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Abstract: The distributions for highly volatile financial time-series data are playing an increasingly
important role in current financial scenarios and signal analyses. An important characteristic of
such a probability distribution is its tail behaviour, determined through its tail thickness. This can
be achieved by estimating the index parameter of the corresponding distribution. The normal and
Cauchy distributions, and, sometimes, a mixture of the normal and Cauchy distributions, are suitable
for modelling such financial data. The family of stable distributions can provide better modelling for
such financial data sets. Financial data in high-volatility markets may be better modelled, in many
cases, by the Linnik distribution in comparison to the stable distribution. This highly flexible family
of distributions is better capable of modelling the inflection points and tail behaviour compared to the
other existing models. The estimation of the tail thickness of heavy-tailed financial data is important
in the context of modelling. However, the new probability distributions do not admit any closed
analytical form of representation. Thus, novel methods need to be developed, as only a few can be
found in the literature. Here, we recall a recent novel method, developed by the authors, based on a
trigonometric moment estimator using circular distributions. The linear data may be transformed
to yield circular data. This transformation is solely for yielding a suitable estimator. Our aim in
this paper is to provide a review of the few existing methods, discuss some of their drawbacks, and
also provide a universal (∀α ∈ (0, 2]), efficient, and easily implementable estimator of α based on
the transformation mentioned above. Novel, circular-statistics-based tests for the index parameter
α of the stable and Linnik distributions are introduced and also exemplified with real-life financial
data. Two real-life data sets are analysed to exemplify the methods recommended and enhanced by
the authors.

Keywords: characteristic function-based estimator; estimation; fractional moment estimator; Hill esti-
mator; index parameter; trigonometric method of moment estimator; wrapped Linnik; wrapped stable

1. Introduction

In the modern era, there is an increasing need for modelling financial markets (and
engineering sciences, e.g., signal detection) with high volatility. An important characteristic
of such a probability distribution is its tail behaviour, determined through its tail thickness.
There is a need for modelling such financial data. High variability has also been a common
characteristic of modern circular data.

Corresponding circular distributions are characterised by heavy or long tails. The
normal and Cauchy distributions, and, sometimes, a mixture of the normal and Cauchy
distributions, are suitable for modelling such financial data. The family of stable distribu-
tions can provide better modelling for such financial data sets. Highly volatile financial
time-series data may be better modelled, in many cases, by the Linnik distribution in

J. Risk Financial Manag. 2023, 16, 405. https://doi.org/10.3390/jrfm16090405 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm16090405
https://doi.org/10.3390/jrfm16090405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm16090405
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm16090405?type=check_update&version=3


J. Risk Financial Manag. 2023, 16, 405 2 of 14

comparison to the stable distribution, e.g., see Anderson and Arnold (1993). This highly
flexible family of distributions is better capable of modelling the inflection points and tail
behaviour compared to the existing popular flexible symmetric unimodal models.

There have been a lot of studies establishing the use of the Linnik family of distri-
butions as a highly flexible, important, and useful family for modelling financial data.
However, its implementation for real-life data seems to have been somewhat restricted,
possibly because of the lack of a simple and efficient estimator of the parameter, particularly
that of the index parameter α. The estimation of the tail thickness of heavy-tailed financial
data using the index parameter α is important in the context of modelling.

Our aim in this paper is to provide a universal (for all α ∈ (0, 2]), efficient, and
easily implementable estimator of α after presenting a review of the few existing methods.
The issue behind the derivation is to study the advantages and also to point out the
shortcomings of some of the estimators and hence to obtain better estimators that eliminate
the effects of the shortcomings of the former ones.

We have observed that the circular-statistics-based estimators can be quite useful in this
context, which is enhanced in this paper. Circular statistics are obtained for circular data. In
many emerging real-life situations, we not only make observations on linear variables but
also on circular ones, that is, on angular propagations, orientations, directional movements,
and strictly periodic occurrences. Such data are referred to as directional data, which, in
two dimensions, are known as circular data. Linear data may be transformed into circular
data using the method of wrapping.

