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Abstract: Intraday high-frequency data of stock returns exhibit not only typical characteristics (e.g.,
volatility clustering and the leverage effect) but also a cyclical pattern of return volatility that is known
as intraday seasonality. In this paper, we extend the stochastic volatility (SV) model for application
with such intraday high-frequency data and develop an efficient Markov chain Monte Carlo (MCMC)
sampling algorithm for Bayesian inference of the proposed model. Our modeling strategy is two-
fold. First, we model the intraday seasonality of return volatility as a Bernstein polynomial and
estimate it along with the stochastic volatility simultaneously. Second, we incorporate skewness and
excess kurtosis of stock returns into the SV model by assuming that the error term follows a family
of generalized hyperbolic distributions, including variance-gamma and Student’s t distributions.
To improve efficiency of MCMC implementation, we apply an ancillarity-sufficiency interweaving
strategy (ASIS) and generalized Gibbs sampling. As a demonstration of our new method, we estimate
intraday SV models with 1 min return data of a stock price index (TOPIX) and conduct model selection
among various specifications with the widely applicable information criterion (WAIC). The result
shows that the SV model with the skew variance-gamma error is the best among the candidates.

Keywords: Bayesian inference; high-frequency financial time series; intraday seasonality; Markov
chain Monte Carlo; stochastic volatility

1. Introduction

It is well documented that (a) probability distributions of stock returns are heavy-tailed
(both tails of the probability density function go down to zero much slower than in the
case of the normal distribution, and as a result, the kurtosis of the distribution exceeds 3),
(b) they are often asymmetric around the mean (the skewness of the distribution is either
positive or negative), (c) they exhibit volatility clustering (positive autocorrelation among
the day-to-day variance of returns) and (d) the leverage effect (the current volatility and
the previous return are negatively correlated so that downturns in the stock market tend to
predate sharper spikes in the volatility). In the practice of financial risk management, it
is imperative to develop a statistical model that can capture these characteristics of stock
returns because they are thought to be related to steep drops and rebounds in stock prices
during the periods of financial turmoil. Without factoring them into risk management,
financial institutions might unintentionally take on a higher risk and as a result would be
faced with grave consequences, which we already observed during the Global Financial
Crisis.

As a time-series model with the aforementioned characteristics, a family of time-
series models called the stochastic volatility (SV) model has been developed in the field
of financial econometrics. The standard SV model is a simple state-space model in which
the measurement equation is a mere distribution of stock returns with the time-varying
variance (volatility) and the system equation is an AR(1) process of the latent log volatility.
In the standard setting, both measurement and system errors are supposed to be Gaussian
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and negatively correlated in order to incorporate the leverage effect into the model. The
standard SV model can explain three stylized facts: heavy-tailed distribution, volatility
clustering and the leverage effect, but it cannot make the distribution of stock returns
asymmetric. Furthermore, although in theory the standard SV model incorporates the
heavy-tail behavior of stock returns, many empirical studies demonstrated that it was
insufficient to explain extreme fluctuations of stock prices that were caused by large shocks
in financial markets.

Based on the plain-vanilla SV model, researchers have developed numerous vari-
ants that are designed to capture all aspects of stock returns sufficiently well. The SV
model has been pioneered by Taylor (1982), and numerous studies related to the SV
model have been conducted so far. The Markov chain Monte Carlo (MCMC) algorithms
for SV models, which can be analyzed by numerical method, have been introduced by
(Jacquier et al. 1994, 2004). Ghysels et al. (1996) also survey and develop statistical infer-
ences of the SV model including a Bayesian approach. A direct way to introduce a more
heavy-tailed distribution to the SV model is to assume that the error term of the measure-
ment equation follows a distribution with much heavier tails than the normal distribution.
The Student’s t distribution is a popular choice (Berg et al. 2004; Omori et al. 2007;
Nakajima and Omori 2009; Nakajima 2012 among others). In the literature, the asymmetry
in stock returns can be handled by assuming that the error term follows an asymmet-
ric distribution (Nakajima and Omori 2012; Tsiotas 2012; Abanto-Valle et al. 2015 among
others). In particular, the generalized hyperbolic (GH) distribution proposed by Barndorff-
Nielsen (1977) has recently drawn increasing attention among researchers (e.g., Nakajima
and Omori 2012), since it is regarded as a broad family of heavy-tailed distributions
such as variance-gamma and Student’s t, as well as their skewed variants such as skew
variance-gamma and skew Student’s t.

As an alternative to the SV model, the realized volatility (RV) model (e.g., Andersen
and Bollerslev 1997, 1998) is often applied to evaluation of daily volatility. A naive
RV estimator is defined as the sum of squared intraday returns. It converges to the
daily integrated volatility as the time interval of returns becomes shorter. Due to this
characteristic, RV is suitable for foreign exchange markets, which are open for 24 h a day
continuously, though this may not be the case for stock markets. Most stock markets close at
night, and some of them, including the Tokyo Stock Exchange, have lunch breaks when no
transactions take place. It is well known that the naive RV estimator is biased for such stock
markets. Nonetheless, since RV is a convenient tool for volatility estimation, researchers
have developed various improved estimators of RV as well as robust estimators of its
standard error. For example, Mykland and Zhang (2017) proposed a general nonparametric
method called the observed asymptotic variance for assessing the standard error of RV.

Traditionally, empirical studies with the SV model as well as the RV model focused on
daily volatility of asset returns. However, the availability of high-frequency tick data and
the advent of high-frequency trading (HFT), which is a general term for algorithmic trading
in full use of high-performance computing and high speed communication technology,
has shifted the focus of research on volatility from closing-to-closing daily volatility to
intraday volatility in a very short interval (e.g., 5 min or shorter). This shift paved the
way for a new type of SV model. In addition to the traditional stylized facts on daily
volatility, intraday volatility is known to exhibit a cyclical pattern during trading hours.
On a typical trading day, the volatility tends to be high immediately after the market
opens, but it gradually declines in the middle of trading hours. In the late trading hours,
the volatility again becomes higher as it nears the closing time. This U-shaped trend in
volatility is called intraday seasonality in the literature (see Chan et al. 1991 among others).
Although it is crucial to take the intraday seasonality into consideration in estimation
of any intraday volatility models, only a few studies (e.g., Stroud and Johannes 2014;
Fičura and Witzany 2015a, 2015b) explicitly incorporate it into their volatility models.

In this paper, we propose to directly embed intraday seasonality into the SV model by
approximating the U-shaped seasonality pattern with a linear combination of Bernstein
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polynomials. In order to capture skewness and excess kurtosis in high-frequency stock
returns, we employ two distributions (variance-gamma and Student’s t) and their skewed
variants (skew variance-gamma and skew Student’s t) in the family of GH distributions as
the distribution of stock returns in the SV model. The complicated SV models generally tend
to be inefficient for analyzing in a primitive form. In order to solve the problem, numerous
studies concerned with efficiency of the SV model have been developed. Omori and
Watanabe (2008) introduce a sampling method with block unit for asymmetric SV models,
which can sample disturbances from their conditional posterior distribution simultaneously.
As another approach to optimize computation, a Sequential Monte Carlo (SMC) algorithm
for Bayesian semi-parametric SV model was designed by Virbickaitė et al. (2019). The
ancillarity-sufficiency interweaving strategy (ASIS) proposed by Yu and Meng (2011) is
highly effective to improve MCMC sampling effeciency. We discuss ASIS in detail in
Section 3. Needless to say, since the proposed SV model is intractably complicated, we
develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm for full
Bayesian estimation of all parameters and state variables (latent log volatilities in our case)
in the model.

The rest of this paper is organized as follows. In Section 2, we introduce a repa-
rameterized Gaussian SV model with leverage and intraday seasonality and derive an
efficient MCMC sampling algorithm for its Bayesian estimation. In addition, we show the
conditional posterior distributions and prepare for application of ASIS. In Section 3, we
extend the Gaussian SV model to the case of variance gamma and Student’s t error as well
as their skewed variants. In Section 4, we report the estimation results of our proposed SV
models with 1 min return data of TOPIX. Finally, conclusions are given in Section 5.

2. Stochastic Volatility Model with Intraday Seasonality

Consider the log difference of a stock price in a short interval (say, 1 or 5 min). We
divide trading hours evenly into T periods and normalize them so that the length of the
trading hours is equal to 1; that is, the length of each period is 1

T and the time stamp of the
t-th period is t

T (t = 1, . . . , T). Note that the market opens at time 0 and closes at time 1
in our setup. Let yt (t = 1, . . . , T) denote the stock return in the t-th period (at time t

T in
the trading hours) and consider the following stochastic volatility (SV) model of yt with
intraday seasonality:{

yt = exp(x′tβ + ht)εt,
ht+1 = φht + ηt,

[
εt
ηt

]
∼ Normal

([
0
0

]
,
[

1 ρτ
ρτ τ2

])
, |ρ| < 1, τ > 0, (1)

and

h1 ∼ Normal
(

0,
τ2

1− φ2

)
, |φ| < 1.

It is well known that the estimate of the correlation coefficient ρ is negative in most stock
markets. This negative correlation is often referred to as the leverage effect. Note that
the stock volatility in the t-th period (the natural logarithm of the conditional standard
deviation of yt) is

log
√

Var[yt|Ft−1] = x′tβ + ht,

where Ft−1 is the filtration that represents all available information at time t−1
T . Hence, the

stock volatility in the SV model (1) is decomposed into two parts: a linear combination
of covariates x′tβ and the unobserved AR(1) process ht. In this paper, we regard x′tβ as
the intraday seasonal component of the stock volatility, though it can be interpreted as
any function of covariates xt in a different situation. On the other hand, ht is supposed to
capture volatility clustering. We call ht the latent log volatility since it is unobservable.

