2) and Sn =

∑n
i=1 Xi, n ≥ 1, then

Pr(Sn > x) ∼ Pr(X > x) as x → ∞.

Therefore, if Pn = maxi=1,...,n Xi, n ≥ 1, we have that

Pr(Sn > x) ∼ n Pr(X > x) ∼ Pr(Pn > x).

This means that for large x the event {Sn > x} is due to the event {Pn > x}. Therefore, exceedance
of high thresholds by the sum Sn are due to the exceedance of this threshold by the largest value in
the sample.

On the other hand, let the random variable X represent either a policy limit or reinsurance
deductible (from an insurer’s perspective); then the limited expected value function L of X with
cdf F(x), is defined by

L(x) = E[min(X, x)]

=

∫ x

α
y fθ(y) dy + x Fθ(x)

= µ Fθ−1(x) + x Fθ(x), x > α, θ > 1.

(10)
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Note that L(x) represents the expected amount per claim retained by the insured on a policy with
a fixed amount deductible of x.

Figure 4 shows the limited expected value function (10) for selected values of λ and θ when α = 1.
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Figure 4. Limited expected value function of GTLG distribution for selected values of θ and λ when α = 1.

On the other hand, the new distribution can also be applied in rating excess–of–loss reinsurance
as it can be seen in the next result.

Theorem 10. Let X be a random variable denoting the individual claim size taking values only for individual
claims greater than d. Let us also assumed that X follows the pdf (1), then the expected cost per claim to the
reinsurance layer when the losses excess of m subject to a maximum of l is given by

E[min(l, max(0, X−m))] =
θλ

Γ(λ)
[m (R(λ, θ, m + l)− R(λ, θ, m))

+α (R(λ, θ − 1, m)− R(λ, θ − 1, m + 1))]

+lF(m + l),

where R(a, b, z) = logλ(z/α)E1−a(b log(z/α)), being En(z) =
∫ ∞

1 t−n exp(−zt) dt the exponential
integral function.

Proof. The result follows by having into account that

E[min(l, max(0, X−m))] =

∫ m+l

m
(x−m) f (x) dx + lF(m + l),

from which we get the result after some tedious algebra.

4. Maximum Likelihood Estimation

In the following it will be assumed that x = (x1, x2, . . . , xn) is a random sample selected from the
GTLG distribution with known parameter α and unknown parameters ν = (θ, λ) from the p.d.f. (1).
Then, the log–likelihood function is given by

`(ν; x) = n [λ log θ − log αΓ(λ)] +
n∑

i=1

[
−(θ + 1) log

(xi
α

)
+ (λ− 1) log log

(xi
α

)]
. (11)
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The maximum likelihood estimates (MLEs) ν̂ = (θ̂, λ̂), of the parameters ν = (θ, λ) are obtained
by solving the score equations:

∂`

∂θ
=

nλ

θ
−

n∑
i=1

log(xi/α) = 0,

∂`

∂λ
= n [log θ − ψ(λ)] +

n∑
i=1

log log(xi/α) = 0,

where ψ(·) is the digamma function. Therefore,

θ̂ =
nλ̂∑n

i=1 log(xi/α)
,

where λ̂ is the solution of the equation:

log(λ̂)− ψ(λ̂)− log

[
1
n

n∑
i=1

log(xi/α)

]
+

1
n

n∑
i=1

log log(xi/α) = 0.

The second partial derivatives are given by

∂2`

∂θ2 = −nλ

θ2 ,

∂2`

∂θ∂λ
=

n
θ

,

∂2`

∂λ2 = −nψ′(λ).

The expected Fisher’s information matrix is given by

I(ν) =

 nλ
θ2 − n

θ

− n
θ nψ′(λ)

 . (12)

Now the estimated variance-covariance matrix of the MLEs ν̂ is given by the inverse matrix
I−1(ν̂).

It is known that under certain regularity conditions, the maximum likelihood estimator ν̂

converges in distribution to a bivariate normal distribution with mean equal to the true parameter
value and variance-covariance matrix given by the inverse of the information matrix. That is,

ν̂
D−→ N (ν, I−1(ν)) , which provides a basis for constructing tests of hypotheses and confidence

regions. The regularity conditions are verified by taking into account that the Fisher’s information
matrix exists and is non-singular and that the parameter space is a subset of the real line and the range

of x is independent of ν. Furthermore, additional computations provides that E
(

∂ f (x)
∂ν

)
= 0 and that

∂3 f (x)
∂ν3 is bounded.

