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ABSTRACT  We explore optimal hedge ratios and hedging effectiveness for the German electricity 

market. Given the increasing attention that wavelets received in the financial market, we concentrate on the 

investigation of the relationship, covariance/coherence evolution and hedge ratio analysis, on a 

time-frequency-scale approach (discrete and continuous), between electricity spot and futures. Simpler 

approaches are also used for comparison purposes like the naïve, OLS and the dynamic multivariate 

GARCH model in order to account for risk reduction through hedging. 

 Results allow us to conclude that: dynamic hedging strategies provide higher variance reductions in 

terms of hedging effectiveness; there is poor correlation among spot and futures, not being homogeneous 

across scales, which condition the effectiveness of the hedging strategy; the long-horizon hedge ratio does 

not converge to its long run equilibrium of one. Wavelets poor fit in variance reduction is attributed to low 

coherence and to statistical relationships between spot and futures electricity series. 

 The instability found in various aspects of market comovements may imply serious limitations to 

the investor’s ability to exploit potential benefits from hedging with futures contracts in electricity markets. 

Moreover, much variation in the contemporaneous relationship among spot and futures may highlight 

inadequacy in assuming (short-term) relationships in both markets, which might account for the difficulty 

in achieving profitable active trading.  
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1. INTRODUCTION 

 

Electricity markets are of considerable interest and challenging in terms of modeling and hedging 

due to non-storability, strong seasonal fluctuations, price spikes and their highly volatile price 

behavior (Huisman, Huurman and Mahieu, 2007)1. Hedgers in these markets use futures to reduce 

the risk from variations in the spot market (Torró, 2009; Zanotti, Gabbi and Geranio, 2010). Since 

futures are a derivative security from the spot market, it should be safe to say that both are subject 

to the same impacts from market fundamentals, and that both series should be highly 

co-integrated. 

 We investigate the relationship between spot and futures contracts in the German 

electricity market, EEX (European Electricity Exchange), in terms of covariance and coherence, 

while analyzing hedge ratios at various time scales resorting to wavelet analysis. Wavelets are 

used here in both discrete and continuous versions to examine the data at different time locations 

and resolution levels, while comparing reconstructed price series based on different levels of 

information detail. The ability to decompose financial data at several time-scales is the wavelets’ 

main advantage. 

 Early studies assume a constant hedge ratio through time simply estimating it by using 

OLS or a naïve strategy. However, given the time varying nature of covariance in many financial 

markets (Lee, 1999), this constancy assumption appears inappropriate (Lee and Leuthold, 1983). 

Afterwards, improvements appeared (Wang and Low, 2003) in the adoption of bivariate GARCH 

frameworks, introducing dynamics to the analysis.  

Traders make singular decisions at different time scales and the dynamic relationship 

structure of spot and futures will itself vary at different time scales associated with those different 

investment horizons. In fact, the dynamics of commodity markets have always been influenced by 

the interactions of traders with different time horizons, which react to the arrival of new 

information in a heterogeneous manner. Results attained here should be of interest to local intraday 

traders, hedge managers, international investors, as well as monetary and regulatory authorities, all 

of whom operate on very different time scales. Wavelets enable us to conclude if scales are 

important contributors to the overall variability of a series, and lead us to explore the hypothesis 

                                                           
1 The authors provide an overview on (hourly specific) day-ahead price characteristics. 
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that decomposing both price series and hedge ratio into various time scales will be helpful2.  

Our empirical results show a weak feedback relationship between electricity spot and 

futures markets regardless of time scales. While wavelet variance shows that the futures markets 

are less volatile than the spot market, wavelet correlation varies over investment horizons and 

remains very low. The magnitude of the correlation decreases as the wavelet time scale increases, 

indicating that spot and futures markets are found to be fundamentally different and their relation 

not homogeneous across scales. The economic interpretation may be that the arrival of information 

in the market does not resolve price uncertainty in electricity markets. More uncertainty is added, 

and over a longer amount of time the basis risk increases (Dewally and Marriott, 2008). As such, 

the noise in the market does not tend to be canceled over time.  

We also found higher comovement of spot and futures series at lower frequencies (high 

scales). As such, heterogeneous trading needs to be considered in the analysis of spot and futures 

price data in electricity markets and different hedging strategies also need to take into account this 

different scale behavior. Given our findings, if long-run adjustments were taken out, short-run 

movements would be little correlated. As such, only with a considerable time span spillovers are 

transmitted between markets. 

 Attained results show that dynamic hedging strategies provide higher variance reductions 

in terms of hedging effectiveness, as compared to those attained by static ones, given the poor 

correlation between spot and futures prices in electricity markets, and a very different volatile 

behavior. In sum, low correlation between spot and futures prices conditions the effectiveness of 

the hedging strategy. As such, even if with poor gains in terms of hedging effectiveness, the 

MGARCH hedging strategy shows to be the most reliable among the others in terms of hedging 

effectiveness, at least for the German electricity market considered here, even better than using 

wavelet analysis. As such, similar to Maharaj et al. (2008), we may say that econometric 

sophistication does not boost hedging effectiveness for electricity markets. These results offer 

additional insights and allow us to understand the properties and characteristics that shape 

effectiveness of electricity futures, valuable for electricity hedgers. 

The time variation pattern documented in this study may carry some important 

implications for hedging. On one hand, the instability found in market comovements may imply 

                                                           
2 Given previous empirical findings favoring the use of wavelets (In and Kim, 2006a, 2006b), we are interested to 

know if decomposing electricity series into different time scales provides additional hedging gains, which is not 

confirmed by the empirical findings presented here. 
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serious limitations to the investor's ability to exploit potential benefits from hedging with futures 

contracts in electricity markets. On the other hand, much variation in the contemporaneous 

relationships among spot and futures base prices may also highlight inadequacy in assuming 

relationships in both markets, at least for the short-run, which might account for the difficulty in 

achieving profitable active trading. 

The paper develops as follows. Section 2 presents previous theory and evidence about the 

studied relationship between spot and futures prices and hedge effectiveness. In section 3 the 

hedge ratio and its effectiveness are discussed. Section 4 presents the research methods employed 

in the empirical part of the work (other than the OLS and naïve hedge ratios): discrete and 

continuous wavelet analysis and the multivariate GARCH BEKK model. In section 5 the relevant 

data and empirical findings are presented, while section 6 concludes this work. 

  

2. THEORY AND EVIDENCE  

 

Spot electricity markets deal with immediate delivery, while futures trade is based on delivery at 

some future point in time. Market conditions (continuous demand and supply balance, for 

example) alongside a series of other factors (seasonality and outages, among others) are often 

blamed for causing inherent uncertainties in electricity markets. Future (and forward) markets are 

devised to provide hedging mechanisms to deal with these uncertainties. In a way, futures reflect 

market’s expectations about future market conditions and therefore the gap between spot and 

future prices is often used as a signal for describing the general market condition. 

 When we are in the presence of a non-storable commodity such as electricity, futures 

contract valuation and its use for risk management purposes are even more difficult. 

Cash-and-carry arbitrage lacking ends up creating a looser relationship between spot and futures 

prices, especially when futures maturity increases (Torró, 2009). On the other hand, electricity 

spot price behavior is characterized in a special way in the literature (jumps, high volatility, 

mean-reversion, seasonalities, positive skewness, as well as heteroskedasticity; see Huisman, 

Huurman and Mahieu, 2007, for example). These effects combined end up producing a lower than 

usual correlation between spot and futures prices, and might produce a poor performance when 

hedging spot price risk using futures contracts (Byström, 2003; Moulton, 2005; Torró, 2009). 