Although the intraday seasonal component x′tβ is likely to be a U-shaped function
of time stamps (the stock volatility is higher right after the opening or near the closing,
but it is lower in the middle of the trading hours), we have no information about the exact
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functional form of the intraday seasonality. To make it in a flexible functional form for the
intraday seasonality, we assume that x′tβ is a Bernstein polynomial

x′tβ =
n

∑
k=0

βkxk,t =
n

∑
k=0

βkbk,n

(
t
T

)
, (2)

where bk,n(·) is called a Bernstein basis polynomial of degree n:

bk,n(v) = nCkvk(1− v)n−k, k = 0, . . . , n, v ∈ [0, 1].

According to the Weierstrass approximation theorem, the Bernstein polynomial (2) can
approximate any continuous function on [0, 1] as n goes to infinity. In practice, however,
the number of observations T is finite. Thus, we need to choose a finite n via a model
selection procedure. We will discuss this issue in Section 4.

Although the parameterization of the SV model in (1) is widely applied in the literature,
we propose an alternative parameterization that facilitates MCMC implementation in non-
Gaussian SV models. By replacing the covariance matrix in (1) with[

Var[εt] Cov[ηt, εt]
Cov[εt, ηt] Var[ηt]

]
=

[
1 + γ2τ2 γτ2

γτ2 τ2

]
, γ ∈ R, (3)

we obtain an alternative formulation of the SV model:{
yt = exp(x′tβ + ht)εt,
ht+1 = φht + ηt,

[
εt
ηt

]
∼ Normal

([
0
0

]
,
[

1 + γ2τ2 γτ2

γτ2 τ2

])
. (4)

Since in (4) the variance of εt is no longer equal to one, the interpretation of β and ht in (4) is
slightly different from the original one in (1). Nonetheless, the SV model (4) has essentially
the same characteristics as (1). Since the correlation coefficient in (3) is

Corr[εt, ηt] =
γτ√

1 + γ2τ2
,

the sign of γ always coincides with the correlation coefficient and the leverage effect exists
if γ < 0. To distinguish γ in (4) from the correlation parameter ρ in (1), we call γ the
leverage parameter in this paper.

Note that the inverse of (3) is[
Var[εt] Cov[ηt, εt]

Cov[εt, ηt] Var[ηt]

]−1

=

[
1 −γ
−γ γ2 + τ−2

]
=

[
1 0
−γ τ−1

][
1 −γ

0 τ−1

]
,

and the determinant of (3) is τ2. Using

[
εt ηt

][ 1 −γ
−γ γ2 + τ−2

][
εt
ηt

]
=
[
εt ηt

][ 1 0
−γ τ−1

][
1 −γ

0 τ−1

][
εt
ηt

]
= (εt − γηt)

2 +
η2

t
τ2 ,

we can easily show that the SV model (4) is equivalent to{
yt = exp(x′tβ + ht)(zt + γηt),
ht+1 = φht + ηt,

(5)

where
zt ∼ Normal(0, 1), ηt ∼ Normal(0, τ2), zt ⊥ ηt.
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In the alternative formulation of the SV model (5), we can interpret ηt as a common shock
that affects both the stock return yt and the log volatility ht+1 and zt as an idiosyncratic
shock that affects yt only.

The likelihood for the SV model (5) given the observations y1:T = [y1; . . . ; yT ], and the
latent log volatility h1:T+1 = [h1; . . . ; hT+1] is

p(y1:T , h1:T+1|θ) =
T

∏
t=1

p(yt|ht, ht+1, θ)︸ ︷︷ ︸
p(y1:T |h1:T+1,θ)

· p(h1|θ)
T

∏
t=1

p(ht+1|ht, θ)︸ ︷︷ ︸
p(h1:T+1|θ)

, (6)

where

p(yt|ht, ht+1, θ) =
1√
2π

exp

[
−x′tβ− ht −

{yt exp(−x′tβ− ht)− γ(ht+1 − φht)}2

2

]
, (7)

p(ht+1|ht, θ) =
1√

2πτ2
exp

[
− (ht+1 − φht)2

2τ2

]
, t = 1, . . . , T,

p(h1|θ) =
√

1− φ2

2πτ2 exp

[
−
(1− φ2)h2

1
2τ2

]
,

and θ = (β, γ, τ2, φ). Since ht follows a stationary AR(1) process, the joint probability
distribution of h1:T+1 is Normal(0, τ2V−1), where

V =



1 −φ
−φ 1 + φ2 −φ

−φ 1 + φ2 −φ
. . . . . . . . .

−φ 1 + φ2 −φ
−φ 1 + φ2 −φ

−φ 1


, (8)

is a tridiagonal matrix, and it is positive definite as long as |φ| < 1. Thus, the joint p.d.f. of
h1:T+1 is

p(h1:T+1|θ) = (2πτ2)−
T+1

2 |V|
1
2 exp

[
− 1

2τ2 h′1:T+1Vh1:T+1

]
, |V| = 1− φ2. (9)

The prior distributions for (β, γ, τ2, φ) in our study are

β ∼ Normal(µ̄β, Ω̄−1
β ), γ ∼ Normal(µ̄γ, ω̄−1

γ ),

τ2 ∼ Inv. Gamma(aτ , bτ),
φ + 1

2
∼ Beta(aφ, bφ).

(10)

Then the joint posterior density of (h1:T+1, θ) for the SV model (5) is

p(h1:T+1, θ|y1:T) ∝
T

∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ) · p(θ), (11)

where p(θ) is the prior density of the parameters in (10).
Since analytical evaluation of the joint posterior distribution (11) is impractical, we

apply an MCMC method to generate a random sample {(h(r)1:T+1, β(r), γ(r), τ2(r), φ(r))}R
r=1

from the joint posterior distribution (11) and numerically evaluate the posterior statistics
necessary for Bayesian inference with Monte Carlo integration. The outline of the standard
MCMC sampling scheme for the posterior distribution (11) is given as follows:
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Outline of the MCMC sampling for the SV model� �
Step 0: Initialize (h(0)1:T+1, β(0), γ(0), τ2(0), φ(0)) and set the counter r = 0.

Step 1: Generate (h(r+1)
1:T+1, β(r+1), γ(r+1), τ2(r+1), φ(r+1)) with the following scheme:

Step 1-1: Generate h(r+1)
1:T+1 from p(h1:T+1|β(r), γ(r), τ2(r), φ(r), y1:T).

Step 1-2: Generate β(r+1) from p(β|h(r+1)
1:T+1, γ(r), τ2(r), φ(r), y1:T).

Step 1-3: Generate γ(r+1) from p(γ|h(r+1)
1:T+1, β(r+1), τ2(r), φ(r), y1:T)

Step 1-4: Generate τ2(r+1) from p(τ|h(r+1)
1:T+1, β(r+1), γ(r+1), φ(r), y1:T)

Step 1-5: Generate φ(r+1) from p(φ|h(r+1)
1:T+1, β(r+1), γ(r+1), τ2(r+1), y1:T).

Step 2: Let r = r + 1 and go to Step 1 until the burn-in iterations are completed.

Step 3: Reset the counter r = 0 and repeat Step 1–2 R times in order to obtain the
Monte Carlo sample {(h(r)1:T+1, β(r), γ(r), τ2(r), φ(r))}R

r=1.� �
Although the above MCMC sampling scheme is ubiquitous in the literature of the

SV model, the generated Monte Carlo sample {(h(r)1:T+1, β(r), γ(r), τ2(r), φ(r))}R
r=1 tends to

exhibit strongly positive autocorrelation. To improve efficiency of MCMC implementation,
Yu and Meng (2011) proposed an ancillarity-sufficiency interweaving strategy (ASIS). In
the literature of the SV model, Kastner and Frühwirth-Schnatter (2014) applied ASIS to the
SV model of daily US-dollar/Euro exchange rate data with the Gaussian error. Their SV
model did not include either intraday seasonality or the leverage effect since they applied
it to daily exchange rate data that exhibited no leverage effect in most cases. We extend the
algorithm developed by Kastner and Frühwirth-Schnatter (2014) to facilitate the converge
of the sample path in the SV model (5). The basic principle of ASIS is to construct MCMC
sampling schemes for two different but equivalent parameterizations of a model with
missing/latent variables (h1:T+1 in our case) and generate the parameters alternately with
each of them.

According to Kastner and Frühwirth-Schnatter (2014), the SV model (5) is in a non-
centered parameterization (NCP). On the other hand, we may transform ht as

h̃t = x′tβ + ht, (12)

and rearrange the SV model (5) as{
yt = exp(h̃t)(zt + γηt),
h̃t+1 − x′t+1β = φ(h̃t − x′tβ) + ηt.

(13)

The above SV model (13) is in a centered parameterization (CP).
The posterior distribution in the CP form (13) is equivalent to the one in the NCP

form (5) in the sense that they give us the same posterior distribution of θ. Let us verify
this claim. The likelihood for the SV model (13) given the observations y1:T and the latent
log volatility h̃1:T+1 = [h̃1; . . . ; h̃T+1] is

p(y1:T , h̃1:T+1|θ) =
T

∏
t=1

p(yt|h̃t, h̃t+1, θ)︸ ︷︷ ︸
p(y1:T |h̃1:T+1,θ)

· p(h̃1|θ)
T

∏
t=1

p(h̃t+1|h̃t, θ)︸ ︷︷ ︸
p(h̃1:T+1|θ)

, (14)

where
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p(yt|h̃t, h̃t+1, θ) =
1√
2π

exp

−h̃t −

{
yte−h̃t − γ((h̃t+1 − x′t+1β)− φ(h̃t − x′tβ))

}2

2

, (15)

p(h̃t+1|h̃t, θ) =
1√

2πτ2
exp

[
−
{(h̃t+1 − x′t+1β)− φ(h̃t − x′tβ)}2

2τ2

]
, t = 1, . . . , T,

p(h̃1|θ) =
√

1− φ2

2πτ2 exp

[
−
(1− φ2)(h̃1 − x′1β)2

2τ2

]
.

