
Citation: Karakostas, Ioannis, and

Konstantinos Pantelidis. 2024. DAO

Dynamics: Treasury and Market Cap

Interaction. Journal of Risk and

Financial Management 17: 179.

https://doi.org/10.3390/

jrfm17050179

Academic Editor: Sisira Colombage

Received: 10 March 2024

Revised: 16 April 2024

Accepted: 22 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

DAO Dynamics: Treasury and Market Cap Interaction
Ioannis Karakostas * and Konstantinos Pantelidis *

Department of Accounting and Finance, School of Business Administration, University of Macedonia,
546 36 Thessaloniki, Greece
* Correspondence: karakostas@uom.edu.gr (I.K.); kpantelidis@uom.edu.gr (K.P.)

Abstract: This study examines the dynamics between treasury and market capitalization in two
Decentralized Autonomous Organization (DAO) projects: OlympusDAO and KlimaDAO. This
research examines the relationship between market capitalization and treasuries in these projects
using vector autoregression (VAR), Granger causality, and Vector Error Correction models (VECM),
incorporating an exogenous variable to account for the comovement of decentralized finance assets.
Additionally, a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is
employed to assess the impact of carbon offset tokens on KlimaDAO’s market capitalization returns’
conditional variance. The findings suggest a connection between market capitalization and treasuries
in the analyzed projects, underscoring the importance of the treasury and carbon offset tokens in
impacting a DAO’s market capitalization and variance. Additionally, the results suggest significant
implications for predictive modeling, highlighting the distinct behaviors observed in OlympusDAO
and KlimaDAO. Investors and policymakers can leverage these results to refine investment strategies
and adjust treasury allocation strategies to align with market trends. Furthermore, this study
addresses the importance of responsible investing, advocating for including sustainable investment
assets alongside a foundational framework for informed investment decisions and future studies
in the field, offering novel insights into decentralized finance dynamics and tokenized assets’ role
within the crypto-asset ecosystem.

Keywords: carbon offset tokens; DeFi; GARCH; VAR; VECM; Granger causality; cointegration;
treasury; DAO

1. Introduction

Effectively managing a community’s assets on the blockchain can be transparent,
mainly when the community oversees its assets and introduces its token. This study
provides evidence of the relationship between the community’s assets and the overall
value of its issued tokens. The findings of this research hold the potential to significantly
augment decision-making processes and strategic planning within the blockchain and
cryptocurrency domain by underscoring the pivotal role played by a DAO’s treasury.
As such, comprehensively evaluating the composition, management, and growth trajectory
of a DAO’s treasury is essential in accurately assessing the viability and potential success
of a DAO project. Moreover, identifying the correlation between a DAO’s treasury and its
market capitalization provides valuable insights for investors, stakeholders, and project
evaluators, enabling them to proceed with informed decisions and effectively allocate
resources in the ever-evolving decentralized finance landscape.

Decentralization, transparency, and security are foundational principles in the blockchain
domain. The evolution of blockchain technology has led to the creation of DAOs, empow-
ering communities to decide on their operations collaboratively. The concept of a DAO
is incorporated in the Ethereum whitepaper (Buterin 2014), where it is mentioned to be a
smart contract that contains the funds and the rules of an organization whose members
have the right to allocate these assets and modify the rules that govern it, allowing for the
automation of certain processes that are defined in the smart contract. A DAO can issue

J. Risk Financial Manag. 2024, 17, 179. https://doi.org/10.3390/jrfm17050179 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm17050179
https://doi.org/10.3390/jrfm17050179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0009-0007-0493-9516
https://orcid.org/0000-0003-0476-1395
https://doi.org/10.3390/jrfm17050179
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm17050179?type=check_update&version=1


J. Risk Financial Manag. 2024, 17, 179 2 of 23

its token and form an ecosystem where each token provides voting rights to its holder,
excluding its marketplace value. Consequently, every holder impacts the DAO’s decision
making through transparent voting processes, aligning with the fundamental tenets of
decentralization in the blockchain.

Decentralized finance (DeFi) is rooted in traditional financial activities on the blockchain,
like lending and trading without intermediaries. With the advent of DeFi 2.0, the field
incorporated the idea of a DAO making decisions regarding a project’s liquidity within the
protocol. An advancement was implemented by OlympusDAO in 2021, and their paradigm
led to the creation of numerous similar projects, where the community of the protocol
owned and decided its treasury and its diversification (Spinoglio 2022). Additionally, token
holders from the DAO possess voting privileges, which play a pivotal role in shaping the
community’s future choices, as observed in the KlimaDAO project (Freni et al. 2022). Finally,
in DeFi projects, the tokenized assets owned by the protocol are held in the “treasury,”
which is in the form of smart contracts, and the use of a treasury’s funds is decided through
a voting process (Bhambhwani 2023). The purpose of the treasury in OlympusDAO is to
support the DAO’s issued token liquidity (Olympus Docs n.d.).

The KlimaDAO project, while related to OlympusDAO as a DeFi 2.0 project, is a
pioneer in the Regenerative Finance (ReFi) sector (Baim 2023) and is referenced as such
by other authors as well (Bordeleau and Casemajor 2023). ReFi is a term connected to
DeFi, as they both use the same tools, but ReFi is focused on services linked to regener-
ative economics (Schletz et al. 2023). KlimaDAO, a project with the goal of combatting
climate change (Oguntegbe et al. 2023), aims to establish a carbon-based cryptocurrency,
participating in the voluntary carbon market using Web3 technology, where Web3 is a
broader concept of the evolution of the internet, where the data is stored and distributed
through a decentralized network, utilizing the transparency, inclusivity, and immutabil-
ity that blockchain technology allows, and the processes can be automated using smart
contracts (Murray et al. 2023). Each KlimaDAO token’s (KLIMA) value is alleged to be
backed by one carbon ton from tokens issued by Moss Earth, Toucan protocol, and C3
protocols, whose tokens are backed by carbon offset credits from carbon registries like Verra
and Gold Standard (KlimaDAO 2022). The treasury of KlimaDAO consists of tokens that
include carbon offset, such as Base Carbon Ton (BCT), and non-carbon offset tokens, such as
stablecoins. However, KlimaDAO token holders benefit from the increase in the KlimaDAO
token price, considering that token ownership is linked to financial rewards derived from
the reserves of the KlimaDAO treasury (Dobrajska 2023), rendering the treasury a vital
aspect of the project.

However, tokenizing carbon credits is a controversial subject that led to the subsequent
announcements by Verra (Verra 2021, 2022, 2023), where it declared no responsibility and
involvement for such activities. Therefore, Verra conducted a multi-week public consul-
tation regarding the approach towards the activities associating tokens with instruments
issued by Verra along with regulatory-associated concerns. Additionally, Babel et al. (2022)
cite KlimaDAO when focusing on the transparency issues of voluntary carbon offsets by
highlighting KlimaDAO as a market facilitating investment in projects targeting carbon
dioxide consumption while integrating blockchain technology aids in tracking these offsets,
thereby mitigating the risk of duplicate spending.

KlimaDAO and OlympusDAO represent significant advancements in decentralized
finance, particularly integrating decentralized autonomous organizations into their opera-
tional frameworks. One fundamental similarity between the two projects is their reliance on
DAO governance models, where community members hold voting privileges to influence
protocol decisions and manage the project’s treasury. Both projects prioritize liquidity
management within their respective ecosystems, leveraging their treasuries to support
token liquidity and ensure ecosystem stability.