 Conclusions from existent studies measuring the efficiency of futures markets vary 

considerably. Reviewed literature shows no uniformity regarding results provided by the 
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accessible measuring methods, while the selected method can slightly bias the results (Zanotti, 

Gabbi and Geranio, 2010). More advanced models tend to confirm market efficiency but older 

ones may be prone to reject it. In general, it seems that commodity, energy and even power 

markets are not especially efficient (STEM, 2006). Avsar and Goss (2001) study market efficiency 

for the PJM and the California Power Markets and cannot reject the efficient market hypothesis for 

the period July 1998 – March 1999, although they cannot accept it for the whole data period. For 

the same PJM electricity market, Longstaff and Wang (2004) perform an empirical analysis with 

hourly data on spot and day-ahead forward prices. They find that forward risk premia vary 

systematically through the day and are related to agent’s measures of economic risk like volatility 

of unexpected changes in demand, spot prices and total revenues. 

 Although it seems logical to assume that there are several time periods in decision making, 

economic and financial analysis have been restricted to at most two time scales (the short and the 

long run), due to the lack of analytical tools to decompose data into more than two time scales 

(Kim and In, 2005). Bierbrauer et al. (2007) use spot and futures price data from the German EEX 

power market to test the adequacy of various one and two-factor models for electricity spot prices. 

For short and medium term periods their results underpin the frequently stated hypothesis that 

electricity futures quotes are consistently greater than the expected future spot, a situation denoted 

as Contango. Worthington and Higgs (2004) found significant innovation and volatility spillovers 

between futures and spot market indices for Australian electricity regions, confirming the presence 

of strong ARCH and GARCH effects. Also, Shawky, Marathe and Barret (2003) investigate the 

statistical properties of wholesale electricity spot and futures prices traded on the New York 

Mercantile Exchange (NYMEX) for delivery at the California-Oregon Border. By using daily data 

they find that many of the characteristics of the electricity market can be viewed to be broadly 

consistent with efficient markets using a GARCH specification to estimate minimum variance 

hedge ratios. 

 Without resorting to wavelets, several have been the attempts to model the hedge ratio in 

the literature of commodities. Moschini and Myers (2002) assumed that the investor takes out 

futures positions and holds the position for a week. At the end of the week, the investor reevaluates 

the futures position and chooses a new hedge ratio for the following week. Hence, the hedge ratio 

must be adjusted every week to reflect time varying volatility. They reject the null of a constant 

hedge ratio and that time variation in optimal hedge ratio can solely be explained by deterministic 

seasonality and time to maturity effects, using weekly corn cash and futures prices, developing 
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modified BEKK parameterization for the Bivariate GARCH (q,r) model. Ripple and Moosa 

(2007) examine the effect of the maturity of the futures contract used as the hedging instrument on 

the effectiveness of futures hedging, using daily and monthly data on the WTI crude oil futures and 

spot prices (NYMEX). They use as measures of hedging effectiveness the near-month contract and 

the six-month contract, to conclude that futures’ hedging is more effective when the near month 

contract is used, and that hedge ratios are lower for near-month hedging. Dewally and Marriott 

(2008) adopt a sample reduction technique to analyze short and long run hedging in base metal 

markets finding that the short run hedge ratio and hedging effectiveness increase with the hedging 

horizon and that the long term horizon limit to the optimal hedging ratio is not converging to one 

but is slightly higher. 

 Although the appropriate way to calculate hedge ratios remains a controversial issue in the 

literature, the major methodologies for hedging with futures contracts have been OLS, VAR, 

VECM and multivariate GARCH (MGARCH) (Moschini and Myers, 2002; Moulton, 2005; 

Torró, 2009; Huisman, Mahieu and Schlichter, 2009; among others). 

 Regarding European Power Markets, the largest number of studies exist for Nord Pool, the 

most developed power market in Europe since its foundation in 1993 (Byström, 2003). Byström 

concludes that traditional simple price hedging models are almost equally efficient as the most 

advanced ones. Therefore, hedging at Nord Pool (or whatever power futures markets) does not 

request more advanced models than other financial markets though underlying product features 

differ noticeably from other financial or commodities products. Torró (2009) obtained an 

acceptable performance by increasing hedging duration and closing futures positions as near as 

possible to their final settlement, using weekly futures contracts and weekly spot prices (the 

average spot price for the 7 days in the week) for the period from 1998 to 2007 in the Scandinavian 

(Nord Pool) electricity market. In Moulton (2005), the underlying spot to the Californian futures 

was the average of peak hour’s spot prices in a month. On the other hand, Byström (2003) uses 

weekly spot price risk, hedged with weekly futures using only one-week hedges duration for the 

NordPool market. The intention was to study the short term hedging performance (one-week 

holding period), and since short-term future contracts are more liquid as well as more correlated 

with the underlying spot prices than the longer term contracts, futures with three weeks left to 

maturity are chosen for the hedging investigations. Zanotti, Gabbi and Geranio (2010) estimate 

optimal hedge ratios through OLS, naïve and multivariate GARCH models for the German, French 

and Scandinavian electricity markets to conclude that the choice of the hedge ratio estimation 
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model is crucial on determining hedging effectiveness, using monthly contracts. 

Connor and Rossiter (2005) point out that, in the context of commodity markets, 

long-horizon traders will essentially focus on price fundamentals that drive overall trends, whereas 

short-term traders will primarily react to incoming information within a short-term horizon. 

Hence, market dynamics in the aggregate will be the result of the interaction of agents with 

heterogeneous time horizons. Most of the empirical studies ignore the dependence of the optimal 

hedge ratio on the hedging horizon even though individuals and institutions, which use futures 

contracts for hedging purposes, do not have the same hedging horizon (Lien and Shrestha, 2007). 

 The present work differs from previous ones about hedging in electricity markets since we 

examine the relationship between spot and futures electricity markets over various time horizons 

using a recent empirical technique, wavelet analysis, thus employing a different testing 

methodology compared with previous studies that investigate spot and futures electricity markets 

relationships.  

Applying continuous wavelet analysis to examine these factors has at least three salient 

features. First, the main advantage of using wavelet analysis is the ability to decompose the data 

into several time scales (investment horizons). Owing to the different decision making time scales 

among traders, the true dynamic structure of the relationship between the spot and futures 

electricity markets itself will vary over different time scales associated with those different 

horizons. Although it has been recognized that there are several time periods in decision making, 

most of the financial analyses have been restricted to at most two time scales: the short and the 

long run. Second, wavelet covariance decomposes the covariance/correlation between two 

stochastic processes over different time scales which allows us to examine it. Third, cross-wavelet 

coherency-phase analysis allows analyzing transient dynamics for the association between two 

time series. Wavelet analysis provides a way to investigate the relationship between spot and 

futures returns, as well as the estimation of the hedge ratio on a time scale-by-scale basis. This 

allows the estimation of the hedge ratios for different hedging horizons, while by using the wavelet 

coherence we are able to analyze the existent patterns between spot and futures prices at different 

time scales. Moreover, wavelet analysis does not suffer from the sample reduction problem faced 

by Chen, Lee and Shrestha (2004) and later recognized by Lien and Shrestha (2007), when 

matching the data frequency to the hedging horizon. 

 While becoming popular, Wavelet analysis has been used to study a number of issues like 

the relation between stock returns and economic activity (Gallegati, 2008), the relation between 
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financial variables and real economic activity (Kim and In, 2005), the relation between stock and 

futures returns for several markets (In and Kim, 2006a, 2006b), the study of the CAPM model 

(Aktan et al., 2009); and the relation between economic variables in the macro economy and the 

effects of monetary policy (Conraria, Azevedo and Soares, 2008). Studies using wavelet analysis 

that were applied to stock and future returns tend to favor the use of wavelet analysis, like those of 

In and Kim (2006a, 2006b), and Aktan et al. (2009). However, Maharaj et al. (2008), using 

wavelet analysis applied to hedge ratios, show that on the basis of the variance ratio test and 

variance reduction, econometric sophistication does not boost hedging effectiveness. Their study 

was performed using data from crude oil, soybeans and the S&P500 index.  