Note that the joint p.d.f. of h̃1:T+1 is

p(h̃1:T+1|θ) = (2πτ2)−
T+1

2 |V|
1
2 exp

[
− 1

2τ2 (h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ)

]
, (16)

where X = [x′1; . . . ; x′T+1]. With the prior of θ in (10), the joint posterior density of (h̃1:T+1, θ)
for the SV model (13) is obtained as

p(h̃1:T+1, θ|y1:T) ∝
T

∏
t=1

p(yt|h̃t, h̃t+1, θ) · p(h̃1:T+1|θ) · p(θ). (17)

Note that θ is unchanged between the NCP form (11) and the CP form (17). Although the
latent variables are transformed with (12), the “marginal” posterior p.d.f. of θ is unchanged,
because ∫

p(h̃1:T+1, θ|y1:T+1)dh̃1:T+1 =
∫

p(h1:T+1, θ|y1:T+1)|J|dh1:T+1,

where the Jacobian |J| = 1.
With this fact in mind, we can incorporate ASIS into the MCMC sampling scheme by

replacing Step 1 with
NCP-based ASIS step� �

Step 1: Generate (h(r+0.5)
1:T+1 , β(r+0.5), γ(r+0.5), τ2(r+0.5), φ(r+0.5)) with the sampling

scheme based on the NCP form (5) and compute

h̃(r+0.5)
t = h(r+0.5)

t + x′tβ
(r+0.5), t = 1, . . . , T + 1.

Step 1.5: Generate (β(r+1), γ(r+1), τ2(r+1), φ(r+1)) with the sampling scheme based on
the CP form (13) and compute

h(r+1)
t = h̃(r+0.5)

t − x′tβ
(r+1), t = 1, . . . , T + 1.� �

Note that we generate a new latent log volatility h1:T+1 from its conditional posterior
distribution in the NCP form (11) only once at the beginning of Step 1. This is the reason
we call it the NCP-based ASIS step. After this update, we merely shift the location of
h1:T+1 by x′tβ

(r+0.5) (Step 1) or by −x′tβ
(r+1) (Step 1.5). In ASIS, these shifts are applied

with probability 1 even if all elements in h1:T+1 are not updated at the beginning of Step 1,
which is highly probable in practice because we need to use the MH algorithm to generate
h1:T+1. Although we also utilize the MH algorithm to generate β, as explained later, the
acceptance rate of β in the MH step is much higher than that of h1:T+1 in our experience.
Thus, we expect that both x′tβ

(r+0.5) and −x′tβ
(r+1) will be updated more often than h1:T+1

itself. As a result, the above ASIS step may improve mixing of the sample sequence of
h1:T+1. Conversely, we may apply the following CP-based ASIS step:
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CP-based ASIS step� �
Step 1: Generate (h̃(r+0.5)

1:T+1 , β(r+0.5), γ(r+0.5), τ2(r+0.5), φ(r+0.5)) with the sampling
scheme based on the CP form (13) and compute

h(r+0.5)
t = h̃(r+0.5)

t − x′tβ
(r+0.5), t = 1, . . . , T + 1.

Step 1.5: Generate (β(r+1), γ(r+1), τ2(r+1), φ(r+1)) with the sampling scheme based on
the NCP form (5) and compute

h̃(r+1)
t = h(r+0.5)

t + x′tβ
(r+1), t = 1, . . . , T + 1.� �

In the CP-based ASIS step, we generate h̃1:T+1 from its conditional posterior distribu-
tion in the CP form (17) once. The rest is the same as in the NCP-based ASIS step except
that the order of sampling is reversed.

In the NCP form, the conditional posterior distributions for (β, γ, τ2, φ) are

β ∼ Normal
(
µβ(β∗), Σβ(β∗)

)
, (18)

where

Σβ(β∗) =
(
Q(β∗) + Ω̄β

)−1, µβ(β∗) = Σβ(β∗)
(

g(β∗) + Q(β∗)β∗ + Ω̄βµ̄β

)
.

γ|h1:T+1, θ−γ, y1:T ∼ Normal

(
∑T

t=1 ηtεt + ω̄γµ̄γ

∑T
t=1 η2

t + ω̄γ

,
1

∑T
t=1 η2

t + ω̄γ

)
. (19)

τ2|h1:T+1, θ−τ2 , y1:T ∼ Inv. Gamma
(

T + 1
2

+ aτ ,
1
2

h′1:T+1Vh1:T+1 + bτ

)
. (20)

φ ∼ Normal

(
∑T

t=1 ht+1ht

∑T
t=2 h2

t
,

τ2

∑T
t=2 h2

t

∣∣∣∣∣− 1 < φ < 1

)
. (21)

In the CP form, the conditional posterior distributions for (β, γ, τ2, φ) are

β ∼ Normal
(
µ̃β, Σ̃β

)
, (22)

where

Σ̃β =

(
X̃′X̃ +

1
τ2 X′VX + Ω̄β

)−1
,

µ̃β = Σ̃β

(
X̃′ỹ +

1
τ2 X′Vh̃1:T+1 + Ω̄βµ̄β

)
.

γ|h̃1:T+1, θ−γ, y1:T ∼ Normal

(
∑T

t=1 η̃t ε̃t + ω̄γµ̄γ

∑T
t=1 η̃2

t + ω̄γ

,
1

∑T
t=1 η̃2

t + ω̄γ

)
. (23)

τ2|h̃1:T+1, θ−τ2 , y1:T ∼ Inv. Gamma
(

T + 1
2

aτ ,
1
2
(h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ) + bτ

)
. (24)

φ ∼ Normal

(
∑T

t=1(h̃t+1 − x′t+1β)(h̃t − x′tβ)

∑T
t=2(h̃t − x′tβ)2

,
τ2

∑T
t=2(h̃t − x′tβ)2

∣∣∣∣∣− 1 < φ < 1

)
. (25)
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Derivations of the conditional posterior distributrions are shown in Appendix A.

3. Extension: Skew Heavy-Tailed Distributions
3.1. Mean-Variance Mixture of the Normal Distribution

It is a well-known stylized fact that probability distributions of stock returns are almost
definitely heavy-tailed (the probability density goes down to zero much slower than the
normal distribution) and often have non-zero skewness (they are not symmetric around the
mean). Although introduction of stochastic volatility and leverage makes the distribution
of yt skew and heavy-tailed, it may not be sufficient to capture those characteristics of real
data. For this reason, instead of the normal distribution, we introduce a skew heavy-tailed
distribution to the SV model.

In our study, we suppose that zt in (5) is expressed as a mean-variance mixture of the
standard normal distribution:

zt = αδt +
√

δtut, ut ∼ Normal(0, 1), δt ∼ GIG(λ, ψ, ξ), (26)

where GIG(λ, ψ, ξ) stands for the generalized inverse Gaussian distribution with the prob-
ability density:

p(δt) =
(ψ/ξ)λ/2

2Kλ(
√

ψξ)
δλ−1

t exp
[
−1

2

(
ψδt +

ξ

δt

)]
, (27)

where

λ ∈ R, (ψ, ξ) ∈


{(ψ, ξ) : ψ > 0, ξ ≥ 0} if λ > 0,
{(ψ, ξ) : ψ > 0, ξ > 0} if λ = 0,
{(ψ, ξ) : ψ ≥ 0, ξ > 0} if λ < 0,

and Kλ(·) is the modified Bessel function of the second kind. The family of generalized
inverse Gaussian distributions includes

• exponential distribution (λ = 1, ξ = 0),
• gamma distribution (λ > 0, ξ = 0),
• inverse gamma distribution (λ < 0, ψ = 0),
• inverse Gaussian distribution (λ = − 1

2 )

Under the assumption (26), the distribution of zt belongs to the family of generalized
hyperbolic distributions proposed by Barndorff-Nielsen (1977), which includes many
well-known skew heavy-tailed distributions such as

• skew variance gamma (VG) distribution(λ = ν
2 , ψ = ν, ξ = 0),

• skew t distribution (λ = − ν
2 , ψ = 0, ξ = ν),

where ν > 0. In general, the skew VG distribution is a mean-variance mixture of the
standard normal distribution with GIG(λ, ψ, 0). To make the estimation easier, we set
λ = ν

2 and ψ = ν so that the skew VG distribution has only two free parameters (α, ν).
Thus, we have two additional parameters (α, ν) in the SV model. Since α determines
whether the distribution of yt is symmetric or not while ν determines how heavy-tailed the
distribution is, we call α the asymmetry parameter and ν the tail parameter, respectively.
In our study, we use the above three skew heavy-tailed distributions as alternatives to
the normal distribution. To distinguish each model specification, we use the following
abbreviations:

SV-N: stochastic volatility model with the normal error,
SV-G: stochastic volatility model with the VG error,

SV-SG: stochastic volatility model with the skew VG error,
SV-T: stochastic volatility model with the Student-t error,

SV-ST: stochastic volatility model with the skew t error.
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In this setup, the SV model with heavy-tailed error is formulated as{
yt = exp(x′tβ + ht)εt,
ht+1 = φht + ηt,

[
εt
ηt

]∣∣∣∣δt ∼ Normal
([

αδt
0

]
,
[

δt + γ2τ2 γτ2

γτ2 τ2

])
. (28)

It is straightforward to show that the conditional probability density of yt given (ht, ht+1)
is given by

p(yt|ht, ht+1, θ) =
∫ ∞

0
p(yt|ht, ht+1, δt, θ)p(δt|ν)δt, (29)

where θ = (β, γ, τ2, φ, α, ν),

p(yt|ht, ht+1, δt, θ)

=
1√

2πδt
exp

[
−x′tβ− ht −

{yt exp(−x′tβ− ht)− αδt − γ(ht+1 − φht)}2

2δt

]
, (30)

and

p(δt|ν) =


(ν/2)ν/2

Γ(ν/2)
δ

ν
2−1
t exp

(
−ν

2
δt

)
(SV-SG),

(ν/2)ν/2

Γ(ν/2)
δ
− ν

2−1
t exp

(
− ν

2δt

)
(SV-ST).

