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Abstract: The study identifies the impact of the changes in human mobility due to the announcement
of the state of emergency to cope with the COVID-19 pandemic on the Tokyo gasoline, diesel, and
kerosene markets. Indices reflecting the movements in the visits to transit stations and workplaces
were used to capture the changes in human mobility from February 2020 to February 2021. The linear
and nonlinear ARDL (NARDL) models were applied to investigate the relationship between the
changes in human mobility indices and fuel prices. Although only the kerosene price received an
impact from the human mobility changes in the linear ARDL model, the NARDL model revealed
that when human mobility was increasing, the fuel price was affected positively and the negative
shocks in the mobility had an adverse influence on the fuel price. The results of the study imply
the importance of providing subsidies when a state of emergency reduces fuel demands due to the
decline in human mobility and negatively affects the fuel retail industry.
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1. Introduction

It is reported that the number of gas stations going out of business from January
to October 2020 in Japan exceeded the annual total bankruptcies of gas stations in 2019
(Tokyo Shoko Research 2021), suggesting that the COVID-19 pandemic is casting dark
clouds over the Japanese gasoline retail industry. On 8 January 2021, the second state
of emergency was enforced in Tokyo, which is expected to further dampen the gasoline
demand (Kumagai et al. 2021).

Although the state of emergency rules in Japan has not been a severe stay-at-home
order like the lockdown regulations with penalties in the European countries, the Japanese
government asked people to refrain from nonessential and nonurgent outings, institutions
and companies to increase the number of employees working remotely, and restaurants
and bars to close earlier than their usual business hours.

Figure 1 illustrates the changes in human mobility in Japan after the COVID-19
outbreak became apparent in early 2020. The figure also shows the changes in the number
of visits to transit stations and workplaces during the first and second states of emergency.
It is discernible from the figure that although the Japanese state of emergency rule was not
as strict compared to other countries, the level of human mobility somewhat declined after
the rule was enforced. Hence, I expect that this impact on human mobility due to the state
of emergency lowered the demand for fuels such as gasoline, diesel, and kerosene.

However, up until now, no studies have tested whether changes in human mobility
during the COVID-19 pandemic had influences on the fuel market. Thus, the objective of
the study is to investigate how the changes in human mobility during the pandemic due
to the spread of the coronavirus and the announcement of the state of emergency have
impacted the fuel markets. By identifying the impact of the human mobility changes on
the fuel price, the study expects to provide important information for the government
considering a subsidy policy for the fuel industry that might face serious damages if the
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plunge in automobile usage due to stay-at-home orders causes the fuel price to plummet.
Besides, the results of the study can offer a valuable reference for understanding how the
fuel market will be affected by changes in human mobility not only in the time of the
pandemic but also in other situations.
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Figure 1. Indices for the number of visits to transit stations and workplaces between 17 February 2020
and 22 February 2021 in Japan. EMG1 indicates the starting (7 April 2020) and ending (25 May 2020)
periods of the first state of emergency and EMG2 denotes the starting period (8 January 2021) of the
second state of emergency enforced in Tokyo.

To accomplish the research objective, the case of Tokyo, Japan, was selected for
investigation. The Tokyo fuel market was chosen as a case study because as of March
2021, Tokyo had the largest accumulative number of COVID-19 cases among all Japanese
cities, and thus, it is the most suitable city for investigation of the impact of the pandemic
on the fuel market for Japan. The study uses the number of visits to transit stations and
workplaces for indices representing the changes in human mobility in Japan during the
pandemic. The types of fuel prices investigated in the study are the premium and regular
gasoline, diesel, and kerosene prices because these fuels are all commonly sold fuels at
local gas stations in Tokyo.