However, there are notable differences between KlimaDAO and OlympusDAO re-
garding their primary objectives and focus areas. As a pioneer in the DeFi 2.0 space,
OlympusDAO emphasizes the stability of its native token “OHM”, backed by assets such
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as “DAI”, which is a stablecoin issued by MakerDAO and is backed by collateral (Maker
Team 2017), and wrapped Ether (wETH) (Rossello 2024), and the creation of a robust
reserve currency. In contrast, KlimaDAO distinguishes itself as a pioneer in the emerging
Regenerative Finance field, specifically focusing on leveraging blockchain technology to ad-
dress environmental concerns. KlimaDAO aims to establish a carbon-based cryptocurrency
backed by carbon offset credits, contributing to the voluntary carbon market and promoting
sustainability initiatives. This divergence in objectives reflects the diverse applications and
use cases within the broader DeFi ecosystem, showcasing the versatility and innovation
inherent in decentralized finance projects.

Hence, our study exclusively centers on OlympusDAO and KlimaDAO for several
reasons. Firstly, we aim to compare two projects with similar smart contract characteristics,
given that KlimaDAO is a fork of OlympusDAO. Secondly, we emphasize the significance
of these projects: OlympusDAO as a pioneer in the DeFi 2.0 sector and KlimaDAO as
a pioneer in the ReFi sector, encompassing both DeFi 2.0 and ReFi. Lastly, the growing
number of scholarly articles on OlympusDAO and KlimaDAO indicates ongoing interest
in these projects.

While the significance of the examined projects has been acknowledged in the ex-
isting literature, there remains a gap in understanding the importance of their treasury
management from an econometric perspective. Specifically, there is a lack of studies that
econometrically analyze the relationship between these projects and their treasuries while
considering external factors such as the comovement of similar assets. Furthermore, no
previous research has explored how specific tokens might impact the market capitaliza-
tion of a DAO, initiating an inquiry into the potential influence of carbon offsets within a
diversified portfolio, potentially represented by tokenized carbon credits. This research
aims to bridge these gaps by providing empirical evidence on the interplay between project
significance, treasury management, and token dynamics within DAOs.

The current study examines whether a two-way relationship between the treasuries of
OlympusDAO and KlimaDAO and their market capitalization exists by employing a Vector
Autoregression model with exogenous variables, further cointegration tests, and two Vector
Error Correction models regarding the returns of the market caps of the examined DAOs,
and Granger causality tests. Moreover, it is within the scope of our analysis to ascertain
whether carbon offset tokens can validate the concept of DAO-issued tokens possessing
intrinsic value via tokenized carbon credits, potentially raising regulatory considerations.
Therefore, we aim to evaluate the impact of carbon offset tokens on the conditional variance
within a GARCH model to tackle issues of conditional heteroskedasticity in the time series,
focusing specifically on the case study of KlimaDAO.

The structure of this study is as follows: Section 2 details the literature review, Section 3
explains the methodology, Section 4 presents the results, Section 5 details the discussion,
and Section 6 encapsulates this study’s conclusions.

2. Literature Review

Song et al. (2023), while documenting the mechanism behind OlympusDAO, high-
lighted the importance of the OlympusDAO token, as well as the treasury mechanism of
the project. They explained in detail the staking and bonding mechanisms of the project,
which are the main elements of increasing the treasury that supports the DAO’s token.
The bonding mechanism allows potential investors to buy the OlympusDAO token at a
discount, resulting in the subsequent cash flows being directed to the DAO’s treasury, and
the staking mechanism gives an incentive to the DAO token holders to deposit their tokens
in the treasury and obtain interest, in DAO tokens, for their deposit. Subsequently, the
treasury assets are used to back the DAO’s token, whose price should not fall under one
dollar. When using the treasury funds, the DAO makes such decisions through a voting
mechanism with transparent and secure procedures. Chitra et al. (2022) find the role of the
treasury to be that of an indirect “insurance fund”. The concept of a protocol owning its
liquidity was coined initially by OlympusDAO (Pupyshev et al. 2022). The OlympusDAO
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token is alleged to represent its underlying collateral (Ante et al. 2023); however, Guo
et al. (2024) state that the staking system employed by OlympusDAO encouraged users
to stake their tokens by offering high rewards, but this system led to high inflation that
resulted in the token’s decreasing value. Mislavsky (2024) also refers to the high yields of
OlympusDAO tokens that helped the project initially gain public exposure and market
capitalization, but inevitably, these yields decreased along with its market capitalization.

Jirásek (2023) studied the organizational model of KlimaDAO, inspired by Olympus-
DAO, and characterized KlimaDAO as a notable example among other DAOs. Jirásek
acknowledged KlimaDAO’s commitment to its mission, which led to the acquisition of
around 4% of all voluntary carbon market credits by October 2022. However, Foss and Xu
(2023), while recognizing Jirásek’s contributions, diverge from the author’s conclusions
regarding KlimaDAO’s business model, citing the volatility of KlimaDAO tokens but re-
fraining from analyzing this volatility. He and Puranam (2023) also note that KlimaDAO
presents a unique organizational structure compared to similar entities; however, they no-
tice weaknesses in KlimaDAO’s organizational structure, including founder anonymity and
legal ambiguity, alongside the broader challenges DAOs face. Hence, founder anonymity
does not deter an individual from taking legal action against the alleged founders of a DAO
project, as in the case of OlympusDAO (Ghodoosi 2022).

Sicilia et al. (2022) highlighted the similarities between KlimaDAO and the Olym-
pusDAO protocol, underscoring the depth of inspiration, where both platforms center
around establishing a treasury via bonding and staking mechanisms within a game theo-
retic framework aimed at price stabilization. In particular, staking in KlimaDAO mirrors
OlympusDAO’s strategy, incentivizing long-term token holding to garner compounded
rewards and exposure to carbon price fluctuations. Similarly, bonding in KlimaDAO echoes
OlympusDAO’s approach, enabling discounted token acquisition over a vesting period,
with pricing dynamics responding sensitively to demand fluctuations. Sicilia et al. also
denoted the significance of the KlimaDAO project, exploring the mechanism behind the
carbon offset tokens. Finally, the authors acknowledged the complexity of this mechanism
and suggested that future works could be focused on assessing the impact of the tokenized
carbon offsets in DeFi. Sorensen (2023) added that KlimaDAO aims to stimulate demand
for carbon credits, establishing a “carbon economy”, wherein the currency is backed by
carbon, and the total cost of carbon is integrated into each transaction.

In their endeavor to develop a scale for assessing the readiness of blockchain ap-
plications for carbon markets, Sipthorpe et al. (2022) categorize KlimaDAO as a “fully
competitive” project, the sole DAO project at the highest tier of their scale. Nonetheless,
Sipthorpe et al. recognize the market’s immaturity and the challenges associated with
these endeavors, mainly due to the lack of pertinent regulations that might deter potential
investors from participating in this domain.

Ziegler and Welpe (2022) highlighted the treasury as a crucial attribute of DAOs,
while Metelski and Sobieraj (2022) suggested the potential for further investigation into the
connection between a DeFi project’s treasury and its valuation, leading to a more precise
assessment of a DeFi’s value, taking its treasury assets into account.

Nowak (2022) addressed the issue of carbon credit tokenization and noted its innova-
tive significance for the carbon offset markets; Nowak also cites KlimaDAO and the tokens
it creates in this context. Moreover, Armisen et al. (2024) analyze the disparity in user
behavior between expert and regular users in utilizing carbon offsets within KlimaDAO
based on blockchain data, and they observe differing choices made by these user categories
in selecting carbon offsets.