Here, we recall two highly flexible families of circular distributions, e.g., the wrapped
stable family, in Section 2, and the wrapped Linnik family in Section 3, and the novel,
universal, efficient, and easily implementable estimators of α derived from these are pre-
sented in Section 7. In Section 4, descriptions of the classical Hill estimator by Hill (1975),
and its generalisation by Brilhante et al. (2013), are presented. In Section 5, the fractional
moment estimator for the symmetric Linnik distribution proposed by Kozubowski (2001)
is reviewed. The fractional moment estimator of the characteristic exponent used to mea-
sure the tail thickness for skewed stable distributions, proposed by Kuruoglu (2001), is
particularised to obtain the same for the symmetric stable distribution in Section 5. In
Section 6, the characteristic function-based estimator proposed by Anderson and Arnold
(1993) is presented. In Section 7, the trigonometric method of moment estimators proposed
by SenGupta (1996) and SenGupta and Roy (2023) is presented, which is further modified
to obtain an improved estimator (as in SenGupta and Roy 2019, 2023) in Section 8. The
trigonometric method of moment estimation is exploited here for symmetric circular distri-
butions only. It can be used for asymmetric distributions as well. But the computations
involved are complicated and time consuming and hence are not considered here. In
Section 9, the performance of the estimators is discussed through extensive simulations,
focusing on their estimated mean bias and estimated root-mean-square errors, as presented
in Tables 1 and 2. In Section 10, the computed values of the estimators are obtained for two
real-life financial data sets, which are presented in Table 3. In Section 11, novel tests for the
index parameter α of the stable and Linnik distributions are introduced and also illustrated
with real-life financial data. Some discussions and conclusions on the different estimators
are provided in Section 12. In the Acknowledgement section, the authors express their
acknowledgements.

2. The Symmetric Stable and Wrapped Stable Family of Distributions

The regular symmetric stable distribution is defined through its characteristic function
given by

ψS(t) = exp(itµ− |σt|α), (1)

where µ is the location parameter, σ is the scale parameter, and α is the index or shape
parameter of the distribution.

Using Proposition 2.1 on page 31 of Jammalamadaka and SenGupta (2001), the follow-
ing theorem is obtained (see SenGupta and Roy 2023).
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Theorem 1. (a) The trigonometric moment of order p for a wrapped stable distribution corresponds
to the value of the characteristic function of the linear stable random variable at the integer value
p = 1, 2, . . . (b) The characteristic function of the wrapped stable random variable θ at the integer
p is

ψWS(p) = E[exp(ip(θ − µ))] = exp(ipµ− ρpα
), (2)

where ρ = exp(−σα), µ is the location parameter, σ is the scale parameter, α is the index parameter
and i =

√
(−1).

From the stable distribution, we can obtain the wrapped stable distribution (the
process of wrapping is explained by Jammalamadaka and SenGupta (2001)). Suppose that
θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped stable distribution
(provided by Jammalamadaka and SenGupta (2001)), whose probability density function is
given by

f (θ, ρ, α, µ) =
1

2π
[1 + 2

∞

∑
p=1

ρpα
cos p(θ − µ)] 0 < ρ ≤ 1, 0 < α ≤ 2, 0 < µ ≤ 2π. (3)

where p = 1, 2, . . . and the parameters explained as above.

3. The Symmetric Linnik and the Wrapped Linnik Family of Distributions

It was established by Pakes (1998) that the characteristic function of a symmetric (α)
Linnik (linear) distribution is given by

ψL(t) = exp(itµ)(1 + |tσ|α)−1. (4)

The density function cannot be written in an analytical form except for α = 2. The
wrapping of this distribution yields the wrapped symmetric α Linnik family of distributions.
However, this circular family differs from that of the symmetric wrapped stable family
and none of these families is a sub-family of the other. In particular, taking α = 2, for the
wrapped symmetric stable family one gets the wrapped Cauchy, while for the wrapped
symmetric Linnik family it gives the wrapped Laplace (double exponential) distribution.

Using Proposition 2.1 on page 31 of Jammalamadaka and SenGupta (2001), the follow-
ing theorem is obtained (see SenGupta and Roy 2023).

Theorem 2. (a) The trigonometric moment of order p for a wrapped Linnik distribution corresponds
to the value of the characteristic function of the linear Linnik random variable at the integer value p.
(b) The characteristic function of the wrapped Linnik random variable θ at the integer p is

ψWL(p) = E[exp(ip(θ − µ))] = exp(ipµ)(1 + (pσ)α)−1.

