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Abstract: Financial data (e.g., intraday share prices) are recorded almost continuously and thus take
the form of a series of curves over the trading days. Those sequentially collected curves can be
viewed as functional time series. When we have a large number of highly correlated shares, their
intraday prices can be viewed as high-dimensional functional time series (HDFTS). In this paper,
we propose a new approach to forecasting multiple financial functional time series that are highly
correlated. The difficulty of forecasting high-dimensional functional time series lies in the “curse of
dimensionality.” What complicates this problem is modeling the autocorrelation in the price curves
and the comovement of multiple share prices simultaneously. To address these issues, we apply a
matrix factor model to reduce the dimension. The matrix structure is maintained, as information
contains in rows and columns of a matrix are interrelated. An application to the constituent stocks in
the Dow Jones index shows that our approach can improve both dimension reduction and forecasting
results when compared with various existing methods.

Keywords: functional time series; high-dimensional data; Dow Jones Industrial Average; share
return forecasting

1. Introduction

Recent advances in data collection and storage have enabled people to access data
with increasing dimensions and volumes. These densely or ultradensely observed data can
be modeled under a functional data analysis (FDA) framework, assuming the observations
are recorded at discretized grid points of a random smooth curve. This is especially useful
for finance research, where the data are recorded at a very high frequency or even, almost
continuously. Due to those features, financial data can be viewed as functional time series,
from a statistical perspective.

In modeling functional time series, the primary difficulty lies in dimensionality, which
is widely referred to as the “curse of dimensionality.” This has led to the development of
two strands of statistics—high-dimensional data analysis (see, e.g., Cai and Chen 2010;
Bühlmann and Van De Geer 2011) and FDA (see, e.g., Ferraty and Vieu 2006; Horváth
and Kokoszka 2012; Kokoszka and Reimherr 2017; Ramsay and Silverman 2006). Under
the functional data framework, observations are samples of fully observed trajectories
(Wang et al. 2016), but data are practically recorded at discrete grid points. For densely
observed functional data, the observations are often presmoothed so that they are assumed
to be drawn from the smoothed trajectories (Cardot 2000; Zhang and Chen 2007; Zhang
and Wang 2016). To some degree, this smoothness assumption converts the “curse” to the
“blessing” of dimensionality, as one can pool information from neighboring grid points
to overcome the high-dimensional problem. There are two general ways in the literature
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to reduce dimensions and capture the temporal dependence among functions simultane-
ously. On the one hand, Panaretos and Tavakoli (2013), Hörmann et al. (2015), Rice and
Shang (2017), and Martínez-Hernández et al. (2020) adopt a dynamic functional principal
component analysis (FPCA) approach to incorporate temporal dependence in the long-run
covariance function. Hays et al. (2012), Liebl (2013), Jungbacker et al. (2014), and Kokoszka
et al. (2015) develop functional dynamic factor models, in which correlated functions are
reduced to a smaller set of latent dynamic factors. Classical multivariate time series models
are then applied to those latent dynamic factors.

Among the existing literature, functional time series models have been employed
to forecast intraday curves (e.g., Kokoszka et al. 2015; Shang 2017; Shang et al. 2019).
However, all these models are developed for univariate FTS. Few studies focus on mod-
eling and forecasting a large number of constituent stocks of a specific index, which is
of particular interest from theoretical and practical perspectives. With a large number of
highly correlated stock shares, their intraday curves form high-dimensional functional
time series. High dimension in this case means that the number of functional time series
is relatively larger than that of curves within each functional time series. One typical
solution to capture the dynamic changes in price curves and the comovement of prices
of multiple shares simultaneously is through a multivariate functional time series frame-
work, which allows researchers to concatenate intraday curves as one set of functional
time series and perform dimension reduction (Berrendero et al. 2011; Chiou et al. 2014)
develop various multivariate FPCA approaches, but these approaches fail to accommodate
high-dimensional data due to difficulties in implementation. Alternatively, Gao et al. (2019)
propose a twofold dimension reduction technique to model high-dimensional functional
time series. More specifically, the original multivariate functional time series are reduced to
scalar time series with lower dimensions. Despite the advantage of easy implementation,
the covariation of all the sets of functional time series is reflected by the reduced scalar
time series, and thus, much essential information may have been lost. Consequently, the
forecasting performance of this approach is questionable. From a practical perspective,
accurately forecasting high-dimensional financial time series is critical in high-frequency
trading, portfolio management, risk management, etc.