Numerous studies have examined the effects of an external shock on oil prices
(Sadorsky 1999; Hamilton 2003; Farzanegan and Markwardt 2009; Wen et al. 2019), but
most of these studies focus on how changes in the oil market due to the shock affected
the economy and stock markets. The current study is related to studies investigating
how events like the 2008 financial crisis have influenced the oil market (Aruga 2015;
Joo et al. 2020). Recently, researchers have begun to conduct studies to understand how the
ongoing COVID-19 pandemic is causing impacts on the energy markets (Alhajeri et al. 2020;
Aruga et al. 2020; Nyga-Łukaszewska and Aruga 2020), but it is still unknown how the
changes in human mobility during the COVID-19 incident is affecting the energy markets.

In studies investigating the effects of the COVID-19 pandemic on human mobility
changes, Hadjidemetriou et al. (2020) identified that lockdown measures conducted by the
UK government in March 2020 reduced human mobility dramatically. Archer et al. (2020)
found that COVID-19 decreased the use of passenger vehicles fueled by gasoline, leading to
a reduction in vehicle NO2 emissions in the US. Eisenmann et al. (2021) conducted a survey
in Germany to understand the changes in people’s travel behavior during the COVID-19
pandemic and determined that public transport lost ground while private cars gained
importance. Thus, it is probable that changes in human mobility during the COVID-19
period will also impact fuel prices, but up until now, no studies have investigated this issue.

Among the previous studies, that of Nyga-Łukaszewska and Aruga (2020) is the most
relevant. It analyzed the impact of the number of COVID-19 cases on the crude oil and
natural gas markets, finding that while the crude oil market was affected negatively by the
number of COVID-19 cases, the natural gas market was impacted positively. The present
study is different from this study as it examines how the human mobility changes caused



J. Risk Financial Manag. 2021, 14, 163 3 of 12

impacts on gasoline, diesel, and kerosene prices. Compared to the number of COVID-19
cases, the data for changes in human mobility during the pandemic are more directly
connected to energy consumption because when more people are staying at home during
the state of the emergency, the use of automobile fuels such as gasoline and diesel will
drop. Besides, as the study uses fuel prices like gasoline and diesel prices instead of the
crude oil price, the study is expected to reveal the influence of the COVID-19 pandemic on
energy prices more accurately by examining the effects of human mobility changes on fuel
prices. Furthermore, this study is novel because it applies the recently developed nonlinear
auto-regressive distributed lag (NARDL) model while the previous study only applied the
ARDL model.

In the next section, the methods used in the study are explained. The third section
describes the results of the analyses and discusses the implications of the results. In the
final section, the conclusions are drawn.

2. Methods

The study introduces the following equation to investigate the impact of the changes
in human mobility on fuel prices:

pricet = C + β1transit + β2work + β3EMG1 + β4EMG2 (1)

This equation is based on the model developed by Nyga-Łukaszewska and Aruga (2020)
analyzing the effects of the COVID-19 pandemic on energy prices. In this equation, the
changes in human mobility are used as a variable to examine the effects of the COVID-19
pandemic on energy prices, while Nyga-Łukaszewska and Aruga (2020) used the number
of COVID-19 cases for this purpose.

In Equation (1), price is either the average weekly price of 1 kiloliter of premium
gasoline, regular gasoline, diesel, and kerosene sold in the Tokyo area denoted in Japanese
Yen (JPY). The Tokyo fuel price data were obtained from the homepage of the Agency
for Natural Resources and Energy of the Ministry of Economy, Trade and Industry, Japan.
Figure 2 delineates the plots of the fuel prices used in the study. It is observable from the
figure that the fuel prices had a downward trend at the beginning of the series until near
the period when the first state of emergency ended. They then stayed relatively flat but
started to increase after mid-November 2020.

Transit and work in Equation (1) are the changes in the visitors to transit stations and
workplaces in Japan relative to a baseline day, where the baseline day is defined as the
median value between 3 January and 6 February 2020. The plots of these data are presented
in Figure 1. These human mobility data were collected from the homepage of Our World in
Data, which is based on the Google Global Mobility Report for Japan.