The probability density function of wrapped Linnik distribution is defined as

f (θ) =
1

2π
[1 + 2

∞

∑
p=1

((1 + (σp)α)−1) cos p(θ − µ)], (5)

where the parameter space is given by

Ω = Ω1 ∪Ω2,

Ω1 = {(α, σ, µ0) : 1 ≤ α ≤ 2, σ ≥ 1, 0 ≤ µ0 < 2π} and

Ω2 = {(α, σ, µ0) : 1 < α ≤ 2, σ < 1, 0 ≤ µ0 < 2π}.

We observe that these wrapped distributions preserve the parameter α for the corre-
sponding linear distributions.
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Without a loss of generality, we take µ = 0 and σ = 1 in the following. The index
parameter of the circular family of distributions plays an important role in determining the
thickness and hence the tail behaviour of the distribution. There are, in fact, four possible
names for the parameter α. Some interpret it as the tail thickness parameter or the index
parameter used to measure tail thickness mainly for heavy tailed distributions. Others
interpret it as the characteristic exponent when it is present in an exponential form in a
characteristic function. Sometimes, α is also defined as the shape parameter along with
its three other companions viz. location parameter µ, scale parameter σ, and skewness
parameter β. For this paper, we assume the symmetric case that is β = 0. Several estimators
of this parameter have been developed over time.

4. Hill Estimator and Its Generalisation

The classical Hill estimator (see Hill 1975; Dufour and Kurz-Kim 2010), is a simple
non-parametric estimator based on order statistics. Given a sample of n observations
X1, X2, . . . Xn the Hill estimator is defined as

α̂H =
[
(

1
k

k

∑
j=1

ln Xn+1−j:n)− ln Xn−k:n

]−1

with standard error

SD(α̂H) =
kα̂H

(k− 1)
√

k− 2
,

where k is the number of observations which lie on the tails of the distribution of interest
and is to be optimally chosen depending on the sample size, n, and tail thickness α, as
k = k(n, α) and Xj:n denotes the j-order statistic of the sample of size n.

The asymptotic normality of the classical Hill estimator is provided by Goldie and
Smith (1987) as √

k( ˆα−1
H − α−1)

L−→ N(0, α−2)

which leads to the following lemma

Lemma 1.
ˆαH − α

L−→ N
(

0,
1

α2k

)
.

This estimator uses the linear function of the order statistics and can be used to estimate
α ∈ [1, 2] only. Further, it is also “extremely sensitive” to the choice of the optimal number
of tail observations k, which itself is a function of the unknown index parameter α being
estimated.

The Hill estimator is scale invariant since it is defined in terms of the log of ratios but
not location invariant. Therefore, centering needs to be performed in order to address the
location invariance.

The classical Hill estimator is actually the logarithm of the geometric mean or the loga-
rithm of the mean of order p = 0 of a set of statistics. This estimator has been generalized
to a more general mean of order p ≥ 0 of the same set of statistics by Brilhante et al. (2013)
as follows:

α̂Hp =


(

1−A−p
p (k)

)
p , if p > 0

loge A0(k) ≡ α̂H , if p = 0,
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where the class of statistics Ap(k) is taken as the mean of order p of the statistics Uik
given by

Uik =
Xn+1−i:n
Xn−k:n

=
U(Yn+1−i:n)

U(Yn−k:n)
,

where U(.) is the generalized inverse function of the cumulative distribution function
F of X and using the distributional identity X = U(Y) with Y as a unit Pareto random
variable and

Ap(k) =


(

∑k
i=1 Up

ik
k

)1/p
, if p > 0(

∏k
i=1 Uik

)1/k
, if p = 0 (6)

Under the first order condition that the generalized inverse function U(.) is of regular
variation with index α, the consistency of the generalized class of Hill estimators α̂Hp

is established, provided p < 1
α . In addition, under the assumption of the second order

condition, the asymptotic normality of α̂Hp can also be obtained (see Brilhante et al. 2013)
as

α̂Hp ≡d α +
σp(α)Zp(k)√

(k)
+ bp(α|ρ)A(n/k) + op

(
A(n/k)

)
,

holds for all p < 1
2α and Zp(k) is asymptotically standard normal and

σp(α) =
α(1− pα)√
(1− 2pα)

and bp(α|ρ) =
1− pα

1− pα− ρ
,

with ρ being the second-order parameter, controlling the rate of convergence for the first
order condition.