5. Numerical Application

Because the main application of the heavy tail distributions is the so-called extreme value theory,
we consider a data set coming from catastrophic events. The data set represents loss ratios (yearly data
in billion of dollars) for earthquake insurance in California from 1971 through 1993 for values larger
than zero. The data are given in Embrechts et al. (1999).

For comparison with other heavy tail distributions, we consider the following models:
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(1) Pareto distribution:

f (x) =
θ

x

(α

x

)θ
, x ≥ α, α, θ > 0.

(2) Shifted log-normal (SLN):

f (x) =
θ
√

2π

x− α
exp
ï
− 1

2θ2 (log(x− α)− λ)2
ò

, x ≥ α, α, θ > 0, λ ∈ IR.

(3) Burr distribution:

f (x) =
θλ(x− α)θ−1[

1− (x− α)θ
]λ+1 , x ≥ α, α, θ, λ > 0.

(4) Stoppa distribution:

f (x) =
λθ

x

(α

x

)θ
ï

1−
(α

x

)θ
òλ−1

, x ≥ α, α, θ, λ > 0.

(5) Log-gamma distribution (LG):

f (x) =
(1 + x− α)−1−1/θ

θλΓ(λ)
logλ−1(1 + x− α), x ≥ α, α, θ, λ > 0.

Table 1 provides parameter estimates together with standard errors (in brackets) using the
maximum likelihood estimation method of the parameters θ and λ when α = 0.1. This table also gives
the negative log-likelihood (NLL), Akaike’s Information Criteria (AIC), Bayesian information criterion
(BIC), and Consistent Akaike’s Information Criteria (CAIC).

A lower value of these measures is desirable. These results show that the proposed GTLG
distribution provides better fit than the considered competing distributions. Table 2 shows three
goodness-of-fit tests for all considered models and that the classical Pareto model is rejected for this
data set.

Table 1. Estimated values of the considered models when α = 0.1.

Distribution Estimates (S.E.) NLL AIC BIC CAIC

Pareto θ = 0.249 (0.057) 77.939 157.878 158.822 159.822

SLN θ = 1.477 (0.239) 66.080 136.161 138.05 140.05
λ = 1.668 (0.339)

Burr θ = 2.287 (0.895) 67.352 138.703 140.592 142.592
λ = 0.243 (0.106)

Stoppa θ = 0.768 (0.159) 66.321 136.643 138.532 140.532
λ = 12.013 (6.065)

LG θ = 0.802 (0.271) 66.273 136.547 138.435 140.435
λ = 2.474 (0.755)

GTLG θ = 1.845 (0.606) 65.987 135.974 137.863 139.863
λ = 7.401 (2.352)
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Table 2. Test statistics (p-values) of goodness-of-fit tests of the considered models when α = 0.1.

Distribution Kolmogorov-Smirnov Cramér-Von Misses Anderson-Darling

Pareto 0.360 (0.010) 0.706 (0.012) 3.574 (0.014)
SLN 0.116 (0.933) 0.031 (0.970) 0.205 (0.989)
Burr 0.182 (0.500) 0.090 (0.633) 0.483 (0.761)

Stoppa 0.148 (0.746) 0.040 (0.933) 0.242 (0.974)
LN 0.149 (0.731) 0.043 (0.918) 0.257 (0.966)

GTLG 0.148 (0.745) 0.040 (0.932) 0.242 (0.974)

6. Conclusions

In this paper, a continuous probability distribution function with positive support suitable
for fitting insurance data has been introduced. The distribution, that arises from a monotonic
transformation of the classical Gamma distribution, can be considered as a generalization of the
log-gamma distribution. This new development, which has a promising approach for data modeling
in the actuarial field, may be very useful for practitioners who handle large claims. For that reason,
it can be deemed as an alternative to the classical Pareto distribution. Besides, an extensive analysis of
its mathematical properties has been provided.
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