To effectively resolve the existing issues, we extend the factor model of matrix-valued
high-dimensional time series of Wang et al. (2019) to functional time series. In our model,
the covariation of all sets of functional time series is captured from the original multivariate
functional time series. Thus, the new model could achieve more efficient dimension
reduction and maintain the matrix structure of the original data. In this way, various
information carried by rows and columns is well preserved, which may largely improve
the forecasting accuracy. To demonstrate the effectiveness of our proposed model, we
considered the intraday prices of constituent stocks in the Dow Jones Industrial Average
(DJIA) from 3 October 2018 to 16 October 2019. Compared with both the high-dimensional
functional time series method by Gao et al. (2019) and the univariate functional time
series method by Hyndman and Shang (2009), our method consistently leads to the best
forecasting performance in all cases. This is robust across various popular forecasting
accuracy measurements. Hence, we argue that our proposed matrix factor model could
be a widely useful tool for modeling high-dimensional financial time series in general
contexts.

The rest of the paper is organized as follows: Section 2 proposes the matrix factor
model. We introduce the forecasting method in Section 3, and the results are presented in
Section 4. Section 5 concludes the paper.

2. Methodology

First introduced by Wang et al. (2019) to model high-dimensional economic data, the
matrix factor model aims to analyze the different economic indicators of different countries
in a matrix format. Each column contains values of various economic indicators of the same
country in each matrix, and each row contains observations of the same economic indicator
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of different countries. Such matrix-valued data are collected over a certain period, and in
this thesis are termed matrix-valued time series. There is temporal information among the
matrix-valued data in the matrix-valued time series. There are also interrelations for values
in each column and row of each matrix.

Despite the functional data’s infinite dimensionality, observations on each curve can
only be recorded discretely. The smoothness assumption of the L2 process that guarantees
values at each grid point is sampled from fully observed trajectories. The difficulty in
modeling HDFTS is threefold. First, there are correlations among observations along the
curve (different grid points of the same curve). Second, the correlations are among the
observations from curves of different sets of FTS (different grid points of the different
curves at the same time point). Third, the correlations are among the observations from
different curves (different grid points of the different curves at different time points). The
need to accommodate these complex features of the densely observed FTS means that a
matrix-valued time series is appropriate.

In Section 2, we will introduce the procedures for converting HDFTS into matrix-
valued time series, the model, and the estimation method.

2.1. Data Conversion

Let {Yt(u) : t = 1, . . . , T} be the N-dimensional original FTS, where N is the number
of sets of FTS, and T is the sample size or number of functions within each set of FTS. At
each time t, Yt(u) = [Y (1)

t (u), . . . ,Y (N)
t (u)]>, where each Y (i)

t (u) is defined in L2(I), a
Hilbert space of square integrable functions on a real interval I ∈ [a, b], with the inner
product 〈 f , g〉 =

∫
I f (u)g(u) with the norm ‖ · ‖ = 〈·, ·〉 1

2 . If we focus on one dimension

of the HDFTS, for each i, where i = 1, 2, . . . , N, {Y (i)
t (u) : t = 1, . . . , T} represents the ith

set of FTS.
In order to convert the HDFTS into matrix-valued time series, the measurement error is

smoothed out so that the smoothness assumption is met, that is, observations at discretized
grid points on the functions are sampled from the smoothed trajectories. Then, the values at
discretized grid points of the HDFTS can be arranged into each matrix of the matrix-valued
time series in the time sequence.