  A few studies that consider the effect of the length of the hedging horizon on the optimal 

hedge ratio include those by Ederington (1979), Malliaris and Urrutia (1991), Geppert (1995) and 

Lien and Tse (2000, 2002). These studies find that within-sample hedging effectiveness tends to 

increase as the investment horizon increases. However, all these studies, except Geppert (1995), 

consider only two to three different hedging horizons. By opposition, Chen, Lee and Shrestha 

(2004), In and Kim (2006, 2006a), Fernandez and Lucey (2007) and Fernandez (2008), all rely on 

hedging performance at different time scales using financial and commodities futures, but none of 

these studies has been applied to electricity markets. For example, Lien and Shrestha (2007) 

estimate optimal hedge ratios for different horizons for 23 different futures contracts using wavelet 

analysis. They conclude that the performance of the wavelet hedge ratio improves with the 

increase in the length of the hedging horizon. Chen, Lee and Shrestha (2004), when matching the 

data frequency to the hedging horizon, found that almost all of the total return variance (more than 

90%) can be attributed to shorter time scales, which holds for both spot and futures returns. 

Moreover, Geppert (1995) finds that correlation between cash and futures increase as we move 

from high to low frequency. To justify this he argues that given a co-integrated relationship 

between spot and futures prices, which is made up of both permanent and transitory components, 

over longer horizons the permanent component ties futures and spot prices together while the 

effect of the transitory component becomes negligible. Therefore, most of the previous studies of 

wavelets applied to hedge ratio estimation conclude that the optimal hedge ratio increases in line 

with the time horizon and tends to approach the Naïve hedge ratio which is 1: “This means that the 

investor would sell a larger number of futures contracts to achieve the optimal hedge ratio as the 

frequency of the hedge increases” (Geppert, 1995; Cotter and Hanly, 2010). But this would have 

implications on the cost of the hedging strategy, which increases with scales (in this sense, hedging 
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a single 20-day period would be more expensive than a single 1-day period). We show here that the 

same does not apply to electricity markets. 

 In sum, the present study distinguishes from previous ones in at least four aspects. First, we 

apply wavelet analysis to study electricity spot and futures returns on a scale-by-scale basis, which 

has been revealed to be useful given the different time investment horizons and hedging decisions 

among traders. Second, we wanted to see if previous empirical findings for index and commodities 

markets were similar or not to electricity given its special characteristics. Third, given the 

usefulness of wavelet analysis we wanted to examine the lead-lag relationship between spot and 

futures electricity markets, and extend previous analysis to more than just two time scales (short 

and long-run). Finally, we want to check if the estimation method has a significant effect on risk 

reduction and hedging effectiveness. 

 

3. THE HEDGE RATIO AND ITS EFFECTIVENESS 

 

In this section we present the adopted hedge ratio and hedging effectiveness measure. To derive 

the minimum variance (MV) ratio, suppose an individual has taken a fixed position in some asset 

and that this person is long one unit of the asset. Let ht represent the short position taken in the 

futures market at time t under the adopted hedging strategy. Ignoring daily resettlement, the 

hedger's objective within this framework is to minimize the variance of the change in the value of 

the portfolio: 

),(2)()()()( 2
tttttttttt FSCovhFVarhSVarFhSVarhMinVar                     (1) 

where ∆ht is the change in the value of the hedge portfolio during time t, ∆St = St+1 – St and ∆Ft = 

Ft+1 – Ft the changes in the log of the spot and futures prices at time t, respectively, and ht is the 

optimal hedge ratio. 

 Suppose the hedger decides to pursue a hedging strategy. The optimal hedge is then 

determined by differentiating expression (1) with respect to ht, 
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tt
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                          (2) 

 This corresponds to the conventional hedge ratio, when changes in both spot and futures 

prices are homoskedastic. The use of ht assumes that the covariance and variance of futures returns 

remain constant over time. We consider only the Minimum Variance (MV) hedge ratio given that 

most of the existing studies analyze the MV hedge ratio, which will also allow us for comparison. 
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Finally, it can also be shown that, under some normality and martingale conditions, most of the 

hedge ratios based on other criteria (expected utility, extended mean-Gini coefficient, and 

generalized semi-variance) converge to the MV hedge ratio (Chen, Lee and Shrestha, 2001). 

 We consider the degree of hedging effectiveness, proposed by Ederington (1979), 

measured by the percentage reduction in the variance of spot price changes. Therefore, the degree 

of hedging effectiveness, denoted as EH, can be expressed as 

2
,)(

)()(
tsf

t

tt

SVar

hVarSVar
EH 




                                              (3) 

where 2
,tsf  is the square of the correlation between the change in spot and futures prices. 

 

4. RESEARCH METHODS  

 

Simple and widely used approaches to compute the hedge ratio are the naïve one-to-one and 

ordinary least squares (OLS). The naïve hedge ratio consists of taking an equal and opposite 

position in futures relative to the position in the spot, whereas the OLS-based hedge ratio is 

obtained from a linear regression model. Both routes assume that the hedge ratio will remain 

constant through time. However, for the past 20 years, the finance literature has reported the 

existence of time-varying (conditional) volatility. Hence, recent studies have resorted to 

GARCH-type (Gagnon, Lypny and McCurdy, 1998; McMillan, 2005) and stochastic volatility 

models (Lien and Wilson, 2001) to characterize the behavior of hedge ratios over time. A novel 

approach, also aimed at capturing the time-varying nature of a hedge ratio, is wavelet analysis (In 

and Kim, 2006a, 2006b; Lien and Shrestha, 2007). It may be that price volatility at different time 

scales will be key to pricing derivative instruments linked to commodity prices (Dewally and 

Marriott, 2008).     

 

4.1. Wavelet analysis 

 

Wavelets are relatively new signal processing techniques (Percival and Mofjeld, 1997; Percival 

and Walden, 2000; and Gençay, Selçuk and Witcher, 2002) in economics and finance, taking their 

roots from filtering methods and Fourier analysis. But wavelets combine information from the 

time-domain and frequency-domain, being very flexible and do not make strong assumptions 
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concerning the data generating process for the series under investigation. In wavelet analysis, we 

settle on the Maximal Overlap Discrete Wavelet Transform (MODWT) based on the Daubechies 

least asymmetric wavelet filter of length 8 (LA(8)), decomposing our data up to level 73. 

Daubechies family of wavelets has compact support, which is an important characteristic allowing 

wavelets to more parsimoniously describe functions with cusps and spikes (Lien and Shrestha, 

2007). 

 For a given integer J (which represents the level of resolution), the basis functions kj ,  are 

obtained through scaling and translation of wavelet ψ(t) (known as the mother wavelet) as follows 

 








 
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Jjdtt

kt
t

j

j
j

kj

,...,2,1,0)(

;
2

2
2)( 2/

,





                                                              
(4) 

where 12  j
j  represents scaling, k represents translation (or shift), and t represents time. 

Therefore, basis functions are double sequences of functions. This allows us to visualize the 

process in a way which is not possible using other transform techniques.  

 There are two types of discrete wavelet transforms: The discrete wavelets transform 

(DWT), which uses orthonormal transformation of the original series; and the MODWT. Unlike 

DWT, MODWT involves a highly redundant non-orthogonal transformation and leads to J 

transform coefficient vectors each of length N, where N is not required to be an integer multiple of 

2. The maximum J allowed should be the largest integer less than log2(N), where N is the sample 

size. 

 Given the mentioned method, we can decompose the spot return series (ΔSt) and futures 

return series (ΔFt) into different time scales as follows: 

F
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

                                             (5) 

 These equations represent a decomposition of a series x (t) into different series each 

associated with a different time scale, while here x (t) = {St; Ft}. This process of decomposition is 

referred to a multi-resolution analysis (MRA). By applying OLS we can estimate J regressions 

using the J decompositions: 
j

F
tjjj

S
tj DD   ,1,0,,

. Then, the minimum variance hedge ratio associated 

with the jth time scale is given by the estimate of 1,j . In the present work we use weekly data, 

therefore, the time scale λ1 represents 2 weeks’ interval, λ2 represents 4 weeks’ interval, and so on.  