In brief, our examination of the literature did not uncover any relevant studies con-
cerning the econometric evaluation of either the treasury or the market capitalization of
a DAO and their reciprocal influence on each other, while analyzing the market capital-
ization of the projects could be a better approach instead of analyzing the prices of the
tokens, because of the inflation mechanism. Additionally, while several articles discuss the
importance of KlimaDAO’s organizational structure and economic model, there has been
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little research on how the tokenized carbon credits in its treasury influence the project’s
market capitalization or analyze the volatility of the project’s tokens. Hence, this study
adds to the body of literature by elucidating the interconnections between two significant
DAOs, their respective treasuries, and the potential financial impact of carbon tokens.

3. Methodology
3.1. Data Collection and Filtering

The analyzed period in the daily data is between 27 October 2021 and 16 September
2023. The period analyzed was selected to encompass all variables under examination,
guided by the data available during the study. Given that KlimaDAO was launched later
than OlympusDAO, we aimed for uniformity in the examined variables, necessitating a
period inclusive of all relevant data. The OlympusDAO and KlimaDAO treasury data were
acquired from DefiLlama (n.d.) (accessed on 8 November 2023), and market capitalization
data were sourced from CoinGecko (n.d.). The data regarding the treasuries of the DAOs
are denominated in US dollars (USD). Moreover, we obtained the time series for the “Top
100 DeFi Coins by Market Capitalization” from Coingecko to account for the comovement
of asset prices, representing the aggregate market capitalization of the top 100 DeFi coins,
as determined by Coingecko. The variables that are examined in this analysis are presented
in Table 1.

Table 1. Examined variables.

Variable Meaning

Olympus_MC Natural logarithm of the Market Cap of OlympusDAO
Klima_MC Natural logarithm of the Market Cap of KlimaDAO

Olympus_Tr Natural logarithm of the Treasury of OlympusDAO
Klima_Tr Natural logarithm of the Treasury of KlimaDAO

Defi_MC Natural logarithm of the Market Cap of the Top 100 DeFi Coins by
Market Capitalization by Coingecko

KCT Natural logarithm of the KlimaDAO Carbon Tokens total value
r_Olympus_MC Returns of the Market Cap of OlympusDAO

r_Klima_MC Returns of the Market Cap of KlimaDAO
r_Olympus_Tr Returns of the Treasury of OlympusDAO

r_Klima_Tr Returns of the Treasury of KlimaDAO

r_Defi_MC Returns of the Market Cap of the Top 100 DeFi Coins by Market
Capitalization by Coingecko

r_KCT Returns of the KlimaDAO Carbon Tokens’ total value

The variables chosen for analysis comprise the natural logarithm of the market capital-
izations and treasuries of the projects under examination, along with the market capital-
ization of the leading DeFi coins, serving as a proxy for the comovement of similar assets
and the total value of the KlimaDAO carbon tokens alongside their respective returns. This
transformation was implemented to assess stationarity, present pertinent findings, and
calculate returns where stationarity was not observed, as demonstrated in the subsequent
results. We utilized market capitalization (MC) variables because the token price alone
may not accurately reflect the total project value, as in crypto assets token supply is often
subject to dynamic changes, a characteristic observed in the specific projects under scrutiny.
The OlympusDAO market capitalization variable was selected for its status as a pioneer in
DeFi 2.0, while the KlimaDAO market capitalization was chosen for its prominence in the
ReFi sector. The KlimaDAO carbon tokens (KCT) variable is essential because it represents
the total value of the carbon offset tokens in KlimaDAO.

In the context of our study, the variables are denoted with the suffix “_d” to represent
daily measurements, and the monthly averages from the daily values are denoted with the
suffix “_m” to indicate their monthly aggregation.

The OlympusDAO treasury data encompassed tokens in the DAO’s treasury across
Ethereum, Polygon, Arbitrum, and Fantom blockchains, along with their corresponding
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USD values. Similarly, the KlimaDAO treasury comprised all the tokens under the DAO’s
management. The formula for the treasury is presented in Equation (1).

TreasuryDAO, t =
p

∑
i=1

CAi,t (1)

In Equation (1), the treasury of a DAO consists of the total sum of the crypto assets
(CAs) that are included in the respective treasury smart contracts managed by the DAO at
time t.

Next, to analyze further the effects of the carbon offset treasury in KlimaDAO, we
identify KCT, which consists of the tokens that KlimaDAO explicitly characterizes as
“carbon tokens” (CTs) (KlimaDAO 2022), which are BCT, NCT, MCO2, UBO, NBO, and in
the KCT, we include any liquidity pool token containing these assets, all of which are held
in the KlimaDAO treasury, resulting in Equation (2).

KCTt =
p

∑
i=1

CTi,t (2)

In Equation (2), at the time t, the KCT is the sum of every CT.

3.2. VAR Model

A Vector Autoregressive (VAR) model is used to analyze the interdependence of
system variables. This model assumes that every variable in the system is expressed as a
function of its lags and the lags of all the other variables in the system. By estimating the
parameters of the VAR model, we can gain insights into the dynamic relationships among
the different variables and make predictions about their future values.

Our model incorporates r_Klima_MC_mt, r_Olympus_MC_mt, r_Klima_Tr_mt, and
r_Olympus_Tr_mt as endogenous variables, and r_Defi_MC_mt as an exogenous variable.
The optimal lag length for our model was determined to be one after analyzing the informa-
tion criteria. Based on our best estimation, the VAR(1) model is presented in Equation (3).

Yt = A1Yt−1 + BXt + εt (3)

Let Yt be the vector of endogenous variables at time t, A1 as the matrix containing
the lag coefficients, Yt−1 as the lagged vector of endogenous variables, B as the matrix of
coefficients for the exogenous variables, Xt as the vector of exogenous variables at time t,
and εt as the vector of error terms. According to the above, the model may be written as
Equation (4):

Yt =


r_Klima_MC_mt

r_Olympus_MC_mt
r_Klima_Tr_mt

r_Olympus_Tr_mt


=


a1
a2
a3
a4

+


β1,1 β1,2 β1,3 β1,4
β2,1 β2,2 β2,3 β2,4
β3,1 β3,2 β3,3 β3,4
β4,1 β4,2 β4,3 β4,4

+


r_Klima_MC_mt−1

r_Olympus_MC_mt−1
r_Klima_Tr_mt−1

r_Olympus_Tr_mt−1


+


γ1
γ2
γ3
γ4

r_DeFi_MC_m t +


ε1,t
ε2,t
ε3,t
ε4,t



(4)

3.3. Cointegration Tests and VECM

The Johansen cointegration test (Johansen 1991) has been utilized to investigate a
long-term relationship among the variables in our model. This test aims to determine



J. Risk Financial Manag. 2024, 17, 179 7 of 23

whether cointegrating vectors exist in the spectrum of a Vector Autoregression (VAR)
model. Through this examination, we have determined if a cointegration equation exists,
indicating a long-term relationship between the variables under consideration. The null
hypothesis in this test assumes the absence of a cointegration equation. Therefore, the
Johansen cointegration test results clearly understand the presence or absence of any
underlying relationships between the variables in our model.

Finally, we incorporated a Vector Error Correction model (Engle and Granger 1987)
for r_Olympus_MC and r_Klima_MC to examine the short-run deviations from the long-
run equilibrium. This dynamic adjustment captures the short-term dynamics and helps
understand how the system responds to shocks.

3.4. Granger Causality Test

In order to make accurate predictions using time series data, it is crucial to determine
whether any variables can be used as predictors for one another. Causality plays a critical
role in time series analysis, as it measures the extent to which one variable’s values can be
used to forecast another variable’s values. By understanding causality, we can gain more
insights into future outcomes of a time series based on the values of contiguous time series
over time.

Granger causality, introduced by Granger in 1969, is a statistical technique that uses
Vector Autoregressive Models to determine the direction and strength of causality between
two time series. Although VAR modeling helps identify the relationships and dependencies
among variables, it cannot establish causality. The Granger causality test can be used to
determine whether past values of a variable can provide information about future values
of another variable and, therefore, establish causality.