The fuel price and human mobility data used in the study are the weekly data between
17 February 2020 and 22 February 2021.

Besides the human mobility variables, I included variables to consider the effects of
the state of emergency on the fuel prices in Equation (1). EMG1 and EMG2 represent these
variables. These variables are dummy variables taking 1 when the period belongs to the
time when the first and second states of emergency were enforced in Tokyo. As Tokyo was
under the first state of emergency from 7 April to 25 May 2020, EMG1 is coded as 1 when
the data contained this period. The second state of emergency started on 8 January 2021
and continued until the final data period obtained in this study, so EMG2 is coded as 1 for
periods later than 8 January 2021.

As the aim of the study was to identify both the short-run and long-run impacts
of the human mobility changes on the fuel prices, the application of the auto-regressive
distributed lag (ARDL) model proposed by Pesaran et al. (2001) was deemed appropriate.
The ARDL is useful for testing a cointegration relationship even when all the test variables
are not integrated of the same order: the variables can be either I(1) or I(0). Furthermore,
the ARDL model does not lose its power when omitted variables and auto-correlation
issues are sustained in the data and is useful for analyzing data with small sample sizes.
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The study also applies the nonlinear ARDL (NARDL) model developed by Shin et al. (2014)
to capture the asymmetric adjustment patterns regarding the positive and negative shocks
of human mobility on fuel prices.
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Figure 2. Fuel prices between 17 February 2020 and 22 February 2021. (a) Premium and regular
gasoline; (b) diesel and kerosene. EMG1 indicates the starting and ending periods of the first state of
emergency and EMG2 denotes the starting period of the second state of emergency.

First, to confirm the orders of integration of the variables investigated in the study, the
Zivot and Andrews (1992) unit root tests were conducted on the sample. ZA is known to
have an advantage in testing unit roots when the data contain a structural break. The test
conducts the stationarity test by internally determining the single structural break in the
series. Table 1 depicts the results of this test. The table indicates that except workplace, all
the variables are integrated of order one (I(1)). Workplace is also I(0), suggesting that the
variables used in this study satisfy the requirements for applying the ARDL model.
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Table 1. Zivot–Andrews unit root tests.

Levels First Differences

t-Stat. Breakpoint t-Stat. Breakpoint

Premium −3.46 21-December-20 −5.25 ** 10-August-20
Regular −3.84 16-November-20 −5.23 ** 1-January-20
Diesel −3.47 16-November-20 −5.25 ** 10-August-20

Kerosene −2.44 4-April-20 −5.14 ** 12-October-20
Transit −4.79 27-April-20 −6.70 *** 20-April-20

Workplace −9.04 *** 27-April-20 −8.02 *** 18-May-20
Note: The test allowed for a structural break in both intercept and trend. *** and ** denote significance at the 1%
and 5% levels, respectively.

Second, the ARDL estimation was performed with the following unrestricted error
correction model:

∆pricet = C + β1 pricet−1 + β2transitt−1 + β3workt−1 + ∑
p
i=1 β4i∆pricet−i

+∑
q
i=0 β5i∆transitt−i + ∑r

i=0 β6i∆workt−i + β7EMG1 + β8EMG2 + εt
(2)

Finally, based on Equation (2), the NARDL model was applied to estimate the re-
lationship presented in Equation (1). For applying the NARDL, transit and work were
decomposed into positive and negative cumulative sums. Let visitt be either number of
visits to transit stations or workplaces. Then, visitt can be decomposed into positive and
negative partial sums:

visit+t = ∑t
i=1 ∆visit+i = ∑t

i=1 max(∆visiti, 0), visit−t = ∑t
i=1 ∆visit−i = ∑t

i=1 min(∆visiti, 0). (3)

Based on the decomposition in Equation (3), the transit and work in Equation (2) are
replaced by the positive and negative partial sums of these variables. Using these vari-
ables, the NARDL unrestricted error correction model was estimated under the following
equation:

∆pricet = C + β1 pricet−1 + β2transit+t−1 + β3transit−t−1 + β4work+t−1 + β5work−t−1 + ∑
p
i=1 β6i∆pricet−i

+∑
q
i=0

(
τ+

i ∆transit+t−i + τ−
i ∆transit−t−i

)
+ ∑r

i=0

(
ϕ+

i ∆work+t−i + ϕ−
i ∆work−t−i

)
+ β7EMG1 + β8EMG2 + εt

(4)

In both the ARDL and NARDL models, the optimal lag orders of the dependent and
explanatory variables included in the models are identified by the Akaike information
criterion (AIC).

To test if the models contain serial correlation and heteroskedasticity issues, the
Breusch–Godfrey test for autocorrelation (Breusch 1978; Godfrey 1978) and the
Breusch and Pagan (1979) test for heteroskedasticity were performed. The cumulative
sum (CUSUM) and the cumulative sum of squares (CUSUMSQ) tests were also conducted
to examine the stability of the parameters estimated by the ARDL and NARDL models.

3. Results and Discussions

The error correction model requires the fuel price and human mobility variables
to be cointegrated, so the bounds F-test was conducted on the ARDL model. Table 2
shows the results of this test. The results indicate that all four fuel price models have a
cointegration relationship. However, the long-run estimation results in Table 3 implies that
these cointegration relationships are not driven by the human mobility variables.
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Table 2. Linear ARDL bounds test for cointegration.

Fuel Prices F-Stat.

Premium 6.63 ***
Regular 5.23 ***
Diesel 5.34 ***

Kerosene 4.06 **

Significance level I(0) I(1)

1% level 4.13 5.00
5% level 3.10 3.87

10% level 2.63 3.35
Note: *** and ** denote significance at the 1% and 5% levels, respectively.

Table 3. Linear ARDL long-run estimation.

Premium Regular Diesel Kerosene

Variables Coef. t-Stat. Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

Constant 146.13 *** 40.73 136.23 *** 33.99 118.94 *** 28.99 82.87 *** 11.98
Transit −0.01 −0.05 0.04 0.20 0.05 0.27 −0.54 −1.64
Work 0.05 0.64 0.05 0.68 0.20 * 1.95 0.30 * 1.91

Note: *** and * denote significance at the 1% and 10% levels, respectively.

The short-run effects of the changes in human mobility on fuel prices were also
examined. According to Table 4, although the short-run influences caused by the changes
in human mobility indices did not become apparent in the gasoline and diesel models, the
result of the kerosene model suggests that an increase in the index for transit station visits
affected the kerosene price negatively. As kerosene is mostly used for home heating devices
in Japan, this result might indicate that when more people were going out of their homes,
the total use of heating devices declined, which led to a decrease in the kerosene demand.
Hence, it is probable that an increase in transit station visits adversely affected the kerosene
price due to the decreased kerosene demand. The coefficients of the states of emergency
suggest that during the second state of emergency, the premium and regular gasoline
and diesel prices had an upward trend while the first state of emergency coefficient only
affected the kerosene price with a negative impact.

Table 4. Linear ARDL model estimation.

∆Premium ∆Regular ∆Diesel ∆Kerosene

Variables Coef. t−Stat Variables Coef. t−Stat Variables Coef. t−Stat Variables Coef. t−Stat

Constant 30.34 *** 4.80 Constant 30.50 *** 4.31 Constant 25.76 *** 4.40 Constant 9.17 ** 2.38
Premium(-1) −0.21 *** −4.96 Regular(-1) −0.22 *** −4.45 Diesel(-1) −0.22 *** −4.52 Kerosene(-1) −0.11 *** −2.76

Transit a 0.00 −0.04 Transit a 0.01 0.17 Transit(-1) 0.01 0.28 Transit(-1) −0.06 ** −2.28
Work a 0.01 0.51 Work a 0.01 0.45 Work a 0.04 1.56 Work a 0.03 * 1.86