(31)

Since it is impractical to evaluate the multiple integral in (29), we generate δ1:T = (δ1, . . . , δT)
along with h1:T+1 and θ form their joint posterior distribution. In this setup, the likelihood
used in the posterior simulation is

p(y1:T , h1:T+1, δ1:T |θ) = p(y1:T |h1:T+1, δ1:T , θ)p(h1:T+1|θ)

=
T

∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ). (32)

We suppose that the prior distributions for α and ν are

α ∼ Normal(µ̄α, ω̄−1
α ), ν ∼ Gamma(aν, bν). (33)

As for the other parameters, we keep the same ones as in (10).

3.2. Conditional Posterior Distributions
3.2.1. Latent Log Volatility h1:T+1

Our sampling scheme for h1:T+1 is basically the same as before. We first approximate
the log likelihood with the second-order Taylor expansion around the mode and construct
a proposal distribution of h1:T+1 with the approximated log likelihood. Then, we apply a
multi-move MH sampler for generating h1:T+1 from the conditional posterior distribution.
The sole differences are the functional form of g(h1:T+1) and Q(h1:T+1).

gt(h1:T+1) =

{
−1 +

1
δt
(εt − αδt − γηt)(εt − γφ)

}
1(t 5 T)

+
γ

δt−1
(εt−1 − αδt−1 − γηt−1)1(t = 2), (t = 1, . . . , T + 1), (34)

where 1(·) is the indicator function. Each diagonal element of Q(h1:T+1) is

qt,t(h1:T+1) =
1
δt

{
εt(εt − αδt − γηt) + (εt − γφ)2

}
1(t 5 T)

+
γ2

δt−1
1(t = 2), (t = 1, . . . , T + 1), (35)
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and the off-diagonal element is

qt,t+1(h1:T+1) =
γ

δt
(εt − γφ), (t = 1, . . . , T). (36)

For the NCP form, we use εt and ηt in (A3). For the CP form, we replace them with ε̃t and
η̃t in (A23).

3.2.2. Regression Coefficients β

The sampling scheme for β is the same as before. For the NCP form, g(β) and Q(β)
are given by

g(β) =
T

∑
t=1

(
εt

δt
(εt − αδt − γηt)− 1

)
xt, (37)

Q(β) =
T

∑
t=1

εt

δt
(2εt − αδt − γηt)xtx′t, (38)

respectively. For the CP form, the conditional posterior distribution of β are given by

β ∼ Normal
(
µ̃β, Σ̃β

)
, (39)

where

Σ̃β =

(
X̃′D−1X̃ +

1
τ2 X′VX + Ω̄β

)−1
,

µ̃β = Σ̃β

(
X̃′D−1ỹ +

1
τ2 X′Vh̃1:T+1 + Ω̄βµ̄β

)
,

ỹt = ε̃t − αδt − γ(h̃t+1 − φh̃t), ỹ = [ỹ1; . . . ; ỹT ], D = diag{δ1, . . . , δT}.

3.2.3. Leverage Parameter γ

Their conditional posterior distribution of γ is given by

γ|h1:T+1, δ1:T , θ−γ, y1:T ∼ Normal

(
∑T

t=1 ηt(εt/δt − α) + ω̄γµ̄γ

∑T
t=1 η2

t /δt + ω̄γ

,
1

∑T
t=1 η2

t /δt + ω̄γ

)
. (40)

For the NCP form, we use εt and ηt in (A3). For the CP form, we replace them with ε̃t and
η̃t in (A23).

3.2.4. Random Scale δ1:T

Using the Bayes theorem, we obtain the conditional posterior distribution of δt as

δt|h1:T+1, θ, y1:T ∼ GIG(λt, ψt, ξt), t = 1, . . . , T, (41)

where

(λt, ψt, ξt) =


(

ν− 1
2

, α2 + ν, (εt − γηt)
2
)

, (SV-SG),(
−ν + 1

2
, α2, (εt − γηt)

2 + ν

)
, (SV-ST).

For the NCP form, we use εt and ηt in (A3). For the CP form, we replace them with ε̃t and
η̃t in (A23).

To improve the performance of the MCMC algorithm, we apply a generalized Gibbs
sampler by Liu and Sabatti (2000) to {δt}T

t=1 after we generate them from the conditional
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posterior distribution (41). This is rather simple. All we need to do is to multiply each of
{δt}T

t=1 by a random number c that is generated from

c ∼


GIG

(
(ν− 1)T

2
, (α2 + ν)

T

∑
t=1

δt,
T

∑
t=1

(εt − γηt)2

δt

)
, (SV-SG),

GIG

(
− (ν + 1)T

2
, α2

T

∑
t=1

δt,
T

∑
t=1

(εt − γηt)2 + ν

δt

)
, (SV-ST).

(42)

3.2.5. Asymmetry Parameter α

Using the Bayes theorem, we obtain the conditional posterior distribution of α as

α|h1:T+1, δ1:T , θ−α, y1:T

∼ Normal

(
∑T

t=1(εt − γηt) + ω̄αµ̄α

∑T
t=1 δt + ω̄α

,
1

∑T
t=1 δt + ω̄α

)
.

(43)

For the NCP form, we use εt and ηt in (A3). For the CP form, we replace them with ε̃t and
η̃t in (A23).

3.2.6. Tail Parameter ν

The explicit form of the conditional posterior density of ν is not available. Therefore,
we apply the MH algorithm for generating ν. Note that the gamma density for SV-SG
in (31) is identical to the inverse gamma density for SV-ST in (31) as a function of ν if we
exchange δt with δ−1

t . Since we use the same gamma prior for ν in either case, the resultant
conditional posterior density should be the same in both SV-SG and SV-ST. Therefore, it
suffices to derive the MH algorithm for SV-ST.

The sampling strategy for ν is basically the same as for β, which was originally
proposed by Watanabe (2001). We first consider the second-order Taylor expansion of the
log conditional posterior density of ν:

f (ν) =
T

∑
t=1

log p(δt|ν) + log p(ν) + constant (44)

=
νT
2

log
ν

2
− T log Γ

(ν

2

)
− ν

{
1
2

T

∑
t=1

(
log δt +

1
δt

)
+ bν

}
+ (aν − 1) log ν (45)

+ constant,

with respect to ν in the neighborhood of ν∗ > 0, i.e.,

f (ν) ≈ f (ν∗) + g(ν∗)(ν− ν∗)− 1
2

q(ν∗)(ν− ν∗)2, (46)

where

g(ν∗) ≡ ∇ν f (ν∗)

=
T
2
+

T
2

log
ν∗

2
− T

2
ψ(0)

(
ν∗

2

)
− 1

2

T

∑
t=1

(
log δt +

1
δt

)
− bν +

aν − 1
ν∗

,

q(ν∗) ≡ −∇2
ν f (ν∗)

= − T
2ν∗

+
T
4

ψ(1)
(

ν∗

2

)
+

aν − 1
ν∗2

,
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and ψ(s) is the polygamma function of order s. Note that q(ν∗) > 0 if T + 2aν > 2. See
Theorem 1 in Watanabe (2001) for the proof. By applying the completing-the-square
technique to (46), we obtain the proposal distribution for the MH algorithm:

ν ∼ Normal
(

µν(ν
∗), σ2

ν (ν
∗)
)

, (47)

where

σ2
ν (ν
∗) =

1
q(ν∗)

, µν(ν
∗) = ν∗ +

g(ν∗)
q(ν∗)

.

If we use the mode of f (ν) as ν∗, g(ν∗) = 0 always holds due to the global concavity of
f (ν). Thus, µν(ν∗) is effectively identical to ν∗.

4. Empirical Study

As an application of our proposed models to real data, we analyze high-frequency
data of the Tokyo Stock Price Index (TOPIX), a market-cap-weighted stock index based on
all domestic common stocks listed in the Tokyo Stock Exchange (TSE) First Section, which is
provided by Nikkei Media Marketing. We use the data in June 2016, when the referendum
for the UK’s withdrawal from the EU (Brexit) was held on the 23rd of the month. The result
of the Brexit referendum was announced during the trading hours of the TSE on that day.
That news made the Japanese Stock Market plunge significantly. The Brexit referendum is
arguably one of the biggest financial events in recent years. We can thus analyze the effect
of the Brexit referendum on the volatility of the Japanese stock market. Another reason for
this choice is that Japan has no holiday in June, so all weekdays are trading days. There are
five weeks in June 2016. Since the first week of June 2016 includes 30 and 31 May and the
last week includes 1 July, we also include them in the sample period.