While there is no formal definition of “dense” functional data, conventional consent
has been reached (Wang et al. 2016). Suppose each function, Y (i)

t (u), is densely observed at
discrete points uj for j ∈ {1, . . . , J} with errors such that

Y (i)
t (uj) = X

(i)
t (uj) + ε

(i)
t,j ,

where X (i)
t (uj) is the smoothed trajectory observed at discrete point uj, and ε

(i)
t,j is the

smooth error. Then, the discretized smooth HDFTS can be arranged into matrix-valued
time series {Xt : t = 1, . . . , T} such that

Xt =


X (1)

t (u1) X
(2)
t (u1) . . . X (N)

t (u1)

X (1)
t (u2) X

(2)
t (u2) . . . X (N)

t (u2)
...

. . . . . .
...

X (1)
t (uJ) X (2)

t (uJ) . . . X (N)
t (uJ)

.

In the matrix-valued time series {Xt : t = 1, . . . , T}, the observation at time t, Xt, is a
matrix where the jth column represents values at each grid point of the tth function of the
jth set of smoothed FTS. Through the matrix conversion, we can preserve the different sets
of information along the function (column-wise) and across the function (row-wise), and
more importantly, we can capture the comovement of different grid points from different
functions. Moreover, using the smoothed functional data instead of the original functional
data with measurement error allows us to pool observations at neighboring grid points so
that the benefits brought by the smoothness assumption of FDA can be employed.
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2.2. Model

Applying the matrix factor model of Wang et al. (2019) to the matrix-valued time
series converted from the HDFTS, we assume a few latent factors drive the HDFTS. Unlike
the classical factor model, the factor is in a matrix form, and we use two loadings to capture
the dependency across the row and the column. The matrix factor model for Xt can be
expressed as

Xt = λ′FtΦ + εt, t = 1, . . . , T, (1)

where Ft is an r× k unobserved matrix-valued time series of common fundamental factors,
λ′ is a J × r front loading matrix, Φ is k × N back loading matrix, and εt is an J × N
error matrix.

2.3. Interpretation

The front loading matrix corresponds to the row effect, while the back loading matrix
corresponds to the column effect. Equation (1) can be expressed in matrix format


X(1)

t (u1) . . . X(N)
t (u1)

...
. . .

...
X(1)

t (uJ) . . . X(N)
t (uJ)

 =

λ11 . . . λr1
...

. . .
...

λ1J . . . λrJ

 ·
Ft,11 . . . Ft,1k

...
. . .

...
Ft,r1 . . . Ft,rk

 ·
Φ11 . . . Φ1N

...
. . .

...
Φk1 . . . ΦkN

 (2)

To view the effect of one loading matrix separately, we set the other front loading as
an identity matrix. To isolate the column effect, assuming λ is a J × J identity matrix, the
model in (1) can be expressed as Xt = FtΦ + εt, where Ft is a J × k matrix, and Φ is the
k× N loading matrix. Equation (2) can be expressed as

X(1)
t (u1) . . . X(N)

t (u1)
...

. . .
...

X(1)
t (uJ) . . . X(N)

t (uJ)

 =

Ft,11 . . . Ft,1k
...

. . .
...

Ft,J1 . . . Ft,Jk

 ·
Φ11 . . . Φ1N

...
. . .

...
Φk1 . . . ΦkN



=

Ft,11 ·Φ11 + . . . + Ft,1k ·Φk1, . . . , Ft,11 ·Φ1N + . . . + Ft,1k ·ΦkN
...

. . .
...