5. Fractional Moment Estimator

Another alternative estimator of the index parameter α is given by Kozubowski (2001)
as the usual method of moment estimator with fractional order. If x1, x2, . . . , xn are realiza-
tions from the symmetric Linnik distribution with index parameter α and scale parameter
σ, then the pth absolute moment is

e(p) = E|Y|p =
p(1− p)σpπ

αΓ(2− p) sin(πp/α) cos(πp/2)
,

where 0 < α ≤ 2 and 0 < p < α. As suggested in Kozubowski (2001), using suitable choices
of p as 1/2 and 1 and solving the respective equations, the fractional moment estimator
of the the index parameter α can be obtained. This estimator is valid only for α > 1. To
overcome this restriction, a universal and efficient estimator for both stable and Linnik
distributions will appear in our next works.

If x1, x2, . . . , xn are realizations from the symmetric stable distribution with index
parameter α, scale parameter σ, and location parameter 0, then the pth absolute moment
given by Kuruoglu (2001) is

E|Y|p =
Γ(
(

1− p
α

)
)

Γ(1− p)
|σ|

p
α

cos
(

pπ
2

) ,
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where−1 < p < α, p 6= 1 and α 6= 1. Using the method of moments with the corresponding
sample moment,

Ap =
1
n

n

∑
i=1
|Xi|p

and applying the following property of gamma function,

Γ(p)
Γ(1− p)

=
π

sin(pπ)
, p 6= 1

the fractional moment estimator of the index parameter α can be obtained.

6. Characteristic Function-Based Estimator

The characteristic function-based estimator of the index parameter of symmetric
stable distribution (see Anderson and Arnold 1993) is obtained by the minimization of
the objective function (where location parameter µ = 0 and scale parameter σ unknown)
given by,

Î′s(α) =
n

∑
i=1

wi(η̂(zi)− exp(−|σzi|α))2, (6)

where

η̂(t) =
1
n

n

∑
j=1

cos(txj), t ∈ R

and x1, x2, . . . , xn are realizations from the symmetric stable(α) distribution with the the-
oretical characteristic function exp(−|σzi|α), zi is the ith zero of the mth degree Hermite
polynomial Hm(z) and

wi =
2m−1m!

√
m

(mHm−1(z))2 .

Similarly, the characteristic function-based estimator for that of the symmetric Linnik
distribution is obtained by the minimization of the objective function given by

Il(α, σ) =
n

∑
i=1

wi(η̂(zi)− (1 + |σzi|α)−1)2 (7)

subject to the constraints, 1 < α ≤ 2 and σ > 0, where x1, x2, . . . , xn are realizations from the
symmetric Linnik(α) distribution with the theoretical characteristic function (1 + |σzi|α)−1.

This estimator is consistent, as seen by Anderson and Arnold (1993). However, it can-
not be obtained explicitly and needs to be obtained by solving the estimating equations in
iterative methods such as the L-BFGS-B method used in R software (see Byrd et al. (1995)).

7. The Trigonometric Moment Estimator

It is known, in general, by Jammalamadaka and SenGupta (2001) that the characteristic
function of θ at the integer p is defined as,

ψθ(p) = E[exp(ip(θ − µ))] = αp + iβp

where αp = E cos p(θ − µ) and βp = E sin p(θ − µ).

Further by, Jammalamadaka and SenGupta (2001) we know that, for the p.d.f given by (3),

ψθ(p) = ρpα
.

Hence, E cos p(θ − µ) = ρpα
and E sin p(θ − µ) = 0
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Suppose θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped stable
density given by (3). We define

C̄1 =
1
m

m

∑
i=1

cos θi, C̄2 =
1
m

m

∑
i=1

cos 2θi, S̄1 =
1
m

m

∑
i=1

sin θi

and S̄2 =
1
m

m

∑
i=1

sin 2θi.

Then, we note that R̄1 =

√
C̄1

2
+ S̄1

2 and R̄2 =

√
C̄2

2
+ S̄2

2.

Using the method of trigonometric moments estimation, and equating R̄1 and R̄2 to
the corresponding functions of the theoretical trigonometric moments, we get the estimator
of the index parameter α of wrapped stable distribution (see SenGupta 1996):

ˆαWS =
1

ln 2
ln

ln R̄2

ln R̄1
.