The morning session of TSE starts at 9:00 a.m. and ends at 11:30 a.m. while the
afternoon session of TSE starts at 12:30 a.m. and ends at 3:00 p.m., so both sessions last for
150 min. We treat the morning session and the afternoon session as if they are separated
trading hours, and normalize the time stamps so that they take values within [0, 1]. As a
result, t = 0 corresponds to 9:00 a.m. for the morning session, while it corresponds to 12:30
a.m. for the afternoon session. In the same manner, t = 1 corresponds to 11:30 a.m. for
the morning session, while it corresponds to 3:00 p.m. for the afternoon session. In this
empirical study, we estimate the Bernstein polynomial of the intraday seasonality in each
session by allowing β in (2) to differ from session to session.

We pick prices at every 1 min and compute 1 min log difference of prices as 1 min stock
returns. Thus, the number of observations per session is 150. Furthermore, we put together
all series of 1 min returns in each week. As a result, the total number of observations per
week is 150× 2× 5 = 1500. In addition, to simplify the interpretation of the estimation
results, we standardize each week-long series of 1 min returns so that the sample mean
is 0 and the sample variance is 1. Table 1 shows the descriptive statistics of the standard
1 min returns of TOPIX in each week, while Figures 1–5 show the time series plots of the
standardized 1 min returns for each week.

Table 1. Descriptive statistics of standardized TOPIX 1 min returns in June 2016.

Date Skewness Kurtosis Min. Max

Week 1 −0.1081 7.2296 −7.2569 5.4520
Week 2 0.2494 7.7468 −5.9886 5.7911
Week 3 0.3534 7.4500 −6.4415 5.8413
Week 4 −0.0125 7.1031 −6.4212 5.6074
Week 5 0.0346 4.9146 −4.6433 5.4437
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Figure 1. Standardized returns of the TOPIX data in the first week of June 2016.

Figure 2. Standardized returns of the TOPIX data in the second week of June 2016.

Figure 3. Standardized returns of the TOPIX data in the third week of June 2016.

Figure 4. Standardized returns of the TOPIX data in the fourth week of June 2016.

Figure 5. Standardized returns of the TOPIX data in the fifth week of June 2016.

We consider five candidates (SV-N, SV-G, SV-SG, SV-T, SV-ST) in the SV model (28)
and set the prior distributions as follows:

β ∼ Normal(0, 100I), γ ∼ Normal(0, 100), τ2 ∼ Inverse Gamma(1, 0.04),
φ + 1

2
∼ Beta(1, 1), α ∼ Normal(0, 100), ν ∼ Gamma(0, 0.1).
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We vary the order of the Bernstein polynomial from 5 to 10. In sum, we try 30 different
model specifications for the SV model (28). In the MCMC implementation, we generate
10,000 draws after the first 5000 draws are discarded as the burn-in periods. To select the
best model among the candidates, we employ the widely applicable information criterion
(WAIC, Watanabe 2010). We compute the WAIC of each model specification with the
formula by Gelman et al. (2014). The results are reported in Tables 2–6. According to these
tables, SV-G or SV-SG is the best model in all months. It may be a notable finding since the
SV model with the variance-gamma error has hardly been applied in the previous studies.

Table 2. Widely applicable information criterion (WAIC) values of TOPIX returns (week 1).

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3965.1 3966.0 3962.0 3975.1 3969.6 3971.3

SV-G 3701.0 3698.5 3702.2 3697.4 3700.0 3701.1

SV-SG 3701.9 3701.0 3698.9 3699.0 3702.8 3700.8

SV-T 3813.2 3813.3 3813.8 3816.6 3813.9 3813.0

SV-ST 3819.3 3813.8 3816.5 3816.2 3815.7 3817.5
Note: Bold highlight means the best model according to WAIC.

Table 3. WAIC values of TOPIX returns (week 2).

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3811.0 3813.7 3814.5 3815.7 3818.0 3819.6

SV-G 3621.0 3622.7 3621.0 3619.7 3621.2 3621.8

SV-SG 3618.6 3621.3 3622.0 3623.7 3623.4 3619.7

SV-T 3685.4 3684.1 3681.5 3859.0 3860.4 3684.6

SV-ST 3686.9 3684.9 3683.3 3684.1 3684.3 3686.4
Note: Bold highlight means the best model according to WAIC.

Table 4. WAIC values of TOPIX returns (week 3).

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3976.9 3991.1 3996.8 3975.1 3969.6 3971.3

SV-G 3750.2 3752.4 3752.0 3755.2 3752.9 3754.3

SV-SG 3753.6 3753.3 3755.8 3754.1 3759.9 3752.8

SV-T 3862.0 3859.4 3861.6 3859.0 3860.4 3861.6

SV-ST 3862.1 3861.2 3861.3 3860.6 3861.5 3862.1
Note: Bold highlight means the best model according to WAIC.

Table 5. WAIC values of TOPIX returns (week 4).

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3927.5 3924.5 3924.8 3925.8 3924.7 3927.1

SV-G 3670.3 3680.1 3679.0 3662.8 3675.7 3670.4

SV-SG 3663.5 3668.2 3670.3 3664.6 3672.6 3669.1

SV-T 3750.9 3751.9 3752.3 3750.8 3753.1 3753.9

SV-ST 3753.5 3754.3 3753.4 3755.3 3752.8 3751.7
Note: Bold highlight means the best model according to WAIC.
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Table 6. WAIC values of TOPIX returns (week 5).

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 4114.6 4114.3 4111.3 4115.2 4113.7 4114.5

SV-G 3961.2 3959.6 3958.3 3960.0 3961.2 3960.0

SV-SG 3953.7 3955.6 3960.0 3963.3 3957.7 3953.1

SV-T 4033.7 4033.8 4032.7 4031.2 4032.8 4033.1

SV-ST 4032.5 4033.0 4033.4 4030.4 4032.0 4031.5
Note: Bold highlight means the best model according to WAIC.

For the selected models, we compute the posterior statistics (posterior means, standard
deviations, 95% credible intervals and inefficiency factors) of the parameters and report
them in Tables 7–11. The inefficiency factor measures how inefficient the MCMC sampling
algorithm is (see e.g., Chib 2001). In these tables, the 95% credible intervals of the leverage
parameter γ and the asymmetric parameter α contain 0 for all specifications. Thus, we
may conclude that the error distribution of 1 min returns of TOPIX is not asymmetric. In
addition, most of the marginal posterior distributions of φ are concentrated near 1, even
though the uniform prior is assumed for φ. This suggests that the latent log volatility is
strongly persistent, which is consistent with findings by previous studies on the stock
markets. Regarding the tail parameter ν, its marginal posterior distribution is centered
around 2–6 in most models, which indicates that the excess kurtosis of the error distribution
is high.

As for the intraday seasonality, the estimates of β themselves are not of our inter-
est. Instead we show the posterior mean and the 95% credible interval of the Bernstein
polynomial x′tβ in Figure 6. These figures show that some of the trading days exhibit the
well-known U-shaped curve of intraday volatility, but others slant upward or downward.
At the beginning on the day of Brexit (23 June), the market began with a highly volatile
situation, but the volatility gradually became lower. During the afternoon session, the
volatility was kept in a stable condition.

Table 7. Estimation results for TOPIX returns (week 1).

γ φ τ α ν

SV-N (7) a -0.5742 b 0.8909 0.1903
[−1.4270, −0.1241] c [0.8214, 0.9431] [0.1306, 0.2494]

3.42 d 4.01 4.54

SV-G (8) −1.3565 0.9608 0.0798 2.5248
[−3.1743, 0.8347] [0.9320, 0.9815] [0.0604, 0.1034] [2.0444, 3.2647]

4.13 3.17 4.45 3.40

SV-SG (7) −1.4520 0.9598 0.0812 0.0014 2.5489
[−3.2233, 0.4995] [0.9316, 0.9802] [0.0630, 0.1077] [−0.0504, 0.0544] [2.0425, 3.3462]

3.99 3.01 4.45 1.23 3.48

SV-T (10) −1.4209 0.9864 0.0766 4.2950
[−4.3298, 1.5726] [0.9745, 0.9955] [0.0594, 0.1010] [3.3294, 5.5097]

3.85 2.90 4.42 3.44

SV-ST (6) −1.6137 0.9870 0.0753 0.0006 4.2338
[−5.0449, 1.6958] [0.9751, 0.9957] [0.0586, 0.0962] [−0.0400, 0.0407] [3.3247, 5.5254]

3.94 2.78 4.38 1.62 3.54

a: the selected Bernstein polynomial order. b: posterior mean. c: 95% credible interval. d: inefficiency factor.
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Table 8. Estimation results for TOPIX returns (week 2).

γ φ τ α ν

SV-N (5) a −0.2127 b 0.7149 0.3435
[−0.5550, 0.0923] c [0.5967, 0.8106] [0.2750, 0.4187]

3.04 d 3.87 4.39

SV-G (8) 0.0397 0.9191 0.0917 2.2475
[−1.7042, 2.0695] [0.8122, 0.9694] [0.0604, 0.1442] [2.0089, 2.7055]

4.27 4.05 4.58 2.6736

SV-SG (5) 0.0380 0.8965 0.0991 −0.0001 2.2622
[−1.5878, 1.9299] [0.6761, 0.9664] [0.0647, 0.1610] [−0.0530, 0.0531] [2.0102, 2.7308]

4.24 4.46 4.61 1.24 2.85

SV-T (7) −0.7862 0.914 0.0673 3.30
[−4.7784, 2.8361] [0.9825, 0.9979] [0.0511, 0.0886] [2.7141, 4.0299]

3.91 2.83 4.43 3.17

SV-ST (7) −0.6862 0.9909 0.0690 −0.0027 3.3647
[−4.4268, 2.9433] [0.9816, 0.9976] [0.0535, 0.0902] [−0.0376, 0.0323] [2.7611, 4.0958]

3.93 2.77 4.42 1.50 3.14

a: the selected Bernstein polynomial order. b: posterior mean. c: 95% credible interval. d: inefficiency factor.