                                                           
3 To capture the annual seasonality behavior of electricity spot prices, a length of 64 weeks is enough. 
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 With the MODWT wavelet transformation, if a series of length T=64 (more than one year 

in weeks) is considered, there would be 64 wavelet coefficients at each scale. Retaining all 

possible times at each scale in MODWT decomposition has the advantage of retaining the time 

invariant property of the original series. 

High frequency components describe the short-term dynamics while low-frequency 

components represent the long-term behavior of the series. Lowest scales will mimic the 

short-term fluctuations of the original time series. The upper scales of the data will be associated 

with the trend components of the spot and futures prices, and, therefore, such scales will be 

relevant to investors with longer term horizons. By contrast, the lower scales will be the focus of 

interest of investors with short-term horizons. 

 The MODWT can also be used to define an analog of the variance of a time series. The 

MODWT can be used to compute unbiased estimators of the variance, covariance and correlation 

parameters. For a sample of size N and a wavelet filter of length L, the wavelet variance )(2
jx  , 
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MODWT coefficients. As might be expected, an estimator for the wavelet covariance, 
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where d1,j,t and d2,j,t are the jth level MODWT coefficients corresponding to x1,t and x2,t series, 

respectively. The above estimates are invariant with respect to circular shifts of the time-series. 

The estimates for the wavelet variance and covariance can be used to estimate the wavelet 

correlation. In particular, 
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The wavelet correlation is analogous to its Fourier equivalent, the complex coherency (Gençay, 

Selçuk and Whitcher, 2002). 

 Finally, given the wavelet variance and covariance between two series, the minimum 

variance hedge ratio at scale λj can be calculated using 
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In this specification, d
jh  indicates the wavelet multiscale hedge ratio, which can be varying 
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depending on the wavelet scales (or investment horizons). 

 

4.2 .Continuous time wavelets 

 

There are two classes of wavelet transforms; the continuous wavelets transform (CWT) and its 

discrete counterpart (DWT). The DWT is a compact representation of the data and is particularly 

useful for noise reduction and data compression whereas the CWT is better for feature extraction 

purposes. To further analyze the relationship between electricity prices the continuous wavelet 

transform is also used. In this part of the work we also decompose the data series up to level 8.  

 The continuous wavelet transform, with respect to the wavelet ψ, is a function 

),( sWx defined as: 

dt
s

t

s
txsWx 






 

 
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

 *1
)(),(                                                         (7) 

where * denotes the complex conjugate form. Wavelet coefficients are given by this 

transformation. The mother wavelet ψ(.) serves as a prototype for generating other window 

functions. The term translation, τ, refers to the location of the window (indicates where the wavelet 

is centered). As the window shifts through the signal, the time information in the transform domain 

is obtained. The term scaling, s, refers to dilating (if |s|>1) or compressing (if |s|<1) the wavelet 

(controls the length of the wavelet).  

 The Morlet wavelet allows good identification and isolation of periodic signals, as it 

provides a balance between localization of time and frequency (Grinstead, Moore and Jevrejeva, 

2004). This is a complex wavelet, as it yields a complex transform, with information on both 

amplitude and phase, essential for studying synchronisms between different time series. The 

Morlet wavelet in its simplified version is defined as: 

24
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 The wavelet transform performs what is called time-frequency analysis of signals. In other 

words, it can estimate the spectral characteristics of signals as a function in time. Dealing with 

discrete time series {xn, n = 0,..., N-1} of N observations with a uniform time step δt, the integral in 

(7) has to be discretized, and the CWT of the time series {xn} becomes 
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 As evidenced by Torrence and Compo (1998), Percival and Walden (2000) and Conraria, 

Azevedo and Soares (2008), when applying the CWT to a finite length time series we inevitably 

suffer from border distortions. This is due to the fact that the values of the transform at the 

beginning and at the end of the series are always incorrectly computed, involving missing values 

of the series which are then artificially prescribed. The region in which the transform suffers from 

these edge effects is called the cone of influence, and as such results in this area must be 

interpreted carefully.  

 The wavelet power spectrum can be interpreted as depicting the local variance of a time 

series and the cross-wavelet power of two times series depicts the local covariance between these 

series at each scale or frequency. For more general data generating processes one has to rely on 

Monte Carlo simulations. 

 The phase for wavelets shows any lag or lead relationships between components, and is 

defined as 

 
    ,,tan ,

1
, 


 

yxxy
n

xy
n

yx W

WI
                                             (10)  

where I and   are the imaginary and real parts, respectively, of the smooth power spectrum. 

Phase differences are, therefore, useful to characterize phase relationships between two time 

series. For a complete interpretation of the difference of phase between the analyzed series we 

suggest the reading of Barbosa and Blitzkow (2008, pp. 28-29) who interpret the meaning of the 

phase angels, and Conraria, Azevedo and Soares (2008). The vectors in the cross-wavelet 

coherency indicate the phase difference between the two series. However, we need to know which 

of the time series is processed first for the scheme to be valid. In the present work, pictures show 

the cross-coherency between two series. The name of the series presented first is our first series, 

the other one being the second we consider. 

 The concept of coherence is fundamental and quite important in all the fields dealing with 

fluctuating quantities. Given that correlation is defined as the relation of two or more time series, 

we could say that those series that are highly correlated are coherent. The degree of coherence is a 

measure of how closely X and Y are related by a linear transformation. Thus, X and Y are closely 

related by a linear transformation if and only if their degree of coherence is close to its maximum 

value of unity. The two random variables X and Y are said to be completely coherent if and only if 

|ρ|=1 and completely incoherent if and only if |ρ|=0, where ρ is the correlation coefficient. The 

caveat is that this correlation may not be contemporaneous, but may involve a lead or a lag. A 
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measure of the magnitude of this lead or lag is the phase lead. 

 In time-series, the degree of coherence of two time series x(t) and y(t) with zero 

time-average values is the magnitude of their temporal correlation coefficient. Coherence provides 

information about the stability of the true relationship between the two signals with respect to 

power asymmetry and phase relationship and not direct information about this relationship. 

Correlation, on the other hand, may be calculated over a single epoch or several epochs and 

affected by phase, independently of amplitudes.  

 Following Torrence and Compo (1998) we define the wavelet coherency of two time series 

as 


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where S is a smoothing operator in both time and scale.  

 The cross-wavelet coherence gives an indication of the correlation between rotary 

components that are rotating in the same direction as a function of time and periodicity. 

Coherences near one show a high similarity between the time series, while coherences near zero 

show no relationship.  

 

4.3. Multivariate GARCH model 

 

When static hedging strategies are used (like OLS and naïve strategies), each moment the agent 

faces decision whether to hedge with the current future price estimate or wait for new information. 

When we refer to static hedging we mean that once the hedge is created it is not changed after that. 

So, static hedging means that the hedge ratio h remains constant over time. The static hedging 

strategy determines the equilibrium point or neutral point of the dynamic hedging strategy, but 

when the position taken in derivatives changes over time, the hedging strategy is dynamic. 

MGARCH models are used to capture the time-varying dynamic behavior between both series. It 

is developed to examine the joint processes relating spot and futures returns. 

 We will assume that the market is incomplete; therefore not all the risks are hedgeable 

through trading the underlying spot. If the market were complete, given sufficient initial capital, all 

claims could be replicated by trading the spot dynamically. Static derivatives hedges do not add 

anything to dynamic hedges in complete markets, but of course they are very valuable tools in 
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realistic incomplete market models, where there may be risk factors that cannot be eliminated just 

by dynamic trading of the underlying spot. By incorporating static hedges, we enlarge the set of 

feasible hedging strategies that the investor can choose from and allow for a better hedging 

performance.  

 In terms of dynamic hedging strategies, Bollerslev, Engle and Wooldridge (1988) 

generalized the univariate GARCH to a multivariate dimension to simultaneously model the 

conditional variance and covariance of two interacted series. This multivariate GARCH model is 

thus applied to the calculation of dynamic hedge ratios that vary over time based on the conditional 

variance and covariance of the spot and futures prices. Engle and Kroner (1995) present various 

MGARCH models with variations to the conditional variance-covariance matrix of equations. 