Now, suppose θ1, θ2, . . . , θm are a random sample of size m drawn from the wrapped
Linnik density given by (5). Using the method of trigonometric moments estimation, and
equating the empirical trigonometric moments R̄1 and R̄2 to the corresponding theoretical
moments, we get the estimator of index parameter α of wrapped Linnik distribution (as
obtained for the wrapped stable distribution by SenGupta 1996),

ˆαWL =
ln[((1/R̄1 − 1)/(1/R̄2 − 1))]

ln(1/2)
,

where R̄j = 1
m ∑m

i=1 cos j(θi − θ̄), j = 1, 2 and θ̄ is the mean direction given by θ̄ =

arctan
(

S̄1
C̄1

)
. Note that R̄1 ≡ R̄.

The asymptotic normality of the estimators ˆαWS and ˆαWL have been established in the
following Theorems 3 and 4 respectively (see SenGupta and Roy 2019, 2023).

Theorem 3. √
m( ˆαWS − α)

L−→ N(0, γ′Σγ),

where
γ =

1
ln 2

(− cos µ0

ρ ln ρ
,

cos 2µ0

ρ2α ln ρ2α ,
− sin µ0

ρ ln ρ
,

sin 2µ0

ρ2α ln ρ2α

)′
and

γ′Σγ =
1

(ln 2)2

[
1 + ρ2α − 2ρ2

2(ρ ln ρ)2 +
1 + ρ4α − 2(ρ2α

)2

2(ρ2α ln ρ2α)2 +
2ρ2α+1 − ρ− ρ3α

ρ ln ρρ2α ln ρ2α

]
.

Theorem 4.
√

m( ˆαWL − α)
L→ N(0, γ′Σγ), where

γ = 1
ln(1/2)



− cos µ0(1+(σ)α)2

(σ)α

cos 2µ0(1+(2σ)α)2

(2σ)α

− sin µ0(1+(σ)α)2

(σ)α

sin 2µ0(1+(2σ)α)2

(2σ)α

 and
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γ′Σγ =
1

(ln(1/2))2

[
− cos2 2µ0(1 + σα)(1 + (2σ)α)2

2ασ2α
+

cos2 2µ0(1 + σα)(1 + (2σ)α)

2ασ2α

+
(1 + (2σ)α)4

(2σ)2α
− (1 + (2σ)α)2

(2σ)2α
− sin2 2µ0(1 + σα)(1 + (2σ)α)2

2ασ2α

+
cos 3µ0 sin µ0 sin 2µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)
− (1 + (σ)α)2

(σ)2α
+

(1 + σα)(1 + (2σ)α)

2ασ2α

+
sin2 µ0(1 + σα)(1 + (2σ)α)

2ασ2α
− cos µ0 cos 2µ0 cos 3µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)

− 3 cos µ0 sin 2µ0 sin 3µ0(1 + σα)2(1 + (2σ)α)2

2α+1σ2α(1 + (3σ)α)
+

cos 2µ0(1 + σα)4

2σ2α
+

sin2 2µ0(1 + σα)4

2σ2α(1 + (2σ)α)

+
cos 2µ0(1 + σα)4

2σ2α(1 + (2σ)α)
− sin µ0 sin 3µ0 cos 2µ0(1 + σα)2(1 + (2σ)α)2

2ασ2α(1 + (3σ)α)

]
.

Where m denotes the sample size and Σ denotes the dispersion matrix of
(

C̄1, S̄1, C̄2, S̄2

)
in both the above theorems.

Unlike for the previous estimators where at the most simulation results were given for
the properties of the estimators, the asymptotic distributions obtained in the Theorems 3
and 4 establish rigorously the theoretical and the analytical properties of the trigonometric
moment estimators. The estimators can be shown to be consistent and asymptotically
normal(CAN) through the use of the theorems. Additionally, the usefulness of the theorems
is to provide a methodology to rigorously test for the index parameter α which is illustrated
in Section 11.

8. The Truncated Trigonometric Moment Estimator

The moment estimators ˆαWS and ˆαWL need not always remain in the support of the
true parameter α (that is (0,2]). Hence, the moment estimators proposed above need not be
proper estimators of α. Hence, the modified estimators for wrapped stable and wrapped
Linnik distribution free from this defect are, respectively, given by

ˆαttm
WS =

{
ˆαWS if 0 < ˆαWS < 2

2 if ˆαWS ≥ 2

and

ˆαttm
WL =


1 if ˆαWL ≤ 1
α̂ if 1 < ˆαWL < 2
2 if ˆαWL ≥ 2

(since the support of α excludes non-positive values).
The asymptotic normality of the modified truncated estimators ˆαttm

WS and ˆαttm
WL are

established, respectively, in the following theorems (see SenGupta and Roy 2019, 2023).
We have