Table 9. Estimation results for TOPIX returns (week 3).

γ φ τ α ν

SV-N (9) a 0.0514 b 0.6249 0.2950
[−0.3345, 0.4436] c [0.3506, 0.8190] [0.2042, 0.3872]

2.71 d 4.39 4.54

SV-G (5) 0.0639 0.4533 0.0919 2.2888
[−1.8134, 1.9573] [0.1344, 0.7393] [0.0632, 0.1413] [2.0155, 2.7501]

4.20 4.33 4.57 2.65

SV-SG (10) −0.2023 0.7992 0.0851 −0.0031 2.3419
[−2.1985, 1.7331] [0.2317, 0.9511] [0.0596, 0.1250] [−0.0546, 0.0485] [2.0232, 2.9008]

4.20 4.59 4.55 1.17 2.99

SV-T (8) −0.2369 0.9871 0.0661 4.0539
[−3.6943, 3.4453] [0.9755, 0.9960] [0.0514, 0.0837] [3.2156, 5.1327]

3.86 2.83 4.39 3.39

SV-ST (8) −0.3313 0.9866 0.0670 −0.0034 4.1237
[−4.2240, 3.6835] [0.9730, 0.9957] [0.0521, 0.0900] [−0.0426, 0.0361] [3.2114, 5.2538]

3.98 3.07 4.42 1.59 3.44

a: the selected Bernstein polynomial order. b: posterior mean. c: 95% credible interval. d: inefficiency factor.
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Table 10. Estimation results for TOPIX returns (week 4).

γ φ τ α ν

SV-N (6) a −0.6502 b 0.9336 0.1526
[−1.8098, 0.2658] c [0.8831, 0.9704] [0.1038, 0.2117]

3.53 d 4.01 4.57

SV-G (8) −1.4435 0.9689 0.0853 2.9487
[−3.6134, 0.6862] [0.9454, 0.9859] [0.0657, 0.1098] [2.1879, 3.9161]

4.11 3.10 4.43 3.63

SV-SG (5) −1.7146 0.9694 0.0846 −0.0068 2.93
[−4.0432, −0.4361] [0.9458, 0.9868] [0.0650, 0.1116] [−0.0599, 0.0471] [2.14, 3.94]

4.18 3.11 4.46 1.54 3.64

SV-T (8) −1.4043 0.9869 0.0824 4.5805
[−4.4147, −1.6809] [0.9747, 0.9960] [0.0634, 0.1060] [3.5659, 5.8472]

3.96 2.89 4.41 3.43

SV-ST (10) −1.6482 0.9882 0.0788 −0.0045 4.4738
[−5.1451, 1.6390] [0.9777, 0.9964] [0.0623, 0.0982] [−0.0460, 0.0362] [3.4944, 5.7573]

4.05 2.64 4.36 1.70 3.39

a: the selected Bernstein polynomial order. b: posterior mean. c: 95% credible interval. d: inefficiency factor.

Table 11. Estimation results for TOPIX returns (week 5).

γ φ τ α ν

SV-N (7) a −0.2602 b 0.8529 0.1428
[−1.5977, 0.8891] c [0.6617, 0.9395] [0.0858, 0.2348]

3.47 d 4.38 4.62

SV-G (7) −1.1175 0.8638 0.0873 3.6578
[−3.7543, 1.4340] [0.6609, 0.9457] [0.0642, 0.1144] [2.4812, 5.1414]

4.21 4.24 4.45 3.86

SV-SG (10) −1.0562 0.8226 0.0828 −0.0042 3.5728
[−4.0335, 2.0096] [0.1974, 0.9485] [0.0587, 0.1170] [−0.0565, 0.0490] [2.4627, 4.8738]

4.27 4.60 4.52 1.19 3.73

SV-T (8) −1.2853 0.9727 0.0730 6.2435
[−4.7632, 1.8139] [0.9448, 0.9898] [0.0547, 0.0998] [4.5496, 8.6440]

3.92 3.59 4.50 3.71

SV-ST (8) −1.5744 0.9726 0.0735 −0.0084 6.2388
[−5.5186, 1.9908] [0.9459, 0.9898] [0.0566, 0.0992] [−0.0536, 0.0378] [4.6016, 8.6696]

4.04 3.56 4.46 1.84 3.74

a: the selected Bernstein polynomial order. b: posterior mean. c: 95% credible interval. d: inefficiency factor.
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(a) Stochastic volatility model with the variance
gamma error (SV-G) of Bernstein order 8 in the
first week

(b) SV-SG of Bernstein order 8 in the first week

(c) SV-G of Bernstein order 5 in the second week (d) SV-SG of Bernstein order 5 in the second week

(e) SV-G of Bernstein order 5 in the third week (f) SV-SG of Bernstein order 5 in the third week

(g) SV-G of Bernstein order 8 in the fourth week (h) SV-SG of Bernstein order 8 in the fourth week

(i) SV-G of Bernstein order 10 in the fifth week (j) SV-SG of Bernstein order 10 in the fifth week

Figure 6. Intraday seasonality with Bernstein polynomial approximation.
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5. Conclusions

In this paper, we extended the standard SV model into a more general formulation so
that it could capture key characteristics of intraday high-frequency stock returns such as
intraday seasonality, asymmetry and excess kurtosis. Our proposed model uses a Bernstein
polynomial of time stamps as the intraday seasonal component of the stock volatility,
and the coefficients in the Bernstein polynomial are simultaneously estimated along with
the rest of the parameters in the model. To incorporate asymmetry and excess kurtosis
into the standard SV model, we assume that the error distribution of stock returns in the
SV model belongs to a family of generalized hyperbolic distributions. In particular, we
focus on two sub-classes of this family: skew Student’s t distribution and skew variance-
gamma distribution. Furthermore we developed an efficient MCMC sampling algorithm
for Bayesian inference on the proposed model by utilizing all without a loop (AWOL), ASIS
and the generalized Gibbs sampler.

As an application, we estimated the proposed SV models with 1 min return data of
TOPIX in various specifications and conducted model selection with WAIC. The model
selection procedure chose the SV model with the variance-gamma-type error as the most
suitable one. The estimated parameters indicated strong excess kurtosis in the error dis-
tribution of 1 min returns, though the asymmetry was not supported since both leverage
parameter γ and asymmetry parameter α were not significantly different from zero. Fur-
thermore our proposed model successfully extracted intraday seasonal patterns in the
stock volatility with Bernstein polynomial approximation, though the shape of the intraday
seasonal component was not necessarily U-shaped.
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Appendix A. Conditional Posterior Distributions

In Appendix, we derive the conditional posterior distribution of the latent log volatility
and that of each parameter in the SV model for both NCP and CP.

Appendix A.1. NCP Form

Appendix A.1.1. Latent Log Volatility h1:T+1

The conditional posterior density of the latent log volatility h1:T+1 is

p(h1:T+1|θ, y1:T) ∝
T

∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ). (A1)

We apply the Metropolis-Hastings (MH) algorithm to generate h1:T+1 from (A1). To derive
a suitable proposal distribution for the MH algorithm, we first consider consider the second-
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order Taylor approximation of `(h1:T+1) = log p(y1:T |h1:T+1, θ) in the neighborhood of
h∗1:T+1:

`(h1:T+1) ≈ `(h∗1:T+1) + g(h∗1:T+1)
′(h1:T+1 − h∗1:T+1)

− 1
2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1), (A2)

where g(h1:T+1) is the gradient vector of `(h1:T+1):

g(h1:T+1) =



g1(h1:T+1)
...

gt(h1:T+1)
...

gT(h1:T+1)
gT+1(h1:T+1)


=



∇1 log p(y1:T |h1:T+1, θ)
...

∇t log p(y1:T |h1:T+1, θ)
...

∇T log p(y1:T |h1:T+1, θ)
∇T+1 log p(y1:T |h1:T+1, θ)


,

and Q(h1:T+1) is the Hessian matrix of log p(y1:T |h1:T+1, θ) times −1:

Q(h1:T+1) =



q11(h1:T+1) q12(h1:T+1) · · · 0
q21(h1:T+1) q22(h1:T+1) q23(h1:T+1) · · · 0

...
. . . . . . . . .

...
0 · · · qT,T−1(h1:T+1) qT,T(h1:T+1) qT,T+1(h1:T+1)

0 · · · qT+1,T(h1:T+1) qT+1,T+1(h1:T+1)

.

which is a (T + 1)× (T + 1) band matrix.
Let us derive the explicit form of each element in g(h1:T+1) and Q(h1:T+1). By defining

εt = yt exp(−x′tβ− ht), ηt = ht+1 − φht, (A3)

the log density of yt (7) is rewritten as

log p(yt|ht, ht+1, θ) = −x′tβ− ht −
1
2
(εt − γηt)

2 + constant.