Ft,J1 ·Φ11 + . . . + Ft,Jk ·Φk1, . . . , Ft,J1 ·Φ1N + . . . + Ft,Jk ·ΦkN


(3)

From (3), we can see that each column of Xt is a linear combination of the columns of
Ft. Taking the constituent stocks of an index as an example, where {X (i)

t (u) : t = 1, . . . , T}
represents the intraday cumulative returns at given day t for specific stock i, at the trading
time u1, . . . , uJ , J is the number of trading intervals. Then, the ith column of Xt can be
expressed as

stocki ft,·1 ft,·k
X(i)

t (u1)

X(i)
t (u2)

...
X(i)

t (uJ)


t

= Φ1i


Ft,11
Ft,21

...
Ft,J1

+ . . . + Φki


Ft,1k
Ft,2k

...
Ft,Jk

+ εt,·i.

It can be seen that the intraday cumulative returns for trading time uj only depend
on the jth row of Ft. Therefore, the jth row is the factor for trading time uj. Since the front
loading is I, there are no interactions among trading times. The back loading matrix Φ

reflects how each stock depends on columns of Ft and hence captures column interactions,
i.e., interactions among stocks.
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Similarly, we assume Φ is an N × N identity matrix to isolate the row effect. Then, (1)
can be expressed as Xt = λ′Ft + εt, where Ft is an r× N factor matrix, and λ is an r× J
loading matrix. Equation (2) can be expressed as

X(1)
t (u1) . . . X(N)

t (u1)
...

. . .
...

X(1)
t (uJ) . . . X(N)

t (uJ)

 =

λ11 . . . λr1
...

. . .
...

λ1J . . . λrJ

 ·
Ft,11 . . . Ft,1N

...
. . .

...
Ft,r1 . . . Ft,rN



=

λ11 · Ft,11 + . . . + λr1 · Ft,r1, . . . λ11 · Ft,1N + . . . + λr1 · Ft,rN
...

. . .
...

λ1J · Ft,11 + . . . + λrJ · Ft,r1, . . . λ1J · Ft,1N + . . . + λrJ · Ft,rN


(4)

From (4), we can see that each row Xt is a linear combination of the rows of Ft. The
jth row of Xt, Xt(uj) = {X

(1)
t (uj), X(2)

t (uj), . . . , X(N)
t (uj)} can be expressed as[

X(1)
t (uj), X(2)

t (uj), . . . , X(N)
t (uj)

]
= λ1j

[
Ft,11, Ft,12, . . . , Ft,1N

]
ft,1·

+ λ2j
[
Ft,21, Ft,22, . . . , Ft,2N

]
ft,2·

+

...

+ λrj
[
Ft,r1, Ft,r2, . . . , Ft,rN

]
ft,r·

+ εt,j·

It can be seen that the intraday cumulative returns for stock i only depend on the ith
column of Ft. Therefore, the ith column is the factor for stock i. The front loading matrix λ′

reflects how trading time depends on rows of Ft and hence captures row interactions, i.e.,
interactions among trading times.

Therefore, the matrix factor model could capture how the intraday cumulative returns
for different stocks interact, and how the intraday cumulative returns at different trading
times interact.

2.4. Estimation

We need to estimate λ, Ft, and Φ in (1), respectively. Due to the latent nature of the factors,
assumptions on the factors are made. Here, we follow the assumption that all dynamics of
the observed processes are captured by the factors (Pan and Yao 2008; Lam et al. 2011; Lam
and Yao 2012; Liu and Chen 2016; Wang et al. 2019). Moreover, for factor models, there exist
identifiability issues among the factors, which means model (1) is not identifiable. However,
similar to the argument of Lam et al. (2011), Lam and Yao (2012), Wang et al. (2019) argued
that the column spaces of λ and Φ are uniquely determined. Hence, the problem will be
converted to the estimation of the column spaces of λ and Φ. We follow the idea in Lam et al.
(2011), λ and Φ can be decomposed as

λ = W1Q1,

and
Φ = W2Q2

where Q1 and Q2 is r × J and k× N matrices, respectively, with orthonormal rows, W1
and W2 are r× r and k× k nonsingular matrices, respectively. Then λ will have the same
column space as Q1 and Φ will have the same column space Q2. Let

Zt = W ′
1FtW2
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Then (1) can be expressed as

Xt = Q′1ZtQ2 + εt

The estimation problem becomes estimating Q1 and Q2 (see Lam et al. 2011;
Wang et al. 2019, for details). Since Q1 and Q2 are orthonormal, so are their estimators, Q̂1
and Q̂2, therefore

Ẑt = Q̂1XtQ̂′2 (5)

Then, Q̂′1, Ẑt and Q̂2 will be the estimators of λ, Ft and Φ, respectively.