∆Premium(-1) 0.28 ** 2.06 ∆Regular(-1) 0.22 1.47 ∆Diesel(-1) 0.27 * 1.86 ∆Kerosene(-1) −0.17 −1.29
∆Premium(-2) −0.33 ** −2.05 ∆Regular(-2) −0.22 −1.36 ∆Transit −0.06 −1.09 ∆Transit −0.12 *** −3.05

EMG1 −1.67 −1.67 EMG1 −1.28 −0.99 EMG1 −0.42 −0.45 EMG1 −2.01 *** −3.39
EMG2 2.07 *** 3.57 EMG2 2.22 *** 3.10 EMG2 1.97 *** 3.07 EMG2 0.07 0.18

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. a Indicates the variable is interpreted as Z = Z(-1) + ∆Z.

Similarly, the NARDL model was estimated. First, the cointegration test was con-
ducted by the bounds F-test. As seen in Table 5, the gasoline and diesel price models
contained a cointegration relationship based on the 5% significance level. The kerosene
model also had this relationship, although the null hypothesis of no cointegration was
rejected only at the 10% level.
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Table 5. NARDL bounds test for cointegration.

Fuel Prices F-Stat.

Premium 7.30 ***
Regular 3.60 **
Diesel 3.64 **

Kerosene 3.22 *
Significance level I(0) I(1)

1% level 3.29 4.37
5% level 2.56 3.49

10% level 2.2 3.09
Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Then, the long-run coefficients of the NARDL model were estimated, and the result of
this estimation is depicted in Table 6. It is evident from the table that the negative shock
in the number of visits to transit stations had a positive impact on premium and regular
gasoline and diesel prices. This might imply that when the number of transit station visits
was increasing, people tended to shift their commuting methods from public transportation
to automobiles, leading to an increase in fuel demand in the long run. On the other hand,
the negative shock in the workplace visits negatively impacted gasoline and diesel prices.
This result is perhaps because the state of emergency forced people to stay longer at their
homes, leading the fuel demand to drop in the long run.

Table 6. NARDL long-run estimation.

Premium Regular Diesel Kerosene

Variables Coef. t-Stat. Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

Constant 171.34 *** 119.60 161.00 *** 26.98 138.99 *** 28.66 87.01 *** 7.24
Transit+ −0.01 −0.15 −0.24 ** −2.12 −0.21 * −1.97 −0.42 −1.62
Transit- 0.91 *** 14.96 0.77 *** 4.12 0.71 *** 4.52 −0.45 −0.80
Work+ −0.14 * −1.93 0.13 * 1.86 0.11 * 1.75 0.30 1.65
Work- −0.53 *** −5.73 −0.31 ** −2.68 −0.29 *** −2.93 0.33 0.99

Note: ***, *, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Finally, the results of short-run effects of the human mobility indices on the fuel prices
are presented in Table 7. The short-run coefficient of the positive changes in the visits to
transit stations index (∆Transit+) for the premium gasoline indicates that when the number
of transit station visits is increasing, the premium gasoline price is increasing. In contrast,
the short-run coefficient of the negative changes in the transit station visits (∆Transit-)
suggests that the premium gasoline price has a declining trend when the number of visits
to transit stations is decreasing. The positive shock in the transit station visits became
also apparent in the regular gasoline model with a lag, and the diesel model also met
this condition at least based on the 10% significance level. The negative shock on these
fuel prices was significant at the 1% level, suggesting that regular gasoline and diesel
also received a negative impact from negative changes in the transit station visits. These
results imply that when the number of visits to transit stations is recovering, the fuel prices
are increasing, but the fuel prices decrease when people start to refrain from visiting the
stations in the short run. This result is opposite to the results of the long-run influence of
the human mobility index of the transit stations. This is perhaps because the short-run
coefficient does not reflect the shifts in the means of transportation and that the short-run
coefficient only captures how a change from one period before influences the fuel price.
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Table 7. NARDL model estimation.