Generalized from GARCH(1,1), a standard M-GARCH(1,1) model is expressed as: 
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where hss, hff are the conditional variance of the errors (εs,t, εf,t) from the mean equations, where: 
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 Karolyi (1995) suggests that the BEKK (Baba, Engle, Kraft and Kroner) model allows the 

conditional variance and covariance of the spot and futures prices to influence each other, and, at 

the same time, does not require the estimation of a large number of parameters to be employed. 

The model also ensures the condition of a positive semi-definite conditional variance-covariance 

matrix in the optimization process which is a necessary condition for the estimated variance to be 

zero or positive. The BEKK parameterization for the MGARCH(1,1) model is written as: 
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where h2
ss,t, h

2
ff,t and h2

sf,t are the conditional variance and covariance of the errors (εst, εft) from 

mean equations. Conditional variance and covariance only depend on their own lagged squared 

residuals and lagged values. The MGARCH model incorporates a time-varying conditional 

covariance and variance between the spot and futures prices and hence generates more realistic 

time-varying hedge ratios. 
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As an alternative empirical distribution to the normal one we will also use the bivariate t-student 

distribution in the multivariate-GARCH BEKK model used here ),,0(~| 1 vHt ttt  where v is the 

degrees of freedom parameter of a conditional bivariate t-student distribution. 

 Bivariate GARCH modeling allows to model not only the conditional second moments, but 

also the cross moments, with special relevance, in our case, to the contemporaneous covariance 

between electricity spot and futures. That’s why the conditional, on time t-1 available information, 

error term vector follows a bivariate normal law, and for comparison purposes also a bivariate t 

distribution, being Ht the positive definite variance covariance matrix dependent on 

time, ),,0(~| 1 vHt ttt  , where v is the degrees of freedom parameter of a conditional bivariate 

t-student distribution. 

 

5. DATA AND EMPIRICAL RESULTS  

 

We use German electricity spot and futures prices from the European Electricity Exchange (EEX) 

in Leipzig. Our data is composed of daily closing prices for each series obtained directly from 

EEX.  

 In the spot market, hourly power contracts are traded daily for physical delivery in the next 

24 hour period, being this price known as the system price. EEX also trades electricity futures and 

options. At the moment, the most important are: monthly, quarterly and yearly futures all based on 

peak and base data, traded by both hedgers and speculators. The settlement of futures can take 

place either in cash or physical according to their contract specifications4. From a liquidity 

perspective only the cash settled futures can be considered liquid. That is why we only take these 

into consideration. The present study focuses on monthly futures, taking one price per day. We use 

base5 data for futures contracts. 

 We transform the available data into weekly German returns. We do this for two reasons. 

First the data is more stable than daily data. Second, various studies suggest that weekly hedges are 

                                                           
4 Physical settlement occurs in the German Base Load Future, the German Peak Load Future, the French Base Load 

Future and the French Peak Load Future. Cash settled futures are the Phelix Base Future and the Phelix Peak Future. 

5 “Base data” is the average daily price for the 24 hours in the day. As such, a base contract ensures delivery around 

the clock and a peak contract delivery between 8 am and 8 pm (see EEX website for more details). 
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more efficient than daily hedges. Butterworth and Holmes (2005) found that increasing hedging 

period length from daily to weekly and monthly increased the hedging effectiveness. Avci and 

Çinko (2010) findings for the Turkish index indicate that future weekly hedge periods are more 

effective than daily hedges in terms of risk reduction criteria. Malliaris and Urrutia (1991) found 

that hedging horizon and data frequency are important in hedging effectiveness. While Benet 

(1992) states that short hedging periods were more effective, Ripple and Moosa (2007) found that 

the use of the most recent contract was more effective than the use of more distant contracts. 

 The futures market offers derivative products that do not comprise physical settlement of 

electricity during the delivery period. But these are primarily used as hedging instruments against 

market uncertainties. The underlying of these futures contracts is the so called Phelix Index 

(Physical Electricity Index) that is calculated from spot market prices on a daily basis. Depending 

on the corresponding products on the spot market, the index distinguishes between base load and 

peak load. The Phelix base day price is an equally weighted average of all 24 hourly spot prices for 

that particular day. The Phelix base month price is the mean of all Phelix base day prices of that 

month6. These arithmetic averages over a specific period are the reference prices in all cash 

settlement calculations at expiration of derivative contracts. The delivery period specifies the 

Phelix Index that serves as underlying. For example, in the case of Phelix base month futures with 

maturity in December 2005, the reference price at maturity is the value of the Phelix base month 

index in December 2005. 

 The EEX was formed by the merger between LPX Leipzig Power Exchange and the 

Frankfurt-based European Energy Exchange in 2002 and is the most important energy exchange in 

continental Europe today (see EEX), with more than 200 trading participants from 20 countries. Its 

generation technology mix in 2006 consisted of 4% hydropower, 27% nuclear, 61% conventional 

thermal, and 8% of other sources. EEX has a leading position in terms of the intensity of growth 

and the speed of expansion. 

 The data period analyzed is from 18 June 2004 until 15 July 2008. For the German 

electricity markets 6 monthly futures contracts can be traded daily. However, similar to Ripple and 

Moosa (2005) we use only the near-month and the six-month contract in the EEX market, allowing 

                                                           
6 There is a base and peak version for every future. Thus a month future ensures for example the delivery of electricity 

with a constant around the clock delivery rate of 1 MW on any delivery day of a calendar month (base) or an all 

delivery days from Monday until Friday from 8 am to 8 pm (peak). The Phelix Base and Phelix Peak Index are the 

underlying for the cash settled base and peak future, respectively. 
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us to construct 2 different futures data series. For the spot, only one price per week (the base price 

for that day) was considered. In the empirical application futures with different maturities (1 and 6 

months base data, B1 and B6, respectively) are considered to hedge the spot price variation and a 

unique hedging length is considered: one week. Similar to us, Zanotti, Gabbi and Geranio (2010) 

use as hedging instruments futures contract with 1 month to expiration, being the shorter term 

instruments available. However, short term instruments are generally more liquid than long term 

and more correlated with underlying spot. To create a time series of futures prices and avoid 

delivery or thin markets effect we roll over to the next 1 (6) month futures contract 1 week before 

the expiration of the previous future contract. 

Liquidity is important when analyzing data on electricity markets since electricity 

exchanges are wholesale markets and the number of market participants is limited. Two measures 

of liquidity can be used for future markets: the open interest and the traded volume. As discussed 

and analyzed in Pietz (2009), open interest averaged 28 TWh in 2002 and 356 TWh in 2008, an 

astonishing increase of open interest of almost 1300 percent in six years and speaks for a liquid and 

well developing market. As for the number of traded contracts a typical pattern may be observed. 

Trading mainly takes place in futures with short time-to-delivery. As such, the maximum in traded 

contracts is reached in the days just before the start of the delivery period and decreases thereafter. 

 

 

Table 1: Summary statistics for spot and futures return 

Variable Mean St. dev. Variance Skewness Kurtosis 

Spot 0.089 21.06 4.435 74.31 2044.36 

FB1 0.072 2.94 0.086 444.11 16098.50 

FB6 0.088 3.28 0.108 140.66 1975.43 

FB1and FB2 stand for Future Base data for 1 and 6 months, respectively, while St. dev. stands for 

standard deviation. Values presented are in percentage terms. 

 

 Both future returns and spot returns have means very close to zero, and we may say that the 

unconditional distribution of spot returns and futures are non-normal as evidenced by skewness 

and high excess kurtosis. Table 1 evidences the existent differences between electricity spot and 

futures returns in the German market, and is mostly visible by the highly different volatility values, 

as measured by standard deviation.  
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 Variances are 0,086% and 0,108% for the futures series, base 1 month and base 6 months, 

respectively, and 4,435% for the spot, showing that spot prices have higher volatility than futures. 