Theorem 5.
( ˆαttm

WS − α)
L−→ N(0, V( ˆαttm

WS))

where V( ˆαttm
WS) = E( ˆαttm

WS
2
)− α2

where E( ˆαttm
WS

2
) = σ2

[
{a∗φ(a∗) − b∗φ(b∗) + Φ(b∗) − Φ(a∗)}

]
+ α2{Φ(b∗) − Φ(a∗)}+

2ασ{φ(a∗)− φ(b∗)}
where a∗= −α√

γ′Σγ
m

and b∗= 2−α√
γ′Σγ

m
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Theorem 6.
( ˆαttm

WL − α)
L−→ N(0, V( ˆαttm

WL))

where V( ˆαttm
WL) = E( ˆαttm

WL
2
)− α2

where E( ˆαttm
WL

2
) = Φ(a∗)+σ2

[
{a∗φ(a∗)− b∗φ(b∗)+Φ(b∗)−Φ(a∗)}

]
+ α2{Φ(b∗)−Φ(a∗)}

+2ασ{φ(a∗)− φ(b∗)}+ 4.[1−Φ(b∗)]
where a∗= 1−α√

γ′Σγ
m

and b∗= 2−α√
γ′Σγ

m

σ =

√
γ′Σγ

m

In both the above theorems, φ(.) and Φ(.) denote the p.d.f and c.d.f of a standard
normal variable respectively.

9. Efficiency of the Estimators

It is naturally of interest to see how close these estimators are. Here, we briefly discuss
this aspect with an empirical sample. The raw financial data can be transformed into
circular data by using the method of wrapping (see, e.g., page 31 of Jammalamadaka and
SenGupta (2001)). That is, for positive (linear) values, after dividing by 2π, we take the
remainder, while for negative (linear) values, we add 2π to the remainder to produce the
corresponding circular values in (0,2π]. The fractional moment estimator, as suggested
by Kozubowski (2001), for the Linnik distribution is valid when α > 1 and that, for
wrapped stable distribution, as suggested by Kuruoglu (2001), needs iterative techniques.
The properties of this estimator also need to be studied. The efficiency of the estimators
obtained using the four methods has been carried out, as suggested by the referees, by
including the estimated bias (through the mean bias) and the standard errors (through the
root mean square errors) of the estimators in Tables 1a,b and 2a,b. A comparison of the
performance of the truncated trigonometric moment estimator ˆαttm

WS is made with that of

the characteristic function-based estimator
ˆ

α
c f
WS of α of wrapped stable distribution based

on their mean bias and root mean square errors (RMSEs) for moderate sample sizes in

Table 1a,b. In Table 1a,b, a simulation is performed for the values of ˆαttm
WS and

ˆ
α

c f
WS, each with

sample size n = 30, 50, 80 and 100 when the skewness parameter β = 0. For each sample
size n, 1000 replications are made. A similar simulation is performed in Table 2a,b for a
comparison of the performance of the estimators of α of the wrapped Linnik distribution. It
can be observed from Tables 1a,b and 2a,b that the mean bias and the root mean square error
of the truncated trigonometric moment estimator of α is less than that of the characteristic
function-based estimator for most sample sizes, indicating the efficiency of the former over
the latter.

Table 1. (a) Data 1: Estimated bias (mean bias) and estimated standard error (RMSE) of the estimator
of α of wrapped stable distribution. (b) Data 2: Estimated bias (mean bias) and estimated standard
error (RMSE) of the estimator of α of wrapped stable distribution.

(a) Data 1

Sample Size Mean Bias ( ˆαttm
WS) Mean Bias (

ˆ
α

c f
WS) RMSE ( ˆαttm

WS) RMSE (
ˆ

α
c f
WS)

30 0.175 0.383 0.498 0.6697
50 0.1215 0.429 0.4286 0.667
80 0.014 0.457 0.363 0.656
100 0.029 0.478 0.3475 0.650
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Table 1. Cont.

(b) Data 2

Sample Size Mean Bias ( ˆαttm
WS) Mean Bias (

ˆ
α

c f
WS) RMSE ( ˆαttm

WS) RMSE (
ˆ

α
c f
WS)

30 0.009 1.087 0.267 1.341
50 0.179 1.138 0.438 1.353
80 0.128 1.225 0.552 1.384
100 0.042 1.236 0.141 1.389

Table 2. (a) Data 1: Estimated bias (mean bias) and estimated standard error (RMSE) of the estimator
of α of wrapped Linnik distribution; (b) Data 2: Estimated bias (mean bias) and estimated standard
error (RMSE) of the estimator of α of wrapped Linnik distribution.