3. Forecasting Method

In this section, we outline the matrix-valued factor model and the methods we used
for comparison (Gao et al. 2019; Hyndman and Shang 2009). More specifically, we outline
ways to generate point forecasts and interval forecasts for each method.

3.1. Point Forecasts
3.1.1. Matrix-Valued Factor Model

With the matrix-valued factor model, the information of the high-dimensional func-
tional time series are contained and well preserved in the matrix-valued time series of the
latent factors, Ft. Hence, we could make forecasts on the time series of estimated latent
factors and then recover the original high-dimensional functional time series using (1) to
generate the forecasts of the high-dimensional functional time series. Here, we apply the
univariate time series forecasting method of Hyndman and Shang (2009) to make a forecast
of the estimated latent factors. More specifically, we fit r× k ARMA models on the estimate
factors

{
F̂1,sq, . . . , F̂t,sq

}
, where s ∈ {1, . . . , r} and q ∈ {1, . . . , k}.

The h-step ahead forecast of the factor matrix F̂κ+h|κ can be constructed as

F̂κ+h|κ =

F̂κ+h|κ,11 . . . F̂κ+h|κ,1k
...

. . .
...

F̂κ+h|κ,r1 . . . F̂κ+h|κ,rk


where κ is the number of observations used in the univariate time series for forecasting.
With a set of holdout samples, the h-step-ahead point forecast for Xt can be expressed as

X̂κ+h|κ = λ̂′ F̂κ+h|κΦ̂,

where λ̂ and Φ̂ are the estimates of λ and Φ, respectively, and κ is the number of observa-
tions used in generating the point forecasts.

3.1.2. Twofold Dimensional Reduction Model

In Gao et al. (2019), the dynamics across curves within each functional time series are
captured by the long-run covariance kernel, which is defined as

C(i)(ur, us) =
∞

∑
q=−∞

γ
(i)
q (ur, us), where γ

(i)
q (ur, us) = cov

(
X(i)

0 (ur), X(i)
q (us)

)
The forecasting method of the twofold dimensional reduction model consists of

three steps:

1. Eigen analysis is performed on the estimated long-run covariance functions to reduce
dimensions of functions into a finite number of principal components p(dynamic FPCA);

2. The p principal components from N functional time series are organized into p
vectors of length N. p Factor models is applied separately to these N × 1 vectors of
the principal component scores to further reduce the dimensions of the functional
time series N into r so that we have r× p factors.
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3. Univariate time series model is fitted to each factor to produce forecasts of factors
before constructing point forecasts of functions.

3.1.3. Univariate Functional Time Series Model

We incorporate the dynamic FPCA into the univariate functional time series model of
Hyndman and Shang (2009) to capture the dynamics across curves within each functional
time series. Different from Gao et al. (2019), a univariate time series model is applied to the
principal components scores to produce forecasts directly instead of reducing the dimension
of countries further. Then, the forecast principal components are used to construct a point
forecast of functions.

From this point of view, we can see that in the second dimension reduction step,
Gao et al. (2019) accommodate the problem of high dimension, which also captures the
correlation among sets of functional time series, which is an extension of the univariate
functional time series model of Hyndman and Shang (2009), while the correlation is
reflected by the dimensional-reduced data, which has information loss. While the matrix
factor model reduces the dimensions of both the functions and number of functional time
series simultaneously, since the matrix structure is maintained, the information within the
rows and the columns are well preserved.