Volatility is not even constant over time7 leading to the idea of using time varying models in hedge 

ratio choices. Skewness signs are all positive. The high excess kurtosis values suggest that we are 

in the presence of leptokurtic distributions, which means we have heteroskedasticity present in the 

data. 

 Notice that if the arbitrage condition holds, the total variances of spot and futures returns 

should be close to each other. However, Lien and Shrestha (2007) stress that for financial assets, 

total futures return variances are higher than the total spot return variances. For commodities like 

Hogs and Cotton, the total futures return variances are significantly less than the total spot return 

variances. The same happens in electricity markets. They argue that the extent to which an 

arbitrage can be implemented depends upon, among other factors, the liquidity8 of the spot and 

futures markets. “In the case of commodities, the futures markets are more liquid than the spot 

markets. Consequently, variances of futures returns are much smaller than those of spot returns 

for commodities” (Lien and Shrestha, 2007). However, for electricity the difference is huge 

suggesting a high lack of liquidity in spot markets. In fact, total volume traded in the spot power 

market was 203 TWh in 2009 against a total volume traded in the power derivatives market of 

1025 TWh, which may explain these findings. Still, there is a lack of explanation for the causes 

behind the differences in total variances and liquidity for electricity markets. A more detailed 

analysis between both spot and futures series will demand for a new (and deeper) thorough 

empirical study.  

 Turning one step further into our empirical investigation, original data has been 

transformed by the wavelet filter (LA(8)) up to time scale 7 to study correlation in the various time 

scales. 

 

                                                           
7 Plots for the changing variance over time are not presented here in order to save space but will be provided upon 

request. 

8 Liquidity is an important feature of a well functioning market. We can define it as the ability to quickly buy or sell a 

desired commodity or financial instrument without causing a significant change in its price and without incurring 

significant transaction costs. A key feature of a liquid market is that it has a large number of buyers and sellers willing 

to transact at all times. This is not at all the case of electricity markets where we have a low number of generators and 

electricity special characteristics like the continuous balance between demand and supply. 
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Figure 1: Estimated wavelet variance of spot and futures returns 

 

Wavelet variances for the spot and futures returns are plotted on the different time scales on the 

x-axis. The dotted lines represent the approximate 95% confidence interval. Since the confidence 

interval does not use any information regarding the distribution of the wavelet variance, these are 

robust to non-Gaussianity. 

 

 Wavelet variance analysis enables us to identify which scales are the most important 

contributors to the overall variability of the data (Percival and Walden, 2000). Variances of both 

spot and futures markets decrease as the wavelet scale increases, which is in accordance with 

previous literature using wavelets applied to financial assets and commodities. The variance 

versus wavelet scale curves show a broad peak at the lowest scale (d1) in both markets. More 

specifically, a wavelet variance in a particular time scale indicates the contribution to sample 

variance. It also shows that the spot market is more volatile than the futures market regardless of 

the time scale. This is in opposition to the results of In and Kim (2006a) who find that the futures 

markets is more volatile than the stock market for the S&P500 index. 

 Overall, the movements of covariance increase as the time scale increases (at low scales), 

becoming stable around 0 at high scales (lower frequencies) as can be seen in figure 2. The 

correlation between futures and spot returns shows an erratic behavior, in particular when more 

observations (at the lower scale) are available. Since at low scales (high frequencies) there are 

more observations for calculating the wavelet variance, covariance and correlation, there should be 

more wavelet variation at the lower scales and therefore we should expect less measured 

correlation between futures returns and stock returns (In and Kim, 2006a). However, the plot 

shows that the covariance is not very high; being almost always close to 0, which means that the 
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hedge may turn out to be bad, as it will be showed in the hedging computations (table 2). 

 

Figure 2: Estimated wavelet covariance between the spot and futures returns 

 

Wavelet covariance between the spot and futures returns is plotted on the different time scales on 

the x-axis with approximate 95% confidence interval (dotted lines).  

 

 At scales d1-d3, wavelet covariance increases rapidly, and at scales d4-d6, wavelet 

covariance between spot and futures returns gradually converges to zero. The covariance plot also 

allows us to indicate that the spot and futures in electricity markets are found to be fundamentally 

different. 

 After the previous empirical analysis, concerning the variance and covariance of spot and 

futures electricity prices resorting to the MODWT techniques, we start presenting and discussing 

the results attained by applying the continuous Morlet wavelet. The continuous wavelet power 

spectrum for the spot base, and futures base for 1 and 6 months was computed. 

 Looking at the time scale decomposition of these variables some interesting facts are 

revealed. Most of the action in the series occurred at high scales (low frequencies). There are no 

clear and general structural changes occurring for all the series at once in the years under analysis, 

since the red power is spread through all of them. However, some interesting aspects deserve to be 

mentioned. 

 For the 6 month futures contracts we see a significant power event at the beginning of 2007 

for scales d6 and d7. These power events are associated with periods of high volatility, and given 

the period in which they occurred we can attribute them to the sub-prime crisis and all the 

instability caused in energy markets.  The wavelet power spectrum for the spot shows that both 
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series have higher variance at high scales. 

 It is clear that the different time series have different characteristics in the time-frequency 

domain, but volatility for all of them is quite high at low frequencies, and low at higher frequencies 

(mostly at periodicity until half a year). In the period of 2006-2009, probably as a consequence of 

the major financial crisis, the variance of futures contracts became higher, where the effect is 

clearer at medium and high scales, suggesting we were facing medium and long term shocks in 

futures markets. 

 Wavelet coherence depicted in figure 3 confirms the findings of the fundamental 

difference between electricity spot and futures returns, at least for high frequencies. This implies 

that in the short run both series have weak comovements. Therefore, to perform the cross-wavelet 

analysis we will focus on the cross-wavelet coherency.  

 In figure 3 we can observe the estimated wavelet coherency and phase difference between 

the series. The values for the significance were obtained from Monte Carlo simulations. Contours 

denote wavelet-squared coherency, where the thick black contour is the 5% significance level and 

outside the thin line is the boundary affected zone. Therefore, the cone of influence indicates the 

region affected by edge effects and results outside this show no statistical significance. Color code 

for power ranges from blue (low coherency, near zero) to red (high coherency, near one).  

 Looking at the pictures presented in figure 3, information on the phases shows us that the 

relationship among spot and futures markets was not homogeneous across scales, since arrows 

point right and left, down and up constantly. Moreover, the cross-wavelet coherency is high at low 

frequencies, but in the highest scale of all, most of the coherence results are not statistically 

significant since they rely below the cone of influence. The wavelet cross-coherency shows low to 

medium statistically significant coherence, however we are still able to observe some islands of 

medium power.  
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Figure 3: Cross-wavelet coherency and phase plots between spot base and futures base 

 

EEXFutBase01 and EEXFutBase06 represent futures contracts for 1 and 6 months in the EEX 

market, respectively. 

 

 Series are correlated and in phase for lower frequencies (high scales), being higher for 6 

month futures. Given that the wavelet coherency is used to identify both frequency bands and time 

intervals within which pairs of indices are co-varying, on the daily time scales of 4-64 days band, 

the 5% significance regions indicate that spot and futures contracts under analysis do not show 

long periods of high coherency. Still, in the majority of the cases there are long periods of higher 

coherency among the two series on the daily time scales d7 and d8. 

 Still, if long run adjustments were taken out, the short-run movements would be little 

correlated. Moreover, these cycles of short duration (where both series show strong statistical 

significant correlation and coherence among them – the red areas defined by the black contours) 

can possibly be related to special episodes that occurred in the history of electricity spot and 

futures prices in the German EEX market9. Since the finest scales capture movements in 2 to 8 

weeks (because the next finest scale has a fairly large portion of energy in spot price movements as 

evidenced by coherency wavelet plots), we may argue that only with a considerable time span (the 

lowest frequencies) spillovers are transmitted between markets. 