(a) Data 1

Sample Size Mean Bias ( ˆαttm
WL) Mean Bias (

ˆ
α

c f
WL) RMSE ( ˆαttm

WL) RMSE (
ˆ

α
c f
WL)

30 0.491 0.287 0.812 0.583
50 0.058 0.215 0.058 0.482
80 0.190 0.201 0.396 0.451
100 0.191 0.188 0.392 0.425

(b) Data 1

Sample Size Mean Bias ( ˆαttm
WL) Mean Bias (

ˆ
α

c f
WL) RMSE ( ˆαttm

WL) RMSE (
ˆ

α
c f
WL)

30 0.085 0.478 0.641 0.682
50 0.034 0.483 0.565 0.664
80 0.017 0.519 0.478 0.664
100 0.013 0.552 0.428 0.666

10. Examples

In this section, we consider the wrapped stable and the wrapped Linnik densities as
possible underlying models of the financial data, on the Box–Jenkins common stock closing
price data of IBM taken from Box et al. (1976), with the characteristic function estimate
and the truncated trigonometric moment estimate, respectively. Further financial data
considered in this section, as an example, are the gold price data which were collected
per ounce in US dollars over the years 1980–2008. Gold is an important asset to mankind
and is hence important in financial market. Aggarwal and Lucey (2007) have suggested
some statistical procedures which provide the existence of psychological barriers in daily
gold prices and also in change of gold prices from day to day. The prices, being in
round numbers, present an obstacle with important effects on the conditional mean and
variance of the gold price series around psychological barriers. Mills (2004) studied the
properties of the daily gold price from 1971 to 2002 and found them to be characterised
by the presence of autocorrelation, volatility and 15-day scaling. The distribution of daily
returns of gold is highly leptokurtic and multi-period returns attain normality only after
235 days. Byström (2020) studied the link between happiness and gold price changes. He
observed that there is no significant correlation between happiness and gold price changes.
However, assuming the tails of the happiness distribution to be non-normal, the gold price
change seems to increase particularly on a person’s extremely unhappy days. However,
the log returns (as in the analysis of stock data by Anderson and Arnold (1993)) data of the
Indian gold market that we present here exhibit mild asymmetry, pronounced platykurtic
and quite small first-order autocorrelation properties, which motivated us to study the
symmetric Linnik distribution as an initial approximation of its distribution. The analysis of
stock price data is generally carried out on a difference of order 1 in relation to the original
series. So, denoting the original stock price data by xt, they undergo transformation as
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zt = 100(ln(xt)− ln(xt−1)) which is then wrapped by the process as mentioned above.
This transformation of log returns aims to achieve symmetry and reduce autocorrelation in
the transformed series (for details, refer to SenGupta and Roy 2019, 2023). The Box–Jenkins
data are denoted as data set 1, and the gold price data as data set 2, in the given tables. The
computed estimates of α are shown in Table 3. Note that the values of the estimators α̂ by
these two methods are quite different for each of the probability models. The values of the
estimators are not comparable between the two families of distributions. However, within
each family they determine a specific distribution. For example, an estimate of α close
to 1 indicates a Cauchy (wrapped Cauchy) distribution in the family of stable (wrapped
stable) distributions, while an estimate of α close to 2 indicates a Laplace (wrapped Laplace)
in the family of Linnik (wrapped Linnik) distributions. With real life data sets, the use of
these estimators can lead to quite different, possibly even contradictory, conclusions.

It can be observed from Figures 1 and 2 that the distribution of the log returns of the
Box–Jenkins data is, while that of the gold price data is approximately symmetric with a
certain amount of left skewness, whereas the gold price data are highly skewed in nature
and the Box–Jenkins price data are bimodal. Still, we have used both the gold price and
Box–Jenkins log return data sets as illustrations for our proposed estimators, as well as
to explore their properties. We also note that both the methods of estimation based on
trigonometric moments and characteristic function are not applicable to the two price data
sets, since the underlying assumptions of the model are violated by the data sets.

Figure 1. Histograms of Box–Jenkins price data and their logarithm return data.
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Figure 2. Histograms of gold price data and their logarithm return data.