Note that
∇tεt = −εt, ∇tηt = −φ, ∇tηt−1 = 1.

where ∇t =
∂

∂ht
. Each element of g(h1:T+1) is derived as

gt(h1:T+1) = ∇t log p(y1:T |h1:T+1, θ) = ∇t log p(yt|ht, ht+1, θ) +∇t log p(yt−1|ht−1, ht, θ)

= −1− (εt − γηt)(−εt − γ(−φ))− (εt−1 − γηt−1)(−γ)

= −1 + (εt − γηt)(εt − γφ) + γ(εt−1 − γηt−1),

for t = 2, . . . , T,

g1(h1:T+1) = ∇1 log p(y1:T |h1:T+1, θ) = ∇1 log p(y1|h1, h2, θ)

= −1− (ε1 − γη1)(−ε1 − γ(−φ))

= −1 + (ε1 − γη1)(ε1 − γφ),

for t = 1, and

gT+1(h1:T+1) = ∇T+1 log p(y1:T |h1:T+1, θ) = ∇T+1 log p(yT |hT , hT+1, θ)

= −(εT − γηT)(−γ) = γ(εT − γηT),



J. Risk Financial Manag. 2021, 14, 145 22 of 29

for t = T + 1. The diagonal element in Q(h1:T+1) is given as

qt,t(h1:T+1) = (−1)×∇2
t log p(y1:T |h1:T+1, θ)

= −(−εt − γ(−φ))(εt − γφ)− (εt − γηt)(−εt)− γ(−γ)

= (εt − γφ)2 + εt(εt − γηt) + γ2,

for t = 2, . . . , T,

q11(h1:T+1) = (−1)×∇2
1 log p(y1:T |h1:T+1, θ)

= −(−ε1 − γ(−φ))(ε1 − γφ)− (ε1 − γη1)(−ε1)

= (ε1 − γφ)2 + ε1(ε1 − γη1),

for t = 1, and

qT+1,T+1(h1:T+1) = (−1)×∇2
T+1 log p(y1:T |h1:T+1, θ)

= −γ(−γ) = γ2,

for t = T + 1. Furhtermore the first off-diagonal element of Q(h1:T+1) is derived as

qt,t+1(h1:T+1) = (−1)×∇t,t+1 log p(y1:T |h1:T+1, θ)

= −(−γ)(εt − γφ)

= γ(εt − γφ),

for t = 1, . . . , T. In summary,

gt(h1:T+1) = {−1 + (εt − γηt)(εt − γφ)}1(t 5 T) + γ(εt−1 − γηt−1)1(t = 2), (A4)

qt(h1:T+1) = {(εt − γφ)2 + εt(εt − γηt)}1(t 5 T) + γ21(t = 2), (A5)

qt,t+1(h1:T+1) = γ(εt − γφ). (A6)

Since the log prior density of h1:T+1 is

p̄(h1:T+1) = −
T + 1

2
log(2πτ2) +

1
2

log |V| − 1
2τ2 h′1:T+1Vh1:T+1, (A7)

the conditional posterior density of h1:T+1 (A1) can be approximated by

p(h1:T+1|θ, y1:T)

= C exp[`(h1:T+1) + p̄(h1:T+1)]

≈ C exp
[
`(h∗1:T+1) + g(h∗1:T+1)

′(h1:T+1 − h∗1:T+1)

− 1
2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1) + p̄(h1:T+1)

]
= C exp

[
`(h∗1:T+1)−

T + 1
2

log(2πτ2) +
1
2

log |V|+ f (h1:T+1)

]
, (A8)

where C is the normalizing constant of the conditional posterior density and

f (h1:T+1) = g(h∗1:T+1)
′(h1:T+1 − h∗1:T+1)

− 1
2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1)

− 1
2τ2 h′1:T+1Vh1:T+1, (A9)
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By completing the square in (A9), we have

f (h1:T+1) = −
1
2
(
h1:T+1 − µh(h∗1:T+1)

)′Σh(h∗1:T+1)
−1(h1:T+1 − µh(h∗1:T+1)

)
(A10)

+ constant,

where

Σh(h∗1:T+1) =

(
Q(h∗1:T+1) +

1
τ2 V

)−1
,

µh(h∗1:T+1) = Σh(h∗1:T+1)
(

g(h∗1:T+1) + Q(h∗1:T+1)h
∗
1:T+1

)
.

Therefore the right-hand side of (A8) is approximately proportional to the pdf of the
following normal distribution:

h1:T+1 ∼ Normal
(
µh(h∗1:T+1), Σh(h∗1:T+1)

)
. (A11)

Recall that both Q(h∗1:T+1) and V are tridiagonal matrices. Thus, Σh(h∗1:T+1)
−1 =

Q(h∗1:T+1) +
1

τ2 V is also tridiagonal. Since the Cholesky decomposition of a tridiagonal
matrix and the inverse of a triangular matrix can be efficiently computed if they exist,
h1:T+1 is readily generated from (A11) with

h1:T+1 =
(

L′
)−1
(

L−1(g(h∗1:T+1) + Q(h∗1:T+1)h
∗
1:T+1

)
+ z̃
)

, z̃ ∼ Normal(0, I),

where L is a lower triangular matrix obtained by the Cholesky decomposition as

L′L = Q(h∗1:T+1) +
1
τ2 V.

The above algorithm, which is called the all without a loop (AWOL) in Kastner and Frühwirth-
Schnatter (2014), has been applied to Gaussian Markov random fields (e.g., Rue 2001) and
state-space models (e.g., Chan and Jeliazkov 2009; McCausland et al. 2011).

Hoping that the approximation (A8) is sufficiently accurate, we use (A11) as the
proposal distribution in the MH algorithm. In practice, however, we need to address two
issues:

1. the choice of h∗1:T+1 is crucial to make the approximation (A8) workable.
2. the acceptance rate of the MH algorithm tends to be too low when h1:T+1 is a high-

dimensional vector.

We address the former issue by using the mode of the conditional posterior density as
h∗1:T+1. The search of the mode is performed by the following recursion:

Step 1: Initialize h∗(0)1:T+1 and set the counter r = 1.

Step 2: Update h∗(r)1:T+1 by h∗(r)1:T+1 = µh(h
∗(r−1)
1:T+1 ).

Step 3: Let r = r + 1 and go to Step 2 unless maxt=1,...,T+1 |h
∗(r)
t − h∗(r−1)

t | is less than the
preset tolerance level.

In our experience, it mostly attains convergence in a few iterations.
We address the latter issue by applying a so-called block sampler. In the block sampler,

we randomly partition h1:T+1 into several sub-vectors (blocks), generate each block from
its conditional distribution given the rest of the blocks and apply the MH algorithm to
each generated block. Without loss of generality, suppose the proposal distribution (A11)
is partitioned as [

h1
h2

]
︸︷︷︸
h1:T

∼ Normal

([
µh1
µh2

]
︸ ︷︷ ︸

µh

,
[

Σh11 Σh12
Σh21 Σh11

]
︸ ︷︷ ︸

Σh

)
, (A12)
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where µh = µh
(
h∗1:T+1

)
and Σh = Σh

(
h∗1:T+1

)
(we ignore the dependence on h∗1:T+1 for

brevity) and h1 is the block to be updated in the current MH step, while h2 contains either
elements that were already updated in the previous MH steps or those to be updated in
the following MH steps. It is well known that the conditional distribution of h1 given h2 is
given by

h1|h2 ∼ Normal
(

µh1 + Σh11Σ−1
12 (h2 − µh2), Σh11 − Σh12Σ−1

h22Σh21

)
. (A13)

Note that the inverse of the covariance matrix Σh in (A12) is

Σ−1
h =

[
Σh11 Σh12
Σh21 Σh22

]−1

=

[
Ωh11 −Ωh11Σh12Σ−1

h22
−Σ−1

h22Σh21Ωh11 Σ−1
h22 + Σ−1

h22Σh21Ωh11Σh12Σ−1
h22

]
,

Ωh11 =
(

Σh11 − Σh12Σ−1
h22Σh21

)−1
.

Furthermore, if we let Ωh12 denote the upper-right block of Σ−1
h , we have

Ωh12 = −Ωh11Σh12Σ−1
h22.

Therefore the conditional distribution of h1 given h2 in (A13) is rearranged as

h1|h2 ∼ Normal
(

µh1 −Ω−1
h11Ωh12(h2 − µh2), Ω−1

h11

)
. (A14)

Recall that Σ−1
h is tridiagonal and so is Ωh11 by construction. Thus, we can apply the AWOL

algorithm:

h1 = µh1 −
(

L′1
)−1
(

L−1
1 Ωh12(h2 − µh2)− z̃1

)
, z̃1 ∼ Normal(0, I), L1L′1 = Ωh11,

to generate h1 from (A14). In essence, our approach is an AWOL variant of the block
sampler proposed by Omori and Watanabe (2008).

Appendix A.1.2. Regression Coefficients β

The sampling scheme for the regression coefficients β is almost identical to the one for
the log volatility h1:T+1. Let `(β) denote log p(y1:T |h1:T+1, θ) given y1:T and the parameters
other than β. In the same manner as (A2), consider the second-order Taylor approximation
of `(β) in the neighborhood of β∗:

`(β) ≈ `(β∗) + g(β∗)′(β− β∗)− 1
2
(β− β∗)′Q(β∗)(β− β∗), (A15)

where g(β) is the gradient vector of `(β) and Q(β) is the Hessian matrix of `(β) times −1.
Since ∇βεt = −εtxt, we have

∇β log p(yt|ht, ht+1, θ) = −xt + (ε2
t − γηtεt)xt,

∇′β∇β log p(yt|ht, ht+1, θ) = (−2ε2
t + γηtεt)xtx′t.

Therefore, g(β) and Q(β) are obtained as

g(β) =
T

∑
t=1

(εt(εt − γηt)− 1)xt,

Q(β) =
T

∑
t=1

εt(2εt − γηt)xtx′t.
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With the prior β ∼ Normal(µ̄β, Ω̄−1
β ), the conditional posterior density of β can be approxi-

mated by

p(β|h1:T+1, θ−β, y1:T)

= C exp[`(β) + log p(β)]

≈ C exp
[
`(β∗)− 1

2
log(2π) +

1
2

log |Ω̄β|
]

× exp
[

g(β∗)′(β− β∗)− 1
2
(β− β∗)′Q(β∗)(β− β∗)− 1

2
(β− µ̄β)

′Ω̄β(β− µ̄β)

]
. (A16)

By completing the square as in (A16), the proposal distribution for the MH algorithm is
derived as

β ∼ Normal
(
µβ(β∗), Σβ(β∗)

)
, (A17)

where

Σβ(β∗) =
(
Q(β∗) + Ω̄β

)−1, µβ(β∗) = Σβ(β∗)
(

g(β∗) + Q(β∗)β∗ + Ω̄βµ̄β

)
.