 There is strong empirical evidence that time-varying cointegration relationships exist 

among the two markets. The time variation pattern documented in this study may carry some 

important implications for hedging. The instability in various aspects of market comovements may 

                                                           
9 We leave this association for a future work. 
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imply serious limitations to the investor's ability to exploit potential benefits from hedging with 

futures contracts in electricity markets. Much variation in the contemporaneous relationships 

among spot and futures base prices may also highlight inadequacy in assuming (short-term) 

relationships in both markets, which might account for the difficulty in achieving profitable active 

trading. 

 Given previous results we continue the empirical analysis by presenting the hedge results 

provided by the MODWT. According to figure 4, the decomposed hedge ratio decreases 

monotonically converging towards zero, very different from the long-horizon hedge ratio of one. 

The degree of hedging effectiveness approaches zero because, over long horizons, the shared 

permanent component may be absent and the spot and futures series remain far apart in electricity 

markets. This also implies that the effect of the transitory components becomes strong. As such, in 

the long run, spot and futures prices are not perfectly correlated in these newly markets (contrary to 

In and Kim, 2006, 2006a; Fernandez, 2008, for different commodities and financial assets). 

Electricity markets present even a much different behavior than that reported for other 

commodities as presented by Lien and Shrestha (2007). The main cause is due to the huge 

difference reported between variance in the spot and future series, as well as the low 

covariance/correlation between both.  

 

Figure 4: Hedge ratio and hedging effectiveness with different wavelet domains 
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 As in the co-integration literature on hedge ratios, the presence of both long-run and 

short-run components in the stock and futures markets causes the hedge ratio and the degree of 

hedging effectiveness to depend on the time horizon. As the wavelet time scale increases, the 

decomposed data stays far away the long-run trend of one. This result contradicts the findings of In 

and Kim (2006a) which found a hedge ratio approaching 1 as the hedging period increases, for the 

S&P500 Index. Therefore, over long horizons, there is no shared long-run component tying the 

stock and futures series together, and the two prices will not be perfectly correlated in electricity 

markets (opposed to Geppert, 1995, results). Pén and Sévy (2007) argue in favor of a great 

inefficiency for forward electricity markets for short-term horizon because they found correlation 

between spot and forward returns to be too low on each considered market. As such, derived 

optimal hedge ratios are insignificant, which favors the results we have obtained. Moreover, we 

have obtained optimal hedge ratios which are insignificant for all time scales, applying wavelet 

techniques. Shawky, Marathe and Barrett (2003) apply EGARCH and VAR estimates for the 

relation between spot and futures in the NYMEX market. They found that the spot equation is 

more significant than the futures equation. They argue that this finding is consistent with an 

electricity market in which spot prices are significantly more impacted by current events than 

futures electricity prices. 

 Figure 5 shows the MODWT MRA of the spot (panel a) and future returns (Base 1 month 

in panel b and base 6 months in panel c) using various time scales (six different wavelet details, d1- 

d6). By these plots we may observe that as the time scale increases from the finer time scales (d1) 

to the highest time scale (d6), wavelet coefficients show a smoother movement. This means that 

short term noise vanishes as the scale increases. However, the difference between the futures base 

1 month and the futures base 6 months is visible. The last futures maturity (6 months) reveals a 

higher volatile behavior at all the time scales considered. 

 Wavelets are still an important technique in the sense that the decomposition of the data 

into several time scales allows detecting the frequency burst in various time scales. Still, the gains 

from hedging are not great, in accordance to the findings of Maharaj et al. (2008). Being wavelets 

a reliable technique in terms of frequency-scale decomposition, but due to the results obtained in 

the empirical estimation of the hedging effectiveness, we can conclude that the problem does not 

rely on the technique used but on the market, and its special characteristics. 
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Figure 5: MODWT MRA of the spot returns (panel a), futures base 1 month futures (panel b) and 

futures base 6 month futures (panel c) (one week hedges for both) for the German EEX electricity 

market. These plots are obtained from an wavelet Daubechies filter up to six time scales. 

 Panel a:           Panel b:    Panel c:  

 

 Figure 5 exposes that the first two to three high frequency components explain the higher 

part of the series energy, which allows us to conclude that movements in these series are mainly 

caused by short-term fluctuations. In fact, such a phenomenon is somewhat expected as spot and 

futures returns cannot be predicted in advance.  

 Once again, the highest volatility showed by spot returns is revealed compared to those of 

futures returns and this is even more noticed at different time scales. As such, the low 

correlation/covariance between spot and futures is even more evidenced. So, using wavelet 

decomposition is in fact an important technique to account for differences between return series, 

even for electricity markets. 

 In the following we estimated the hedge ratio in five different ways: the naïve one to one 

hedge ratio where we offset each spot contract by one futures contract; the static OLS hedge ratio 

where we regress the spot return over the futures return; two dynamic time varying multivariate 

models – Diagonal BEKK under the normality assumption and the T-Diagonal BEKK model -; 

finally, using wavelet decomposition to compute the hedge ratio and variance reduction. 

 Results for the comparisons of hedge effectiveness achieved are shown in table 2, using the 

calculated hedge ratios from the naïve, OLS, multivariate GARCH and wavelet strategies. Among 

the four different hedge strategies, the wavelet multiscale hedging effectiveness provides results 

which are negative or even null, regardless of the time scales, indicating that wavelet hedge 

strategies are not better than other strategies in terms of hedging effectiveness. The first visual 

inspection of table 2 leads us to conclude that taking into consideration time varying variations 
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seems to be important. 

 

Table 2: Comparisons of hedge effectiveness among the four hedge strategies under analysis: 

OLS, naïve, multivariate GARCH and the wavelet timescale decomposition.  

   Mean Return  Variance  Risk Reduction (%)

EEX Market ‐ B1       

Spot (no hedging) (b=0)  0.00023  0.04457   ‐ 

Hedging       

Naive (b=1)  ‐0.00051  0.04598  ‐3.16% 

OLS (b=hfs/hf)  0.00046  0.04449  0.18% 

Diagonal‐BEKK (bt=hfs,t/hf,t)  ‐0.00076  0.03950  11.38% 

T‐Diagonal‐BEKK (bt=hfs,t/hf,t)  ‐0.00121  0.03665  17.76% 

Scale d1  0.00186  0.04543  ‐1.94% 

Scale d2  0.00116  0.04449  0.17% 

Scale d3  0.00097  0.04452  0.11% 

Scale d4  0.00090  0.04456  0.02% 

Scale d5  0.00090  0.04456  0.03% 

Scale d6  0.00089  0.04456  0.01% 

       

EEX Market ‐ B6       

Spot (no hedging) (b=0)  0.00023  0.04457   ‐ 

Hedging       

Naive (b=1)  ‐0.00063  0.04575  ‐2.64% 

OLS (b=hfs/hf)  0.00031  0.04457  ‐0.01% 

Diagonal‐BEKK (bt=hfs,t/hf,t)  ‐0.00151  0.03575  19.79% 

T‐Diagonal‐BEKK (bt=hfs,t/hf,t)  ‐0.00040  0.03981  10.67% 

Scale d1  0.00216  0.04637  ‐4.03% 

Scale d2  0.00072  0.04473  ‐0.37% 

Scale d3  0.00081  0.04463  ‐0.14% 

Scale d4  0.00082  0.04463  ‐0.13% 

Scale d5  0.00087  0.04458  ‐0.02% 

Scale d6  0.00088  0.04457  ‐0.01% 
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The table displays the risk reduction achieved by each of the hedging strategies. EEX B1 and EEX 

B6 stand for EEX futures base data for 1 and 6 months, respectively. Results are statistically 

significant. 

 

 The best hedging strategy could be defined as the one that allows the highest risk reduction 

and simultaneously the lowest return reduction. However, risk reduction is usually a much valid 

ranking criteria’s, given that the average return of the portfolio depends on the underlying trend of 

the spots and futures returns. 

 Spot variance reduction is computed by comparison with the unhedged spot variance 

position, in the first row of each panel. Results obtained imply that the better statistical 

performance of the multivariate GARCH-BEKK model also implies a better hedging strategy 

performance. In the one week hedges, the naïve, OLS and wavelets strategies clearly obtain the 

worst score, favoring the multivariate GARCH models, which are those that in fact deliver the 

highest variance reduction, even if it is a small risk reduction.  