3.2. Interval Forecasts

To capture the uncertainties in the point forecasts, we also construct the prediction inter-
vals based on the point forecasts of each method. Aue et al. (2015) proposed a parametric ap-
proach for constructing uniform prediction intervals, which can be extended to pointwise pre-
diction intervals after considering the nonparametric bootstrap approach of Shang (2018). For
each stock i, based on the in-sample-forecast errors, ε̂

(i)
κ+h|κ(uj) = X(i)

κ+h(uj)− X̂(i)
κ+h(uj), we

use sampling with replacement to generate a series of bootstrapped forecast errors to ob-
tain the upper bound and lower bound, γ

(i)
lb (uj) and γ

(i)
ub(uj), respectively. Then, a tuning

parameter, τα, can be determined, such that

P
{

τα × γ
(i)
lb (uj) ≤ ε̂

(i)
κ+h|κ ≤ τα × γ

(i)
ub(uj)

}
= (1− α)× 100%.

Then, the h-step-ahead pointwise prediction interval for stock i is as follows:

X̂(i)
κ+h(uj) + τα × γ

(i)
lb (uj) ≤ X(i)

κ+h(uj) ≤ X̂(i)
κ+h(uj) + τα × γ

(i)
ub(uj).

4. Measure Forecast Accuracy

This section outlines the measures of the accuracy of point forecasts and interval forecasts.

4.1. Point Forecast Accuracy Evaluation

We use the root mean square forecast error (RMSFE) of the h-step-ahead point forecasts
to evaluate the point forecast accuracy. It measures how close the forecast results are to the
actual values of the data being forecast.

The h-step-ahead point forecasts are generated using an expanding window analysis,
which is commonly used in time series models to evaluate model stability. Using the
expanding window analysis, we firstly use the first k observations to generate the h-step-
ahead point forecasts for h = 1, 2, . . . , T − κ. The forecast process is then iterated by
increasing the sample size by one day until reaching the end period of the data. The
RMSFE for the h-step-ahead forecasts of the ith stock can be written as

RMSFEi(h) =

√√√√ 1
J × (T − k− h + 1)

T−h

∑
κ=k

J

∑
j=1

[
X(i)

κ+h(uj)− X̂(i)
κ+h(uj)

]2
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where κ is the number of observations used in generating the point forecasts, then X(i)
κ+h(uj)

is the actual holdout sample for the (κ + h)th curve at trading time uj for stock i, and

X̂(i)
κ+h(uj) is the h-step-ahead point forecasts for the holdout sample based on the first κ

curves, and J is the number of grid points of each curve.

4.2. Interval Forecast Accuracy Evaluation
We use the interval scoring rule of Gneiting and Raftery (2007) to evaluate the point-

wise interval forecast accuracy. The interval score for the pointwise interval forecast at time
point xi is

Sα

[
X̂(i)(lb)

κ+h (uj), X̂(i)(ub)
κ+h (uj); X(i)

κ+h(uj)
]
=
[

X̂(i)(ub)
κ+h (uj)− X̂(i)(lb)

κ+h (uj)
]

+
2
α

[
X̂(i)(lb)

κ+h (uj)− X(i)
κ+h(uj)

]
1

{
X(i)

κ+h(uj) < X̂(i)(lb)
κ+h (uj)

}
+

2
α

[
X(i)

κ+h(uj)− X̂(i)(ub)
κ+h (uj)

]
1

{
X(i)

κ+h(uj) > X̂(i)(ub)
κ+h (uj)

}
where the level of significance α can be chosen conventionally as 0.2. It is not difficult

to find that the smaller the interval score is, the more accurate the interval forecast. An
optimal (which is also minimal) interval score value can be achieved if X(i)

κ+h(uj) lies

between X̂(i)(lb)
κ+h (uj) and X̂(i)(ub)

κ+h (uj). Then, the mean interval score for the h-step-ahead
forecast of the ith stock can be written as

S(i)
α (h) =

1
J × (T − k− h + 1)

T−h

∑
κ=k

J

∑
j=1

Sα

[
X̂(i)lb

κ+h (uj), X̂(i)ub
κ+h (uj); X(i)

κ+h(uj)
]

5. Empirical Results

In this section, we employ the models described in Section 3 to model and forecast the
DJIA constituent stocks.