The search algorithm for β∗ is the same as h∗1:T+1.
Since the dimension of β is considerably smaller than h1:T+1, it is not necessary to

apply the block sampler in our experience.

Appendix A.1.3. Leverage Parameter γ

Since we use the standard conditionally conjugate prior distributions for γ, the condi-
tional posterior distribution is given by

γ|h1:T+1, θ−γ, y1:T ∼ Normal

(
∑T

t=1 ηtεt + ω̄γµ̄γ

∑T
t=1 η2

t + ω̄γ

,
1

∑T
t=1 η2

t + ω̄γ

)
. (A18)

Appendix A.1.4. Variance τ2

Since we use the standard conditionally conjugate prior distribution for τ2, the condi-
tional posterior distribution is given by

τ2|h1:T+1, θ−τ2 , y1:T ∼ Inv. Gamma
(

T + 1
2

+ aτ ,
1
2

h′1:T+1Vh1:T+1 + bτ

)
. (A19)

Appendix A.1.5. AR(1) Coefficient φ

Once the state variables h1:T+1 are generated, the conditional posterior density of φ is
given by

p(φ|h1:T+1, θ−φ, y1:T) ∝
√

1− φ2 exp

[
−
(1− φ2)h2

1 + ∑T
t=1(ht+1 − φht)2

2τ2

]
× (1 + φ)aφ−1(1− φ)bφ−11(−1,1)(φ). (A20)
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By completing the square, we have

(1− φ2)h2
1 +

T

∑
t=1

(ht+1 − φht)
2

= (1− φ2)h2
1 +

T

∑
t=1

h2
t+1 − 2φ

T

∑
t=1

ht+1ht + φ2
T

∑
t=1

h2
t

=
T+1

∑
t=1

h2
t − 2φ

T

∑
t=1

ht+1ht + φ2
T

∑
t=2

h2
t

=
T

∑
t=2

h2
t

(
φ− ∑T

t=1 ht+1ht

∑T
t=2 h2

t

)2

+
T+1

∑
t=1

h2
t −

(
∑T

t=1 ht+1ht

)2

∑T
t=2 h2

t
.

With the above expression in mind, we use the following truncated normal distribution:

φ ∼ Normal

(
∑T

t=1 ht+1ht

∑T
t=2 h2

t
,

τ2

∑T
t=2 h2

t

∣∣∣∣∣− 1 < φ < 1

)
, (A21)

as the proposal distribution for φ in the MH algorithm.

Appendix A.2. CP Form

Appendix A.2.1. Latent Log Volatility h̃1:T+1

The sampling scheme from the conditional posterior distribution of h̃1:T+1:

p(h̃1:T+1|θ, y1:T) ∝
T

∏
t=1

p(yt|h̃t, h̃t+1, θ) · p(h̃1:T+1|θ), (A22)

is based on the MH algorithm, which is similar to the case of the NCP form. To construct
the proposal distribution of h̃1:T+1, we consider the second-order Taylor approximation of
`(h̃1:T+1) = log p(h̃1:T+1|θ, y1:T) in the neighborhood of h̃∗1:T+1 as in (A2). We first derive
the explicit form of each element in g(h̃1:T+1) and Q(h̃1:T+1). By defining

ε̃t = yt exp(−h̃t), η̃t = h̃t+1 − φh̃t − (xt+1 − φxt)
′β, (A23)

the log density of yt in (15) is rewritten as

log p(yt|h̃t, h̃t+1, θ) = −h̃t −
1
2
(ε̃t − γη̃t)

2 + constant.

Since
∇t ε̃t = −ε̃t, ∇tη̃t = −φ, ∇tη̃t−1 = 1,

gt(h̃1:T+1), qt(h̃1:T+1) and qt,t+1(h̃1:T+1) are identical to (A4)–(A6) except that εt and ηt are
replaced with ε̃t and η̃t, respectively.

Since the log prior density of h̃1:T+1 is

p̄(h̃1:T+1) = −
T + 1

2
log(2πτ2) +

1
2

log |V| − 1
2τ2 (h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ), (A24)

the conditional posterior density of h̃1:T+1 (A22) can be approximated by

p(h̃1:T+1|θ, y1:T)

= C exp[`(h1:T+1) + p̄(h1:T+1)]

≈ C exp
[
`(h̃∗1:T+1)−

T + 1
2

log(2πτ2) +
1
2

log |V|+ f (h̃1:T+1)

]
, (A25)
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where C is the normalizing constant of the conditional posterior density and

f (h̃1:T+1) = g(h̃∗1:T+1)
′(h̃1:T+1 − h̃∗1:T+1)

− 1
2
(h̃1:T+1 − h̃∗1:T+1)

′Q(h̃∗1:T+1)(h̃1:T+1 − h̃∗1:T+1)

− 1
2τ2 (h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ), (A26)

By completing the square in (A26), we have

f (h̃1:T+1) = −
1
2
(
h̃1:T+1 − µh̃(h̃

∗
1:T+1)

)′Σh̃(h̃
∗
1:T+1)

−1(h̃1:T+1 − µh̃(h̃
∗
1:T+1)

)
(A27)

+ constant,

where

Σh̃(h̃
∗
1:T+1) =

(
Q(h̃∗1:T+1) +

1
τ2 V

)−1
,

µh̃(h̃
∗
1:T+1) = Σh̃(h̃

∗
1:T+1)

(
g(h̃∗1:T+1) + Q(h̃∗1:T+1)h̃

∗
1:T+1 +

1
τ2 VXβ

)
.

Therefore, the right-hand side of (A25) is approximately proportional to the pdf of the
following normal distribution:

h̃1:T+1 ∼ Normal
(
µh̃(h̃

∗
1:T+1), Σh̃(h̃

∗
1:T+1)

)
, (A28)

which we use as the proposal distribution in the MH algorithm. We obtain h̃∗1:T+1 in (A28)
with the same search algorithm as in the case of the NCP form and apply the block sampler
to improve the acceptance rate in the MH algorithm.

Appendix A.2.2. Regression Coefficients β

By ignoring the terms that do not depend on β, we can rearrange the density of Yt
in (15) as

p(yt|h̃t, h̃t+1, β, θ−β) ∝ exp
[
−1

2
(ỹt − x̃′tβ)

2
]

,

where
ỹt = yt exp(−h̃t)− γ(h̃t+1 − φh̃t), x̃t = −γ(xt+1 − φxt).

By defining ỹ = [ỹ1; . . . ; ỹT ] and X̃ = [x̃′1; . . . ; x̃T ], we have

p(y1:T |h̃1:T+1, β, θ−β) =
T

∏
t=1

p(yt|h̃t, h̃t+1, β, θ−β)

∝ exp
[
−1

2
(ỹ− X̃β)′(ỹ− X̃β)

]
. (A29)

Then the conditional posterior distribution of β is given by

p(β|h̃1:T+1, θ−β, y1:T)

∝ p(y1:T |h̃1:T+1, β, θ−β)p(h̃1:T+1|β, θ−β)p(β)

∝ exp
[
−1

2
(ỹ− X̃β)′(ỹ− X̃β)− 1

2τ2 (h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ)

− 1
2
(β− µ̄β)

′Ω̄β(β− µ̄β)

]
. (A30)
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By completing the square, we have the conditional posterior distribution of β as

β ∼ Normal
(
µ̃β, Σ̃β

)
, (A31)

where

Σ̃β =

(
X̃′X̃ +

1
τ2 X′VX + Ω̄β

)−1
,

µ̃β = Σ̃β

(
X̃′ỹ +

1
τ2 X′Vh̃1:T+1 + Ω̄βµ̄β

)
.

Since X̃′X̃ = γ2X′VX,

Σ̃β =

((
γ2 +

1
τ2

)
X′VX + Ω̄β

)−1
,

µ̃β = Σ̃β

(
X̃′ ε̃ +

(
γ2 +

1
τ2

)
X′Vh̃1:T+1 + Ω̄βµ̄β

)
,

where ε̃ = [ε̃1; . . . ; ε̃T ].

Appendix A.2.3. Leverage Parameter γ

Replacing εt and ηt in (19) with ε̃t and η̃t, respectively, we have

γ|h̃1:T+1, θ−γ, y1:T ∼ Normal

(
∑T

t=1 η̃t ε̃t + ω̄γµ̄γ

∑T
t=1 η̃2

t + ω̄γ

,
1

∑T
t=1 η̃2

t + ω̄γ

)
. (A32)

Appendix A.2.4. Variance τ2

It is straightforward to show that the conditional posterior distribution of τ2 is

τ2|h̃1:T+1, θ−τ2 , y1:T ∼ Inv. Gamma
(

T + 1
2

aτ ,
1
2
(h̃1:T+1 − Xβ)′V(h̃1:T+1 − Xβ) + bτ

)
. (A33)

Appendix A.2.5. AR(1) Coefficient φ

Replacing ht in derivation of (A21) with h̃t − x′tβ, we have

φ ∼ Normal

(
∑T

t=1(h̃t+1 − x′t+1β)(h̃t − x′tβ)

∑T
t=2(h̃t − x′tβ)2

,
τ2

∑T
t=2(h̃t − x′tβ)2

∣∣∣∣∣− 1 < φ < 1

)
. (A34)

We use (A34) as the proposal distribution for φ in the MH algorithm.
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