In order to apply this method, the variables must be stationary or cointegrated. A VAR
model of order p can be defined as follows in Equation (5):

yt = β1,0 +
p
∑

i=1
β1,iyt−i +

p
∑

j=1
β1,p+jxt−i + e1t

xt = β2,0 +
p
∑

i=1
β2,iyt−i +

p
∑

j=1
β2,p+jxt−i + e2t

(5)

For the sake of illustration, we use variables yt and xt. The order of the Vector
Autoregression (VAR) model refers to the number of lags required to validate the hypothesis
that each error term is white noise (Shojaie and Fox 2022). We can say that “yt Granger
causes xt” if the past values of yt are statistically significant. To examine if xt Granger
causes yt, the testing process needs to be repeated in the opposite direction.

In our analysis, we will investigate whether the returns of OlympusDAO and Kli-
maDAO market capitalization and their treasuries Granger cause each other. In order to
address the comovement of asset prices, we used the r_Defi_MC as a proxy.

3.5. GARCH Analysis

Based on our analysis, we have determined that a GARCH(1,1) model is the most
appropriate. The conditional mean equation is a fundamental component in the statistical
modeling of the expected or mean value of a financial time series. The conditional mean is
presented in Equation (6).

r_Klima_MC_dt = µ + φ1r_Klima_MC_dt−1 + ξ1r_De f i_MC_dt+ξ2r_De f i_MC_dt−1 + εt (6)

where µ is the constant, and r_Klima_MC and r_Defi_MC are the logarithmic returns of Kli-
maDAO market cap and the “Top 100 DeFi Coins by Market Capitalization”, respectively, to
address the issues of stationarity, as the variables are I(1) series according to the augmented
Dickey–Fuller (ADF) test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests.

For this analysis, we shall employ the Generalized Autoregressive Conditional Het-
eroskedasticity model, an indispensable tool for comprehending the intricacies of volatility
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in financial markets (Bollerslev 1986). Our primary emphasis will be on the results of the
GARCH analysis, which will furnish us with a granular comprehension of the dynamics of
the conditional variance. The conditional variance equation is a pivotal facet of GARCH
modeling, encapsulating insights into the volatility or dispersion evident in the financial
series. The conditional variance equation of a GARCH(p, q) model, where p stands for
the number of lagged conditional variances, and q denotes the number of lagged squared
residuals, can be expressed as follows in Equation (7).

σ2
t = ω +

p

∑
i=1

aiε
2

t−i +
q

∑
j=1

β jσ
2

t−j (7)

We denote by ω the constant term representing the long-term average level of volatil-
ity, used as a baseline volatility measure in the absence of any shocks, αi stands for the
ARCH coefficients applied to capture the impact of past squared residuals on the current
conditional variance. ε2

t−i are the squared residuals at time t − i, representing the unex-
pected shocks or errors in the model. By βj, we define the GARCH coefficients to capture
the impact of past conditional variances on the current conditional variance. As σ2

t−j, we
define the lagged conditional variances representing the past volatility of the model.

Greater values of αi indicate a more persistent effect of past shocks on volatility. In
comparison, greater values of βj indicate a more persistent effect of past volatility on the
current volatility.

Our findings suggest that we may model the conditional variance using a GARCH
model of the first order for the ARCH effects, the first order for the GARCH, and the first
order for leverage effects, plus the returns of the KlimaDAO Carbon Tokens as r_KCT as
an exogenous variable in the conditional variance equation. The GARCH equation is now
transformed as follows (8):

σ2
t = ω + a1ε2

t−1 + β1σ2
t−1 + ψ1r_KCT_dt (8)

3.6. Utilized Software

“Grammarly 6.8.263” (Grammarly: Free AI Writing Assistance n.d.) was used for
grammar and language correction, while “ChatGPT 3.5” (ChatGPT n.d.) helped in express-
ing the content and refined the English language where necessary. Additionally, “Zotero
6.0.36” (Zotero n.d.) was utilized to index pertinent references for the paper, noted in this
manuscript’s “Acknowledgments” section.

4. Results
4.1. Examined Variables

Table 2 presents the results regarding the stationarity tests and indicates the selection
of the final variables to be examined in the subsequent analysis.

In Table 2, for our analysis, we selected the natural logarithmic values of the examined
variables and their respective returns. We observe that in all cases where the variables are
in their logarithmic form, the KPSS test for stationarity is rejected when testing for trend
stationarity, even if the ADF test null hypothesis for the existence of a unit root is rejected
in two cases. Therefore, to ensure that no unit root exists in our time series, we calculate the
returns of the variables. In the returns of the variables, we observe that the null hypothesis
of a unit root regarding the ADF test is rejected in all cases, and the null hypothesis of
trend stationarity regarding the KPSS test is not rejected in all cases. Subsequently, in our
analysis, we will use the logarithmic returns of the variables. The descriptive statistics of
the examined variables are presented in Table 3.
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Table 2. Stationarity tests.

Variable
ADF KPSS

Statistic p-Value Statistic p-Value

Olympus_MC −3.73 0.00 *** 0.64 0.01 ***
Klima_MC −2.94 0.04 ** 0.69 0.01 ***

Olympus_Tr −2.61 0.09 * 0.15 0.04 **
Klima_Tr 0.15 0.97 0.39 0.01 ***
Defi_MC −1.72 0.42 2.00 0.01 ***

r_Olympus_MC −22.43 0.00 *** 0.11 0.10
r_Klima_MC −11.03 0.00 *** 0.12 0.10

r_Olympus_Tr −12.28 0.00 *** 0.04 0.10
r_Klima_Tr −11.55 0.00 *** 0.08 0.10

KCT_d −2.69 0.08 * 0.68 0.01 ***
r_KCT_d −15.56 0.00 *** 0.08 0.10

r_Defi_MC −25.19 0.00 *** 0.18 0.10
Olympus_MC_m 1.33 0.00 *** 0.16 0.04 **

Klima_MC_m −2.66 0.00 *** 0.17 0.03 **
Olympus_Tr_m −0.79 0.80 0.41 0.05 **

Klima_Tr_m 0.23 0.96 1.87 0.01 ***
Defi_MC_m −1.94 0.31 0.35 0.10

r_Olympus_MC_m −3.64 0.01 *** 0.34 0.10
r_Olympus_Tr_m −5.56 0.00 *** 0.05 0.10
r_Klima_MC_m −3.28 0.03 ** 0.37 0.10
r_Klima_Tr_m 1.13 0.00 *** 0.088 0.10
r_Defi_MC_m −5.16 0.00 *** 0.12 0.10

Note: * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Table 3 shows that all variables’ skewness and kurtosis values indicate asymmetry and
peakedness in their distributions. Subsequently, the Jarque–Bera statistics, with p-values
close to zero, reject the null hypothesis of a normal distribution for each variable. Figure 1
presents the box plots of the examined daily value variables.

Table 3. Descriptive statistics of the examined variables.

Variable
Statistic

Mean Standard
Deviation Range Max Min Median Skewness Kurtosis Jarque–Bera

(JB)
Jarque–Bera

p-Value

r_Klima_MC_d −0.007 0.061 0.713 0.267 −0.447 −0.004 −0.945 11.079 1978.948 0.000
r_KCT_d −0.003 0.054 0.680 0.327 −0.354 −0.233 −0.021 13.338 3072.755 0.000

r_Defi_MC_d −0.002 0.036 0.501 0.121 −0.380 0.001 −2.347 23.369 12,561.000 0.000
r_Olympus_MC_m −0.004 0.010 0.049 0.006 −0.043 0.000 −2.664 10.697 87.623 0.000
r_Olympus_Tr_m −0.001 0.009 0.051 0.018 −0.033 0.000 −1.571 9.524 52.435 0.000
r_Klima_MC_m −0.009 0.017 0.078 0.017 −0.061 −0.006 −1.328 5.247 12.104 0.002
r_Klima_Tr_m −0.003 0.010 0.056 0.031 −0.025 −0.005 1.333 6.696 20.775 0.000
r_Defi_MC_m −0.002 0.007 0.035 0.010 −0.025 −0.001 −1.115 5.454 10.997 0.004

Note: all daily (“_d”) variables have 690 observations, and all monthly (“_m”) variables have 24 observations each.