5.1. Data

Originally published on 26 May 1896 and named after Charles Dow and Edward Jones,
DJIA is the second-oldest US market index. It is often used as an indicator of the industrial
sector in the US economy. The performance of DJIA can be influenced by many factors,
such as corporate and economic reports, global political events, and all other incidents
that may affect the economy. All financial crises in US history can be firstly reflected as
the crashes of DJIA. Moreover, stock markets around the world are closely related to the
performance of DJIA. Hence, producing accurate forecasts is of particularly important
interest to all stakeholders and investors involved in activities related to DJIA. Those
related parties may include governments, regulatory authorities, hedge and pension fund
managers, and retailer investors.

We consider the intraday 10-min prices of 29 constituent stocks in DJIA from 3 October
2018 to 16 April 2019,1 which are sourced from Bloomberg. Table 1 list the names of these
stocks and the corresponding symbols.

Due to the nonstationarity of the intraday price curves, we calculate returns based on
those curves to drive stationary curves (Gabrys et al. 2010; Kokoszka et al. 2015) as

rn(uj) = 100× [lnPn(uj)− lnPn(u1)]

where Pn(uj) is the price of a share at time uj, for j ∈ {1, . . . , J}, and J is the number of grid
points at which price are observed. Essentially, we assume that the intraday cumulative
returns are observed at discrete time points uj from a continuous intraday cumulative
return curve Xt. As for the DJIA data, J is 39, representing 39 ten-minute trading intervals
over the six and half hours of each trading day.
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Table 1. List of constituent stocks in DJIA and corresponded symbols.

Company Name Symbol
Apple Inc. AAPL
American Express AXP
The Boeing Company BA
Caterpillar Inc. CAT
Cisco Systems, Inc. CSCO
Chevron Corporation CVX
The Walt Disney Company DIS
The Goldman Sachs Group, Inc. GS
The Home Depot, Inc. HD
International Business Machines Corporation IBM
Intel Corporation INTC
Johnson & Johnson JNJ
JPMorgan Chase & Co. JPM
The Coca-Cola Company KO
McDonald’s Corporation MCD
3M Company MMM
Merck & Co., Inc. MRK
Microsoft Corporation MSFT
NIKE, Inc. NKE
Pfizer Inc. PFE
The Procter & Gamble Company PG
The Travelers Companies, Inc. TRV
UnitedHealth Group Incorporated UNH
United Technologies Corporation UTX
Visa Inc. V
Verizon Communications Inc. VZ
Walgreens Boots Alliance, Inc. WBA
Walmart Inc. WMT
Exxon Mobil Corporation XOM

Functional time series consists of a set of random functions observed at regular time
intervals, with two broad categories. One is a segmentation of an almost continuous time record
into natural consecutive intervals, such as days, months, or quarters, where the continuum of
each function is a time variable (see, for example, Hörmann and Kokoszka 2012). The other
type arises when each of the observations in a time period represents a continuous function,
where the continuum is a variable other than time (see, for example, Chiou and Müller 2009).
The intraday cumulative return curves are examples of the first category. More specifically, the
intraday data are segments of longer time series, and a collection of such daily curves forms
the functional time series.

Figure 1 displays the intraday cumulative returns of Apple Inc. In Figure 1a, we
plot the intraday cumulative returns as a univariate time series, and in Figure 1b, we
segment the univariate time series into daily curves. The collection of daily curves then
form functional time series. We utilize the rainbow plot of Hyndman and Shang (2010) to
show the time ordering of functional time series, where the curves from older times are in
red, and the more recent curves are in purple.