∆Premium ∆Regular ∆Diesel ∆Kerosene

Variables Coef. t-Stat. Variables Coef. t-Stat. Variables Coef. t-Stat. Variables Coef. t-Stat.

Constant −99.35 *** −3.09 Constant −65.53 * −1.83 Constant −63.90 * −1.96 Constant 11.28 0.98
Premium(-1) 0.58 *** 2.92 Regular(-1) 0.41 * 1.71 Diesel(-1) 0.46 * 1.85 Kerosene(-1) −0.13 −1.15
Transit+(-1) 0.00 0.09 Transit+(-1) 0.10 1.34 Transit+(-1) 0.10 1.41 Transit+ a −0.05 −1.54
Transit-(-1) −0.53 *** −4.31 Transit-(-1) −0.31 ** −2.43 Transit-(-1) −0.32 ** −2.52 Transit-(-1) −0.06 −1.31

Work+ a 0.08 1.28 Work+(-1) −0.05 −1.16 Work+(-1) −0.05 −1.08 Work+ a 0.04 * 1.93
Work-(-1) 0.31 *** 3.46 Work- a 0.12 ** 2.61 Work- a 0.13 *** 2.87 Work- a 0.04 * 1.78

∆Premium(-1) −0.39 * −1.89 ∆Regular(-1) −0.15 −0.71 ∆Diesel(-1) −0.17 −0.77 ∆Kerosene(-1) −0.14 −0.96
∆Premium(-2) −0.84 *** −4.36 ∆Regular(-2) −0.47 ** −2.24 ∆Diesel(-2) −0.46 * −2.00 ∆Transit- −0.15 ** −2.52

∆Transit+ 0.23 ** 2.17 ∆Transit+ 0.28 2.09 ∆Transit+ 0.25 * 1.93 EMG1 −2.00 *** −3.30
∆Transit+(-1) 0.24 ** 2.70 ∆Transit+(-1) 0.20 *** 1.69 ∆Transit+(-1) 0.23 * 1.98 EMG2 0.24 0.33
∆Transit+(-2) 0.19 ** 2.25 ∆Transit- −0.41 *** −2.76 ∆Transit- −0.43 *** −2.97

∆Transit- −0.40 *** −3.42 ∆Transit-(-1) 0.14 * 1.91 ∆Transit-(-1) 0.14 * 2.00
∆Transit-(-1) 0.25 *** 3.27 ∆Transit-(-2) 0.10 1.55 ∆Transit-(-2) 0.11 1.69
∆Transit-(-2) 0.16 ** 2.34 ∆Work+ 0.03 0.53 ∆Work+ 0.04 0.93
∆Transit-(-3) 0.09 1.25 ∆Work+(-1) 0.05 1.29 ∆Work+(-1) 0.04 1.22

∆Work- 0.08 * 2.00 ∆Work+(-2) 0.06 ** 2.04 ∆Work+(-2) 0.06 ** 2.13
∆Work-(-1) −0.14 *** −2.97 EMG1 0.11 0.07 EMG1 −0.06 −0.04
∆Work-(-2) −0.09 ** −2.74 EMG2 −2.30 −1.23 EMG2 −2.45 −1.38
∆Work-(-3) −0.05 −1.57

EMG1 −0.83 −0.80
EMG2 −4.78 *** −2.84

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. a Indicates the variable is interpreted as Z = Z(-1) + ∆Z.

Coefficients of ∆Work-(-1) and ∆Work-(-2) for the premium gasoline model (significant
at the 1% and 5 % levels) reveal that the negative shocks in the visits to workplaces impact
the gasoline price negatively. Although this effect is occurring with some lags, the result is
consistent with the long-run coefficient of negative changes in the workplace visits having
negative impacts on the fuel prices. This allows inferring that when people are working at
home, the gasoline demand declines, which likely decreases the gasoline price.