As depicted in Figure 1, the daily box plot values indicate that the medians are approx-
imately zero, with consistent interquartile ranges and whisker sizes across all instances.
However, a notable difference emerges: for r_Klima_MC_d and r_KCT_d, the number of
outlier values is relatively similar and more abundant compared to r_Defi_MC_d, where
fewer outliers are observed. Figure 2 presents the box plots of the examined monthly
value variables.
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Figure 2. Box plots of the examined monthly value variables.

As depicted in Figure 2, the median values of the variables under examination hover
around zero or slightly negative values close to zero. A comparative analysis of the variables
reveals that r_Klima_MC_m exhibits somewhat longer whiskers than the others, which
maintain similar whisker ranges. The interquartile ranges vary among the variables, with
the upper quartiles of r_Olympus_Tr_m and r_Olympus_MC_m being relatively small.
Regarding outliers, r_Defi_MC_m displays a higher count than the other variables, while
r_Olympus_MC_m exhibits no positive value outliers. The remaining variables show
outlier variation ranging from three to four outliers per analyzed variable, with values
ranging from 0.02 to −0.06.
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4.2. VAR Results

Table 4 presents the results of the VAR estimations and the diagnostics in Appendix A
in Table A1.

Table 4. VAR estimation results.

Variable
Dependent Variable

r_Klima_MC_m r_Olympus_MC_m r_Klima_Tr_m r_Olympus_Tr_m

r_Klima_MC_m(−1)
0.143 0.318 −0.339 0.170

(0.140) (0.094) (0.169) (0.114)
[1.023] [3.382] −[2.004] [1.489]

r_Olympus_MC_m(−1)
0.358 −0.137 0.264 0.041

(0.213) (0.143) (0.258) (0.174)
[1.681] −[0.955] [1.024] [0.234]

r_Klima_Tr_m(−1)
−0.543 −0.605 0.196 −0.814
(0.222) (0.149) (0.269) (0.181)
−[2.449] −[4.055] [0.731] −[4.499]

r_Olympus_Tr_m(−1)
0.383 0.857 0.135 −0.057

(0.209) (0.140) (0.253) (0.170)
[1.837] [6.114] [0.534] −[0.335]

C
−0.003 −0.001 −0.003 −0.002
(0.002) (0.001) (0.002) (0.002)
−[1.353] −[0.977] −[1.270] −[1.392]

r_Defi_MC_m
1.148 0.569 0.562 −0.112

(0.223) (0.150) (0.271) (0.182)
[5.138] [3.789] [2.077] −[0.613]

R2 0.716 0.792 0.363 0.566

Note: standard errors are indicated within parentheses (), while t-statistics are denoted within square brackets [].

According to our findings, the lagged variable r_Klima_MC_mt−1 significantly impacts
r_Olympus_MC_mt and r_Klima_Tr_mt. The lagged variable r_Olympus_MC_mt−1 does
not seem statistically significant at the 5% level. Next, the lagged variable r_Klima_Tr_mt−1
has a significant relationship with r_Klima_MC_mt and r_Olympus_MC_mt, just as with
r_Olympus_Tr_mt. Furthermore, the lagged variable r_Olympus_Tr_mt−1 has a signif-
icant impact on r_Olympus_MC_mt. Finally, the exogenous variable r_Defi_MC_mt is
statistically related to r_Klima_MC_mt, r_Olympus_MC_mt, and r_Klima_Tr_mt.

4.3. Granger Causality Results

In Table 5, we present the Granger causality test results.
As shown in Table 5, there is evidence of Granger causality from r_Klima_Tr_m to

r_Klima_MC_m. Next, there is strong evidence of Granger causality from r_Klima_MC_m,
r_Klima_Tr_m, and r_Olympus_Tr_m to r_Olympus_MC_m, with the null hypothesis
rejected at the 1% level for all cases. Furthermore, the null hypothesis of no Granger
causality from r_Klima_MC_m to r_Klima_Tr_m is rejected at the 5% level. Finally, there is
strong evidence of Granger causality from r_Klima_Tr_m to r_Olympus_Tr_m.
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Table 5. Granger causality results.

Dependent Variable: r_Klima_MC_m

Excluded Variable Chi-square Statistic Degrees of Freedom Prob.

r_Olympus_MC_m 2.825 1 0.093 *
r_Klima_Tr_m 5.996 1 0.014 **

r_Olympus_Tr_m 3.374 1 0.066 *
All 14.983 3 0.002 ***

Dependent Variable: r_Olympus_MC_m

Excluded Variable Chi-square Statistic Degrees of Freedom Prob.

r_Klima_MC_m 11.440 1 0.001 ***
r_Klima_Tr_m 16.440 1 0.000 ***

r_Olympus_Tr_m 37.386 1 0.000 ***
All 49.610 3 0.000 ***

Dependent Variable: r_Klima_Tr_m

Excluded Variable Chi-square Statistic Degrees of Freedom Prob.

r_Klima_MC_m 4.016 1 0.045 **
r_Olympus_MC_m 1.049 1 0.306
r_Olympus_Tr_m 0.286 1 0.593

All 5.211 3 0.157

Dependent Variable: r_Olympus_Tr_m

Excluded Variable Chi-square Statistic Degrees of Freedom Prob.

r_Klima_MC_m 2.218 1 0.136
r_Olympus_MC_m 0.055 1 0.815

r_Klima_Tr_m 20.239 1 0.000 ***
All 21.535 3 0.000 ***

Note: asterisks ***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.

4.4. VECM and Cointegration Results

After applying the Trace and Maximum Likelihood criteria, as shown in Table 6, we
have rejected the null hypothesis, indicating that long-term relationships exist among the
variables in question. These findings mean that any external shocks will not affect the
long-run stability of the model, as the returns will eventually converge over time.

Table 6. Unrestricted Cointegration Rank Test (Trace).

Hypothesized Number of
Cointegrating Equations Eigenvalue Trace

Statistic
0.05 Critical

Value Probability

None 0.951 129.577 47.856 0.000 ***
At most 1 0.756 63.120 29.797 0.000 ***
At most 2 0.661 32.084 15.495 0.000 ***
At most 3 0.315 8.311 3.841 0.004 ***

Note: asterisks “***” denote rejection of the null hypothesis at the 1% level.

Initially, our attention is directed towards establishing the equilibrium state in the
long run, which involves deriving the cointegration equation concerning r_Klima_MC_m,
as shown in Table 7, and the diagnostics of the VECM estimations are in Appendix A in
Table A2.
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Table 7. VECM KlimaDAO MC results.