Table 3. The estimates of α.

Data ˆαttm
WS

ˆαttm
W L

ˆ
α

c f
WS

ˆ
α

c f
W L

1 1.102854 1.941821 1.27487 2.0
2 0.3752206 1.263993 0.4149459 2.0

It can be observed from Table 3 that both the estimators are quite close to each other
for the Box–Jenkins log return data, since they are symmetric in nature. The two estimators
for the log return of the gold price data do not differ for wrapped stable distribution, but
there seems to be an appreciable difference for wrapped Linnik distribution due to their
differences in robustness against the asymmetric nature (e.g., the estimator of the location
parameter by the mean and median give similar values for symmetric distribution but
do not for asymmetric or skewed distribution, due to the difference in the robustness
properties of the estimators). Thus, it is necessary that the assumptions of the symmetry of
and independence in the data sets be verified in order to produce good estimates of the
parameter by our proposed estimators as above.

11. Novel Tests for α Based on Circular Statistics

We are presenting here, to the best of our knowledge, the maiden attempt of testing
for the index parameter of stable and Linnik distributions. Let x1, x2, . . . , xn be realizations
of symmetric stable (µ = 0, σ = 1, α) distribution. The choice of µ = 0 and σ = 1 are
justified, as given in Section 3. When the sample size n is large, we can use the asymptotic
distribution of ˆαttm

WS, as stated in Theorem 5, to perform the test for the null hypothesis
H0 : α = α0. Also, since the data have undergone logarithm ratio transformation, they are
thus scale invariant and hence we can take the scale parameter σ = 1 in the expression
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of the estimator of the variance, V̂( ˆαttm
WS) to perform the test. Thus, the test statistics are

given by
ˆαttm
WS − α0√
V̂( ˆαttm

WS)

−→ N(0, 1)

where ˆαttm
WS denotes the trigonometric truncated moment estimator of α for the data, assum-

ing a stable distribution.
Let x1, x2, . . . , xn be realizations of symmetric Linnik (µ = 0, σ = 1, α) distribution.

When the sample size n is large, we can use the asymptotic distribution of ˆαttm
WL, as stated

in Theorem 6, to perform the test for the null hypothesis H0 : α = α0. Also, since the data
have undergone logarithm ratio transformation, they are thu scale invariant and hence we

can take the scale parameter σ = 1 in the expression of estimator of the variance, V̂( ˆαttm
WL)

to perform the test. Thus, the test statistics are given by

ˆαttm
WL − α0√
V̂( ˆαttm

WL)

−→ N(0, 1)

where ˆαttm
WL denotes the trigonometric truncated moment estimator of α for the data assum-

ing the Linnik distribution. Depending on the alternative hypothesis, the cut-off points of
the tests can be determined from standard normal distribution tables.

A similar test can also be carried out based on a Hill estimator using Lemma 1, but it
is not studied here because the determination of k is complicated.
Example:

Anderson and Arnold (1993) have suggested the Linnik distribution for the financial
data on Box–Jenkins based on their characteristic function-based method of estimation. We
assume that the data come from a member of the Linnik family. In this family, the Linnik
distribution is characterized by α = 2. This has motivated us to rigorously verify their claim
based on the corresponding test H0 : α = 2 against the alternative hypothesis H1 : α < 2. As
per the suggestions of the referee, we perform a test for Laplace (a.k.a. double exponential)
distribution corresponding to α = 2 in the family of Linnik distributions. The test statistics
as defined above are given by

ˆαttm
WL − 2√
V̂( ˆαttm

WL)

The value of the test statistic is obtained as −0.3456217, implying that the null hypoth-
esis of the claim of double exponential distribution is accepted both at the 5%(1.645) and
1%(2.326) levels of significance.

The Laplace distribution has been earlier used on an adhoc basis by Anderson and
Arnold (1993) for the financial data on Box–Jenkins based on results of estimation. We
have established it formally by providing rigorous proof through testing procedure which
supports their findings.

12. Discussions and Conclusions

We have obtained a universal and efficient estimator of α which can be easily imple-
mented in practice. We have studied the various properties of the estimators, pointed
out their drawbacks and also obtained improved estimators eliminating these draw-
backs. We have also compared the efficiency of some estimators, as observed in the
above Tables 1 and 2. We have also introduced a novel method of testing for the index
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parameter of the stable and Linnik distributions. We thus hope that this maiden attempt
will be useful for future analysis.
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