Finally, Table 8 illustrates the results of the Breusch–Godfrey (BG) and the Breusch–
Pagan (BP) tests. The Breusch–Godfrey test suggests that all models do not contain the
serial correlation issue based on the 5% significance level. However, the Breusch–Pagan
test demonstrated that although half of the models were homoscedastic, some of them
were heteroskedastic when evaluated at the 5% significance level. To minimize the effects
of the heteroscedasticity issue, the Newey–West heteroskedasticity and autocorrelation
corrected (HAC) standard errors were applied.

Table 8. Serial correlation and heteroskedasticity tests.

Model BG F-Stat. BP F-Stat.

ARDL for premium 1.05 2.29 **
NARDL for premium 2.24 * 2.27 **

ARDL for regular 1.35 1.38
NARDL for regular 1.61 0.79

ARDL for diesel 0.49 2.52 **
NARDL for diesel 1.37 0.85

ARDL for kerosene 0.71 2.26 **
NARDL for kerosene 0.29 1.74

Note: ** and * denote significance at the 5% and 10% levels, respectively.

Figures 3 and 4 are the plots of the CUSUM and CUSUMSQ tests. For the ARDL
models, most of the CUSUM and CUSUMSQ statistics fell inside the 5% confidence intervals
of parameter stability, suggesting that the coefficients in these models were stable. On the
other hand, although the CUSMSQ test indicated that all parameters are also stable in all
the NARDL models, the CUSUM test for the NARDL kerosene model indicated that the
parameters in this model were not stable. This instability in the parameters for the kerosene
model might be the reason for the kerosene model having a cointegration relationship only
at the 10% significance level.
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4. Conclusions

This study investigated the effects of changes in human mobility during the COVID-19
pandemic on the Tokyo fuel markets. I analyzed the impacts of human mobility on the
premium gasoline, regular gasoline, diesel, and kerosene prices for Tokyo. The effects of
the changes in human mobility on these fuel prices were analyzed using indices reflecting
the visits to transit stations and workplaces. The decline in the visits to transit stations
had a positive impact in the long run, but the short-run effect suggested that the decline
in the number of transit station visits affected the gasoline and diesel prices negatively. It
was also found that when the number of workplace visits was decreasing, the premium
gasoline price received a negative impact. Such reduced gasoline prices related to the drop
in human mobility found in the case of Tokyo likely tell us that, similar to the previous
studies conducted in other locations (Archer et al. 2020; Eisenmann et al. 2021), the COVID-
19 pandemic has changed people’s travel behavior. It is believable that in this study, the
impact of COVID-19 on human mobility change became evident in the gasoline price being
adversely impacted when human mobility was decreasing.

Overall, the study indicates that when the state of emergency lowers the number of
people going out of their homes, the gasoline price will decline. In contrast, when the
number of people going out recovers, the price will regain positive movement. Thus, the
study reveals the tradeoffs of the state of emergency announcement. The government
needs to implement strict stay-at-home orders to cope with the spread of the coronavirus,
but this can hurt the economy because such orders will decrease human mobility. As the
study identified that gasoline prices will face an adverse impact when human mobility
decreases, it implies the importance of the government considering the provision of a
subsidy for those working in the fuel retail industry that will likely receive damages when
the government enforces stay-at-home orders. Thus, the study indicates that policymakers
must prepare for an adverse impact on the fuel market when an extreme event like the
COVID-19 pandemic will likely constrain human mobility.

This study is limited because the investigation had to be conducted using the data that
were available at the time of the investigation. For example, more detailed data capturing
the changes in human mobility at various locations might reveal a more precise influence
of the effects of human mobility on the fuel markets. Furthermore, to examine the reasons
behind the decline in the fuel price related to changes in human mobility, it would be
helpful to conduct a household survey to identify the actual changes in the frequency of
people going out of their homes during the pandemic and to find out if these changes
influenced the demand on fuels investigated in the study.
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