Results provide a clear indication of the superior performance of time varying hedge ratio 

as compared with traditional hedge ratios and the more recent technique wavelets. Hedging is not 

independent from the model chosen to estimate the hedge ratio. Time varying variances models 

reduce the volatility of the hedge portfolio wherever naïve strategies and sometimes wavelet series 

decomposition led to an increase of risk. These are even more effective in terms of variance 

reduction using 1 month futures and the t-distribution. 

Comparing to Byström (2003), Moulton (2005), Torró (2009) and Zanotti, Gabbi and 

Geranio (2010) we confirm the best variance reduction of the dynamic hedging method. In fact, 

although small in terms of variance reduction, results attained for the multivariate GARCH BEKK 

model both with the normality assumption and the t-student distribution are positive. Nonetheless, 

even using the dynamic hedging strategy, the highest risk reduction is attained with the 

t-distributional assumption for 1 month futures hedges (one month to maturity, one week before), 

being higher for the 6 month futures hedges (6 months to maturity, one week before) for the 

normality assumption. 

 As we are able to see, for the naïve strategy we have instead of variance reduction a 

variance increase (indicated by the negative sign), which contradicts the literature that defends 

unconditional hedges. The same happens for the lowest scales when resorting to wavelet analysis, 

and although variance reduction is confirmed for EEX base 1 month contracts in the 4 week scale 
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(d2) we see that hedging effectiveness diminishes at high scales (lower frequencies) for Base 1 

month futures. The results for B1 strategies are bad in terms of variance reduction, but even worse 

were those obtained for the base 6 month futures contracts (instead of variance reduction we see 

variance increases), becoming negligible at high scales (64 weeks scale). Still, hedging is more 

effective for a 2 week period when the near month contract is used. 

 From the four hedging strategies used in this work the multivariate GARCH dynamic 

hedge shows the best results in terms of variance reduction (hedging effectiveness), given that 

there is a time-varying dynamic behavior between spot and futures series. Moreover, even with an 

analysis decomposing the series into several components, the hedge is inefficient. However, we 

believe that this contradictory result related to previous empirical findings using wavelets applied 

to financial assets and other commodities markets is not due to model specification errors. Maharaj 

et al. (2008) point out a possible reason for wavelets hedging inefficiency. It was attributed to their 

inability to match the hedge horizon to a wavelet detail series (it involves a trade-off between not 

having to reduce the sample, particularly for long-term hedges, and the inability of the procedure 

to match exactly the hedge horizon with an appropriate scale). 

As evidenced by the summary statistics and wavelet variance/covariance analysis provided 

before we suppose that the problem does not rely on the technique being used, but on the fact that 

there is a weak association between spot and futures prices in the German electricity market. It is 

evident that these optimal hedge ratios are useful in minimizing variance but these hedges lose 

importance across the time horizons, as opposed to Dewally and Marriott’s, (2008), results for 

base metal markets, where we should not forget the non-storability nature of electricity as opposed 

to base metal, and other commodities. Torró (2009) demonstrates that Nord Pool electricity prices 

are characterized by particular statistical features, particularly a low correlation between spot and 

futures prices, due to high volatility and kurtosis, and no storability property of the underlying 

which avoids the cash-and-carry relation. This means that hedging strategies could generate 

ineffective performances, unless more sophisticated models are applied.  

 The findings that static hedging strategies do not outperform dynamic ones, suggest that 

unconditional hedges do not outperform conditional hedges. So, there are gains including 

heteroskedasticity and time-varying variances in the calculation of hedge ratios, even if small 

ones. But multi-resolution analysis does not show improvement gains over more traditional 

methods in terms of hedging, at least for the German electricity market as pointed by the results 

attained in the empirical part. As such, a hedge may be unfavorable as the hedging horizon is 
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lengthened given the nature of price discovery in the spot and futures electricity relationship. 

Ederington’s (1979) efficient hedge ratio has been empirically found to be negatively 

associated with the hedge horizon, as was the basis risk. Given the present empirical findings basis 

risk10 is found not to be negatively associated with time-to-expiry of future contracts. As such, on 

the expiration date, hedgers in electricity markets will not be left with price risk only and 

conventional hedging theory may not work efficiently. Moreover, these results point out that in 

electricity markets we are left with a continuous time varying basis risk which does not allow the 

hedge ratio to be constant over the hedging horizon. 

Although hedging in electricity markets is very important given the erratic behavior of 

electricity spot prices, special features describing this type of markets imply low correlation 

between spot and futures prices, and condition effectiveness of the hedging strategy. Given the 

results presented, the main challenge for now will be to understand what differentiates futures and 

spot prices volatility behavior in electricity markets. This huge disparity in terms of volatility is 

causing the bad hedging effectiveness reported here, and studying these causes is the subject of an 

ongoing research. 

However, for the period and market analyzed it has been possible to reduce the variance of 

electricity markets using futures hedging. As such, trading in futures allows to reduce the risk of 

electricity portfolios and to control the risk of adverse movements on electricity prices. 

 

6. CONCLUSIONS 

 

We explore hedging effectiveness of electricity futures in the German (EEX) electricity market, 

while investigating the empirical relation between spot and futures electricity prices, resorting to a 

very recently used technique in finance and economics, wavelet analysis (in the present work both 

the continuous Morlet wavelet and the discrete MODWT technique are used) to access for this 

relation at different time scales. For the hedge analysis we have employed three unconditional 

hedging strategies, namely, OLS, naïve and multiscale wavelet analysis (which has not been 

applied to electricity markets previously) and a conditional hedging strategy using the multivariate 

GARCH model. 

                                                           
10 Basis risk is the unexpected fluctuations in the prices of spot and futures that is a product of influences ranging 

from seasonality to supply disruptions. 
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 Our results point out that hedge ratio and effectiveness of the hedging strategies decrease 

as the wavelet time scale increases, whereas this time variation in optimal hedge ratios can be 

explained by deterministic seasonality, time-to-maturity effects and volatility differences between 

futures and spot returns in this type of markets. 

 We found that at high scales (low frequencies) both series show a strong and significant 

relation, not homogeneous across scales. At higher frequencies both series show a week 

comovement, independently of the contract maturity (1 or 6 months), leading to the conclusion 

that spot and futures electricity markets do not show a feedback relationship. According to the 

cost-of-carry model, this could imply that the two markets are inefficient, not acting as perfect 

substitutes.  

 Overall, wavelet variances show that the futures market is much less volatile than the spot 

market regardless of the time scale pointing for the lack of spot liquidity. Spot and futures markets 

are then found to be fundamentally different in electricity markets given that the long-horizon 

hedge ratio does not converge to its long run equilibrium of one. 

 Finally, our empirical results allow us to say that the hedging effectiveness provided by the 

wavelet analysis is limited in electricity markets, being the dynamic multivariate GARCH hedge 

ratio the one to provide higher gains in terms of hedging effectiveness, even if small. Given the 

fundamental hypothesis that the various time scale decompositions of the series will provide 

improvements relative to hedging effectiveness, we show here that this was not really the case. 

This fact could be explained by the distinguishing volatile behavior of electricity spot and futures 

prices. As such, even with an analysis decomposing the series into several components, the hedge 

is inefficient. This contradictory result related to previous empirical findings using wavelets 

applied to financial assets and other commodities markets is not due to model specification errors. 

We believe that the problem does not rely on the technique being used but on the fact that there 

exists a weak relation between spot and futures prices. 

 Future research in these new markets should explore the magnitude of the forward risk 

premium in electricity prices that can change significantly over time. More research into the 

behavior of futures market and its relation with the spot price is needed to better understand the 

effectiveness of hedging in this market. Moreover, the delay in responses found may be an 

indication of arbitrage opportunities between the two markets, a statement that deserves a more 

careful analysis. 
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