Cointegrating Equation Cointegrating
Equation (1)

r_Klima_MC_m(−1) 1.000

r_Olympus_MC_m(−1)
−0.066
(0.187)
−[0.354]

r_Klima_Tr_m(−1)
−2.819
(0.208)

−[13.569]

r_Olympus_Tr_m(−1)
−3.459
(0.312)

−[11.098]

C −0.005

Error Correction d(r_Klima_MC_m) d(r_Olympus_MC_m) d(r_Klima_Tr_m) d(r_Olympus_Tr_m)

Cointegrating Equation (1)
0.036 0.174 0.157 0.525

(0.169) (0.091) (0.131) (0.038)
[0.215] [1.920] [1.196] [14.002]

d(r_Klima_MC_m(−1))
−0.247 −0.014 −0.003 −0.029
(0.364) (0.196) (0.283) (0.081)
−[0.678] −[0.069] −[0.011] −[0.356]

d(r_Olympus_MC_m(−1))
0.206 −0.336 −0.007 0.012

(0.246) (0.132) (0.192) (0.055)
[0.837] −[2.540] −[0.038] [0.222]

d(r_Klima_Tr_m(−1))
−0.155 0.102 −0.141 0.484
(0.671) (0.361) (0.522) (0.149)
−[0.230] [0.282] −[0.271] [3.241]

d(r_Olympus_Tr_m(−1))
0.253 0.906 0.286 0.248

(0.288) (0.155) (0.224) (0.064)
[0.877] [5.845] [1.273] [3.862]

C
0.002 0.001 −0.002 −0.001

(0.003) (0.002) (0.002) (0.001)
[0.640] [0.709] −[0.672] −[1.776]

r_Defi_MC_m
1.155 0.385 0.440 −0.420

(0.444) (0.239) (0.346) (0.099)
[2.599] [1.611] [1.273] −[4.247]

R2 0.503 0.800 0.459 0.967

Note: standard errors are indicated within parentheses (), while t-statistics are denoted within square brackets [].

According to the KlimaDAO MC results, the ECT of r_Klima_Tr_m(−1) and r_Olympus
_Tr_m(−1) are statistically significant and have a negative impact on the ECT. This finding
suggests deviations from long-term equilibrium in the Treasury bond returns for both
KlimaDAO and OlympusDAO are corrected in the current period, indicating a tendency
for the returns to converge towards equilibrium.

For KlimaDAO, the significant impact of the error correction term (ECT) on changes in
the Treasury returns suggests a robust mechanism for correcting any short-term deviations
from the long-term equilibrium relationship. This finding implies a stable equilibrium
between MC and Treasury returns, indicating a well-established and potentially predictable
relationship for KlimaDAO. Conversely, the insignificance of the ECT for r_Klima_MC_m
implies a less systematic correction mechanism and potentially a less stable equilibrium.

Next, we examine the cointegration equation concerning r_Olympus_MC_m, as shown
in Table 8.
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Table 8. VECM OlympusDAO MC results.

Cointegrating Equation Cointegrating
Equation (1)

r_Olympus_MC_m(−1) 1.000

r_Klima_MC_m(−1)
−15.159
(1.526)
−[9.932]

r_Klima_Tr_m(−1)
42.730
(3.171)

[13.477]

r_Olympus_Tr_m(−1)
52.431
(3.720)

[14.094]

C 0.078

Error Correction d(r_Olympus_MC_m) d(r_Klima_MC_m) d(r_Klima_Tr_m) d(r_Olympus_Tr_m)

Cointegrating Equation (1)
−0.011 −0.002 −0.010 −0.035
(0.006) (0.011) (0.009) (0.002)
−[1.920] −[0.215] −[1.196] −[14.002]

d(r_Olympus_MC_m(−1))
−0.336 0.206 −0.007 0.012
(0.132) (0.246) (0.192) (0.055)
−[2.540] [0.837] −[0.038] [0.222]

d(r_Klima_MC_m(−1))
−0.014 −0.247 −0.003 −0.029
(0.196) (0.364) (0.283) (0.081)
−[0.069] −[0.678] −[0.011] −[0.356]

d(r_Klima_Tr_m(−1))
0.102 −0.155 −0.141 0.484

(0.361) (0.671) (0.522) (0.149)
[0.282] −[0.230] −[0.271] [3.241]

d(r_Olympus_Tr_m(−1))
0.906 0.253 0.286 0.248

(0.155) (0.288) (0.224) (0.064)
[5.845] [0.877] [1.273] [3.862]

C
0.001 0.002 −0.002 −0.001

(0.002) (0.003) (0.002) (0.001)
[0.709] [0.640] −[0.672] −[1.776]

r_Defi_MC_m
0.385 1.155 0.440 −0.420

(0.239) (0.444) (0.346) (0.099)
[1.611] [2.599] [1.273] −[4.247]

R2 0.800 0.503 0.459 0.967

Note: standard errors are indicated within parentheses (), while t-statistics are denoted within square brackets [].

The cointegrating equation derived for OlympusDAO market cap reveals insight-
ful relationships between the lagged variables, shedding light on long-term dynamics
within decentralized autonomous organizations. However, intriguing patterns emerge
concerning the lagged returns on market capitalization and treasuries for OlympusDAO
and KlimaDAO. Specifically, while a negative relationship is observed in KlimaDAO’s
market capitalization returns, positive associations are evident between OlympusDAO’s
returns and both KlimaDAO and its treasuries. These findings underscore the interconnect-
edness of DAOs’ financial dynamics and hint at potential arbitrage opportunities and risk
management strategies within the decentralized finance landscape.
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The short-run equation for the change in the return on the treasury for OlympusDAO
includes the ECT, represented by −0.035. This coefficient indicates the speed at which
deviations from the long-term equilibrium in the return on treasury for OlympusDAO
are corrected. The negative sign suggests that when the return on treasury deviates from
its equilibrium level, there is a tendency for it to decrease in subsequent periods, thereby
moving closer to the equilibrium. The t-statistic of −14.002 indicates that the coefficient is
highly statistically significant, reinforcing the reliability of this relationship. Overall, this
result highlights the importance of the error correction mechanism in adjusting the return
on the treasury for OlympusDAO toward its long-term equilibrium level.

Examining the VECM results in Tables 7 and 8 uncovers intricate dynamics among
the variables studied. Some coefficients in the cointegrating equation elucidate long-term
relationships, whereas negative coefficients imply inverse connections. These negative
coefficients could mean that we have an inverse long-term relationship between the vari-
ables, where there could be divergent effects or adjustment mechanisms toward equilibrium.
Moreover, the error correction terms illuminate the pace at which adjustments occur toward
equilibrium, with notable values indicating swift corrections of deviations. Additionally,
the significance of the coefficients reinforced by the t-statistics bolstered the reliability of
the findings. In sum, these outcomes thoroughly comprehend the interactions among the
examined variables, aiding informed decision making in economic analysis and forecasting
endeavors. For instance, DAOs may reassess their asset allocation within their treasuries
and adapt their strategies accordingly, given that their treasury plays a crucial role in
supporting the price of their DAO-issued token. Likewise, investors could leverage this
insight to enhance their forecasting accuracy and adjust portfolio allocations, leading to
more effective risk management. This understanding of the interaction among the vari-
ables enables stakeholders to make informed decisions that align with their objectives and
market dynamics.

4.5. GARCH Results

The results of the GARCH estimation parameters are presented in Table 9, and the
diagnostics are presented in Appendix A in Table A3.

Table 9. GARCH results.

Variable Coefficient Std. Error z-Statistic Probability

Conditional Mean Equation

µ −0.003 0.002 −2.021 0.043 **
r_Klima_MC _d(−1) 0.157 0.042 3.740 0.000 ***

r_Defi_MC_d 0.260 0.043 6.080 0.000 ***
r_Defi_MC_d(−1) 0.095 0.036 2.647 0.008 ***

Conditional Variance Equation

ω <0.001 <0.001 10.361 0.000 ***
α1 0.117 0.013 8.680 0.000 ***
β1 0.849 0.010 81.707 0.000 ***

r_KCT_d −0.001 <0.001 −6.275 0.000 ***
Note: ** p < 0.05. *** p < 0.01.