Figure 2 displays the functional time series of intraday cumulative of four selected
tech companies. Apparently, shapes of those functional time series are similar to each other.
This suggests that the intraday cumulative returns of these shares are correlated. Hence, it
is important to consider both the dynamics within each functional time series and their
pairwise correlations.
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Figure 1. Univariate and functional time series of intraday cumulative returns of AAPL. The univariate time series is the
intraday cumulative return of APPL over 131 days, and the functional time series is the intraday cumulative return of APPL
based on data of these 131 days, sliced into 10-min intervals. In the rainbow plot, the curves from older times are in red and
the more recent curves are in purple.
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Figure 2. Functional time series of intraday cumulative returns of four selected tech companies. It is the differences in the
color patterns and shapes of curves that make functional time series different.
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5.2. Forecast Evaluation

We used three different methods to generate five-step-ahead point and interval fore-
casts, that is, we only forecast the cumulative intraday return up to 5 days. Table 2 presents
the averaged RMSFE values and averaged interval scores across all stocks in the holdout
sample for the different forecast methods. The bold entries highlight the method that
produces the best forecasts.

Table 2. Average RMSFE and interval scores.

Averaged RMSFE Averaged Interval Score
h UFTS HDFTS MFMTS UFTS HDFTS MFMTS

1 0.7570 0.7502 0.7312 2.5381 2.5489 2.5296
2 0.7535 0.7483 0.7283 2.8369 2.8199 2.7830
3 0.7541 0.7452 0.7305 3.1635 3.1614 3.1495
4 0.7702 0.7581 0.7421 3.2891 3.2150 3.2054
5 0.7579 0.7500 0.7330 2.3043 2.3278 2.2883

Notes: Average RMSFE values and averaged interval scores in the holdout sample based on different forecasting
methods are presented in this table. Bold numbers indicate the smallest error for each dataset. Forecasts based on
univariate functional time series are labeled as “UFTS”, forecasts based on twofold dimensional reduction model
are labeled as “HDFTS”, and forecasts based on the matrix factor model are labeled as “MFMTS”.

It is obvious that our method produces the smallest averaged RMSFE values, the
twofold dimensional reduction model performs the second, and the univariate functional
time series model performs the worst. Further, the pairwise Diebold–Mariano tests are
conducted on the RMSFE values, and significant test results are obtained at a 5% level in
all cases. This suggests that the improvements of our model over the competitors are statis-
tically significant. This is because that the univariate functional time series model ignores
the correlation of functional time series, and the twofold dimensional reduction model is
based on the dimension reduced data, which may not fully reflect all the information in the
correlations among stocks.

In terms of the interval forecast, the same results can be observed, i.e., our method
produces the smallest mean interval score values, which means that our method performs
the best in producing interval forecasts.

After comparing all the point and interval forecast results for different methods, our
proposed method outperforms other competitive methods. This means that forecasts based
on our model provide a more robust forecast with less variation.

6. Conclusions

By applying the factor model matrix-valued to functional data, a forecasting method
for high-dimensional functional time series is proposed. The matrix factor model could
reduce the dimensions of functions and number of functional time series simultaneously;
this is beneficial as it maintains the matrix structure of the original data, which could result
in more efficient dimensional reduction as the information carried by rows and columns
are well preserved. Ultimately, this will improve forecasting accuracy.

The study on constituent stocks in the Dow Jones Industrial Average (DJIA) illustrates
the merits of our model as it produces more accurate and robust forecasts than the high-
dimensional functional time series method by Gao et al. (2019) and the univariate functional
time series method by Hyndman and Shang (2009).

In summary, our proposed matrix factor model could be a useful tool for modeling
high-dimensional correlated financial time series where the number of financial time series
are relatively large, compared to the sample size T. It is worth noting that the novel
COVID-19 pandemic has caused large volatilities in all financial markets. This may suggest
structural changes in the parametric structure, which is beyond the scope of this paper.
Future extensions may be therefore conducted to investigate the incorporating of structural
changes, as well as the robust methodologies to address the potential outliers.
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