The negative coefficient associated with the intercept mu is of particular interest as it
implies an inherent downward bias that influences the mean return, indicating a significant
systemic negative effect on the variable’s mean.

On the other hand, the positive coefficients associated with the lagged values of
r_Klima_MC, r_Defi_MC, and r_Defi_MC at time t − 1 indicate a positive relationship with
the rt. The coefficient of r_Defi_MC deserves special attention, as it significantly impacts
the average value of the financial series. As a result, it is essential to identify the underlying
trends present in the market (Glosten et al. 1993). Additionally, the observed significance
of variable r_KCT in the conditional variance equation underscores its influential role in
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shaping asset return volatility, underscoring its importance in risk management and asset
pricing analyses.

Bollerslev’s 1986 study noted that the GARCH model is crucial for analyzing financial
data as it captures the time-varying nature of volatility. The baseline volatility is represented
by the constant term in the variance equation, with a low value of omega indicating a
relatively stable market environment. Engle’s (1982) research also supports this finding,
as it shows that a low value of omega indicates a period of low volatility. The ARCH
coefficient indicates that past unexpected shocks contribute to the current volatility, with
periods of higher volatility tending to occur together. Glosten et al.’s (1993) study also
supports this finding, showing that volatility clusters together.

The GARCH model highlights the persistence of past volatility, implying the presence
of long-term volatility patterns. Nelson (1991)’s study suggests that the GARCH model
provides a more accurate representation of the volatility process than traditional models.
The negative coefficient for alpha in the variance equation indicates the dampening effect
on volatility, which could be interpreted as a stabilizing factor in the market. Poon and
Granger’s (2003) study supports this finding, showing that the GARCH model can capture
the effects of news announcements on volatility. The coefficients’ relevance, highlighted by
their significantly low p-values, emphasizes the GARCH model’s effectiveness in capturing
the complex dynamics inherent in the cryptocurrency market.

In Figure 3, we notice significant volatility fluctuations depicted by the conditional
variance, particularly during the initial months of the time series. These early months
exhibit exceptionally high values compared to the subsequent periods, indicating height-
ened volatility during this initial phase. However, there is a discernible pattern wherein
the conditional variance experiences a sudden and significant drop following this initial
period. Subsequently, the conditional variance stabilizes, remaining nearly constant with
some sudden fluctuations for the remainder of the observed period. This pattern suggests
a period of heightened uncertainty or volatility during the initial phase, possibly driven
by specific market events or external factors, such as the sudden crash in December 2021,
where approximately USD 300 billion reduced the crypto asset market in two days fol-
lowing an announcement by the United States Federal Reserve Bank (Azimli 2024). The
subsequent decrease in conditional variance could indicate a period of relative stability or
adjustment within the system, leading to reduced volatility levels. The sustained stability
of conditional variance in the subsequent months implies a consistent level of volatility,
highlighting the importance of understanding and monitoring the underlying factors driv-
ing these fluctuations over time. This uncertainty is evident for this period, where the total
crypto asset market from a total market capitalization of approximately USD 3 trillion in
early November 2021 fell to approximately USD 1.8 billion at the end of January 2022 and
subsequently to about USD 900 billion by the end of June 2022 and remained at approxi-
mately these levels up to the late September 2023, according to data from Coingecko. A
similar pattern is evident in the variable regarding the “Top 100 DeFi Coins” by Coingecko,
which we used as a proxy for the comovement of similar assets, where in early November
2021, the variable had a value of approximately USD 160 billion, and at the end of January
2022, a value of approximately USD 105 billion and from the end of June 2022 up to the
end of September 2023, the values range from USD 36 to 45 billion.

Possible explanations for the significant volatility fluctuations in the initial months
could be spillover from the general crypto market, as in the fourth quarter of 2021 because
of the effect of COVID-19 and the first and second quarter of 2022 because of the Russo-
Ukrainian war, as documented by Poddar et al. (2023) in their research, which finds
connectedness in the cryptocurrency returns for these periods.
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5. Discussion

The results of the VAR model, Granger causality, and VECM analyses provide the
policymakers, who in this context are the community that governs the protocols of the
examined DAOs, with valuable insights into the dynamic interplay between OlympusDAO
and KlimaDAO, facilitating informed decision making. The decision-making process might
involve presenting a new proposal in the governance forums of the DAOs, which could
entail altering the allocation of their treasury or adjusting parameters such as the rebasing
frequency or token staking yield rates. The VAR model reveals the short-term dependencies
and interactions between the variables of interest, such as the treasury balances and the
token prices, and other relevant factors, such as the “Top 100 DeFi Coins by Market
Capitalization” index.

Granger causality analysis identifies the direction and significance of causal rela-
tionships between the variables, aiding policymakers in understanding which DAO may
influence the other and to what extent. The outcomes of the Granger causality tests, as
depicted in the results section, elucidate compelling relationships within our study. The
significant causal connection between the returns of OlympusDAO MC, the returns of
KlimaDAO MC, and the returns of their treasuries suggests that these factors may hold
predictive value for their future returns.

Additionally, the VECM model captures the long-term equilibrium relationships
between OlympusDAO and KlimaDAO, helping policymakers anticipate how changes in
one DAO’s treasury or token values may affect the other over time. By considering these
results collectively, policymakers can devise strategies to better manage funds related to
OlympusDAO and KlimaDAO and optimize their resource allocation.

Furthermore, after examining the KlimaDAO treasury, we observe that the returns of
KCT may also affect the KlimaDAO conditional variance. For policymakers, identifying
KCT as statistically significant in the conditional variance equation offers valuable insights
into the determinants of volatility within the system under consideration. Understanding
the factors driving volatility is crucial for designing effective policy interventions to promote
stability and mitigate risks regarding managing a portfolio containing KlimaDAO tokens.

While this study provides valuable insights into the interaction between market
capitalization and treasuries within specific DAO projects, namely OlympusDAO and
KlimaDAO, several limitations warrant consideration. Firstly, the scope of the research is
confined to these particular projects, potentially limiting the generalizability of findings to
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other DeFi contexts or similar DAO projects because of differences in their economic model,
the underlying assets in their treasury, and the utility of the DAO-issued tokens. Secondly,
while Granger causality tests offer insights into potential causal relationships, they do
not establish causality definitively, making alternative interpretations possible. Moreover,
the sample size of both the daily and monthly data may not fully represent the overall
behavior of the treasury and the interaction between the two projects under examination,
given that it spans approximately two years. Furthermore, the econometric models could
also be extended to include more complexities inherent in market dynamics by including
additional essential factors influencing the relationships studied, such as events regarding
regulatory concerns or market conditions, trading volume from both decentralized and
centralized exchanges, user interaction and sentiment analysis, staking rewards, and
token supply dynamics. Finally, this study’s acknowledgment of regulatory uncertainties
underscores the need for further investigation into the evolving regulatory landscape and
its implications for tokenized assets within DAO treasuries. Addressing these limitations in
future research endeavors will be crucial to advancing our understanding of decentralized
finance dynamics and enhancing the applicability of findings to real-world contexts.

6. Conclusions

This study explored the interaction between market capitalization and treasuries in two
popular DAO projects, OlympusDAO and KlimaDAO. Furthermore, we explored the effect
of the returns of KlimaDAO treasury carbon tokens on KlimaDAO market capitalization
returns’ conditional volatility.

The results could contribute to the predictive modeling toolkit, emphasizing the
utility of the returns of OlympusDAO MC and shedding light on the distinct behaviors
of OlympusDAO and KlimaDAO. The discoveries could offer investors valuable insights,
aiding them in identifying additional variables like the DAO treasury and carbon token
offsets to better understand the dynamics of the two DAOs and make more informed
investment decisions. Policymakers, potentially the governing bodies of the DAOs, could
adjust their treasury allocation strategies and the parameters of the DAO smart contracts
to align with current market trends. Additionally, policymakers, which could be market
regulators, may recognize the influence of carbon tokens on DAO market capitalization,
providing further support for the efficacy of this new technology in tokenizing carbon
offsets, which could lead to the expansion and organization of carbon offset markets on
the blockchain. Researchers can now emphasize the significance of DAO treasuries and
the impact of carbon offset tokens, thereby extending research into the importance of other
DAO treasuries and potentially tokenized assets.

This study could be a headstart to support whether questionable tokenized assets
could be considered to have value or some other form of financial impact. It also provides
more evidence that if a token is backed by assets in a DAO treasury, these assets could
influence the token’s value dynamics, enabling the potential managers of such assets to
make better investment decisions. This study’s contribution lies in examining the intricate
interplay between market capitalization and treasuries within prominent DAO projects,
such as OlympusDAO and KlimaDAO, along with the potential influence of treasury-held
carbon tokens on market capitalization returns. By elucidating these dynamics, the research
augments the existing literature by providing insight into the behavioral patterns between
DAOs and sheds light on tokenized asset valuation mechanisms.

One significant innovation of this research lies in its investigation of the influence
of environmental factors and the necessity to comprehend the functioning of market
dynamics that incorporate these variables. Furthermore, our study delves into sustainability
concerns within the crypto asset ecosystem and explores the convergence of environmental
preservation and blockchain technology, offering potential avenues for advancing eco-
friendly advancements within the digital asset realm.

These findings enrich our understanding of decentralized finance dynamics, offering
practical implications for investors, policymakers, and researchers. An implication is
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that the DAOs are related to the DeFi market cap index examined in this study. Another
implication is that this study could be used as a benchmark to create an investment strategy
in the future when including the examined variables of this study. Finally, this study
underscores the significance of responsible investing, demonstrating its efficacy not only in
advancing environmental and social welfare goals but also as a robust investment strategy,
suggesting the potential for expanding the scope of sustainable investment assets or indices,
which not only prioritize social welfare but also offer profitable returns for investors.

Furthermore, this research explored the importance of a DAO’s treasury and identified
a potential link between the returns from the carbon offset tokens stored in the treasury,
which may contribute to the market capitalization returns volatility of the DAO when em-
ployed as collateral for its token, even in the presence of regulatory uncertainties, providing
a foundational framework for informed investment decisions and future research endeav-
ors within the field. While prior studies have illuminated these projects’ organizational
and innovative frameworks, this is the first study to undertake an econometric evaluation
as a pioneering effort to offer such invaluable insight.

Future studies could focus on further evaluating the significance of the treasury in
DeFi projects, emphasizing its role in assessing the overall value of a DeFi project. Finally,
there is an opportunity for scholarly inquiry to extend into appraising the relevance of
alternative tokenized assets within this framework.
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Appendix A. Diagnostic Tests

Table A1 displays the diagnostic findings concerning the estimated VAR model. No
instances of autocorrelation, heteroskedasticity, or normality issues are detected in the
estimated model. The lag length selection criteria display the Likelihood Ratio (LR) test, the
Akaike Information Criterion, and the Schwarz Criterion. The test shows that the optimal
lag length is equal to one.

In Table A2, a joint test is employed to evaluate the presence of residual heteroskedas-
ticity in the model. The statistical analysis revealed a high p-value of 0.646, indicating a
lack of significant evidence to reject the null hypothesis of no residual heteroskedasticity in
the model. Thus, the model does not exhibit noticeable heteroskedasticity at the joint level,
implying that the model’s assumptions are met.

We performed a normality test on the VEC model and observed that the p-values for
skewness, kurtosis, and Jarque–Bera tests were mostly elevated across most components.
This finding implies that the residuals in each component are more likely to conform to a
multivariate normal distribution. The joint tests also lacked substantial evidence against
the null hypothesis of normality for the combined residuals. These outcomes suggest that
the residuals of the VEC model do not significantly veer from multivariate normality.

https://defillama.com/
https://www.coingecko.com/
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Table A1. VAR diagnostics.

Residual Serial Correlation LM TEST

Lag LRE Stat d.o.f. Prob.

1 21.982 16 0.144
2 13.678 16 0.623

VAR Residual Heteroskedasticity

Joint test

Chi-square d.o.f. Prob.

107.069 100 0.296

VAR Residual Normality Tests

Component Jarque–Bera d.o.f. Prob.

1 0.025 2 0.988
2 0.666 2 0.717
3 1.325 2 0.516
4 3.090 2 0.213

Joint 5.106 8 0.746

Lag Length Selection Criteria

Lag LR AIC SC

0 NA −28.49 −28.09
1 50.37 * −30.32 −29.13 *
2 23.63 −30.94 −28.95
3 12.58 −31.22 * −28.43

Note: The asterisk (*) indicates the optimal model length based on lag selection criteria.

Table A2. VEC diagnostics.

Residual Serial Correlation LM TEST

Lag LRE Stat d.o.f. Prob.

1 19.132 16 0.262
2 14.149 16 0.588

VAR Residual Heteroskedasticity

Joint test

Chi-square d.o.f. Prob.

113.647 120 0.646

VAR Residual Normality Tests—KlimaDAO

Component Jarque–Bera d.o.f. Prob.

1 1.059 2 0.589
2 6.888 2 0.032
3 1.424 2 0.491
4 1.055 2 0.590

Joint 10.425 8 0.236

VAR Residual Normality Tests—OlympusDAO

Component Jarque–Bera d.o.f. Prob.

1 0.107 2 0.948
2 1.266 2 0.531
3 1.424 2 0.491
4 1.055 2 0.590

Joint 3.851 8 0.870
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We also conducted LM tests to check for any serial correlations in the residuals of
the VEC model. The results of the tests indicate that there is no substantial evidence to
reject the null hypothesis of no residual autocorrelations or serial correlation within the
specified lags. The p-values obtained from the tests are relatively high, which suggests that
any autocorrelations or serial correlations that may exist are not statistically significant.

Table A3 illustrates the diagnostic test outcomes for the estimated GARCH model.
The results indicate the absence of autocorrelation and heteroskedasticity issues in the
residuals. Moreover, no ARCH effects were identified. The Sign-bias test revealed no
statistically significant values, and the Nyblom parameter test detected no coefficient
instability problems.

Table A3. GARCH diagnostics.

Correlogram of Standardized Residuals Engle-Ng Sign-Bias Test

Number of Lag AC PAC Q-Stat Prob. t-Statistic Prob.

1 0.024 0.024 0.406 0.524 Sign Bias 0.047 0.963
2 −0.019 −0.020 0.665 0.717 Negative Bias −1.488 0.137
3 0.037 0.038 1.619 0.655 Positive Bias 0.185 0.853
4 0.025 0.023 2.045 0.728 Joint Bias 2.754 0.432

5 0.031 0.031 2.699 0.746 Heteroskedasticity Test: ARCH

Correlogram of Standardized Residuals Squared Obs*R-squared 3.136

Number of lag AC PAC Q-stat Prob. Prob. Chi-Square(1) 0.077

1 0.068 0.068 3.154 0.076 Heteroskedasticity Test: White
2 −0.029 −0.034 3.745 0.154 Obs*R-squared 8.172
3 −0.026 −0.021 4.204 0.240 Prob. Chi-Square(9) 0.517

4 −0.022 −0.020 4.553 0.336
5 0.005 0.006 4.568 0.471

Nyblom Parameter Stability Test

Variable Statistic 1% Crit. 5% Crit. 10% Crit.

Joint 1.325 2.590 2.110 1.890
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