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Abstract: Active shading systems in buildings have emerged as a high performing shading solution
that selectively and optimally controls daylight and heat gains. Active shading systems are
increasingly used in buildings, due to their ability to mainly improve the building environment,
reduce energy consumption and in some cases generate energy. They may be categorized into three
classes: smart glazing, kinetic shading and integrated renewable energy shading. This paper reviews
the current status of the different types in terms of design principle and working mechanism of
the systems, performance, control strategies and building applications. Challenges, limitations and
future opportunities of the systems are then discussed. The review highlights that despite its high
initial cost, the electrochromic (EC) glazing is the most applied smart glazing due to the extensive use
of glass in buildings under all climatic conditions. In terms of external shadings, the rotating shading
type is the predominantly used one in buildings due to its low initial cost. Algae façades and folding
shading systems are still emerging types, with high initial and maintenance costs and requiring
specialist installers. The algae façade systems and PV integrated shading systems are a promising
solution due to their dual benefits of providing shading and generating electricity. Active shading
systems were found to save 12 to 50% of the building cooling electricity consumption.

Keywords: active shading systems; kinetic shading devices; smart glazing; rotating shading systems;
folding shading systems; photovoltaic (PV); solar collector; algae façade system; controls

1. Introduction

Daylighting in buildings provides multidimensional benefits that have been widely reviewed in
the specialized literature [1]. The provision of daylight through building openings permits views to
the outdoors [2], which concurrently contributes to visual [3], psychological comforts [4], health [5],
and productivity [6]. Additionally, optimum daylighting design strategies reduce reliance on artificial
lighting and lessen energy consumption [7,8]. Although daylighting has many benefits, it has however
undesirable side effects such as heat gain and glare [9]. Therefore, successful daylighting designs
will consider the use of shading devices to reduce glare and excess heat gain in buildings [10].
Shading devices are used in buildings to provide a healthy balance by reducing the excessive glare
and heat gain and providing privacy [11].

1.1. Passive versus Active Shading Systems in Buildings

Fixed shading devices are a prominent feature in vernacular architecture. They are often
designed in response to environmental conditions using locally available materials such as clay,
tree branches, concrete, wood planks, bamboo and others to shade the buildings from direct
sunlight [12–15]. The modern architectural movement dismissed these strategies until the 1970
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energy crisis, which triggered a renewed interest in passive design strategies as well as pressing for
advanced solutions [16].

Conventional static passive shading devices are often categorized first as internal or external
based on location of the system [11]. The performance of shading devices including overhangs [17],
external roller shades [18], Venetian blinds [19] and internal shadings [20] were investigated in several
studies. Furthermore, fixed external shading devices have been widely known as an effective way
of controlling heat gain and glare in buildings and reducing cooling energy and cost reductions in
different climatic conditions [21–23]. By comparison, external shading devices are more effective than
internal shading devices since they are more efficient in decreasing the cooling loads of buildings in
hot climate regions [11]. Fixed shading devices have, however, their limitations, the most important of
which is their inability to adapt to the external conditions variations as well as blocking the view to
the outside [24].

At the other end of the spectrum, active shading strategies try to achieve a balance between
sufficient daylighting levels, providing solar protection, energy balance and enabling the occupants
with the flexibility to control the shading devices according to their evolving needs [25]. Active shading
devices are systems that tend to change their properties in response to exterior climate and interior
requirements [26]. The use of active shading systems decreases the undesirable solar heat gain,
increase daylight, provide control for the users, may generate on-site energy and increase the use
of natural ventilation [25,27,28]. The active systems can be within the glazing of the openings
or as an exterior shading system. This is usually achieved through the use of smart glazing
technologies [29–31], sensors and control systems [32,33], or through the application of smart dynamic
shading devices [34,35].

1.2. Aim of the Review Paper and Objective

The main objective of this paper is to establish the extent of knowledge acquired on the subject
through a review of the different emerging types of active shading systems and their applications
in buildings. The three major types of active shading systems are reviewed; smart glazing systems,
automated active (or kinetic) shading systems and shading systems that incorporate renewable energy.
The types of control systems and mechanism used in active shading systems were then reviewed,
as they are different and have implications on performance. Finally, the review assesses their potential,
limitations and opportunities for further development and improvement.

The search process consisted of identifying studies with a search strategy across Science-Direct
database and Google Scholar. The initial search keywords used were active shading systems,
smart glazing, kinetic shading systems, integrated renewable energy and shading systems and it
yielded more than 500 papers. However, the papers that were eligible after pre-selection focused
on electrochromic (EC) glazing, suspended particle devices (SPDs), liquid crystal devices (LCDs),
rotating shading systems, folding shading systems, PV integrated shading systems, algae façade
systems and solar collector integrated shading systems. Further focused search considered the types of
shading systems along the following related keywords; design principles, types, working mechanism,
performances and application in buildings and resulted in a 165 direct relevant papers investigated in
this review.

2. Active Shading Systems

Active or responsive shading systems, also called dynamic or kinetic shading systems, are often
designed to respond to one or multiple environmental situations including: daylighting control [36],
solar thermal control, ventilation control, and in addition sometimes energy generation [37,38].

The application of active shading systems is an important step towards improving the energy
efficiency in the built environment [39]. By using active shading systems, buildings tend to adapt to
evolving external conditions [39,40]. These systems can allow or block solar radiation access into the
interior space by adjusting a device installed either inside or on the building skin.
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Active shading systems can be classified into three main categories: the first one comprises: (i) the
glazing in the form of smart glazing or as (ii) kinetic external shading devices or as (iii) shading
devices that incorporate renewable energy generation. These main systems are the target of this review.
First, smart glazing devices include suspended particle devices (SPDs), electrochromic (EC) devices and
liquid crystal devices (LCDs). The second type of active shading is the kinetic external shading systems.
This review considers mechanically movable dynamic shading systems which include the rotating
and folding shading systems. The third type is the integrated renewable energy shading systems.
The integration of renewable energy can be achieved by using photovoltaic panels (PV) attached on
shading devices [41], or by using algae façade systems which can generate electricity [42], or through
solar collectors attached on shading systems [43]. The active shading systems types reviewed in this
study are shown in Figure 1.
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2.1. Smart Glazing Systems

Windows with dynamic optical properties are a form of building shade. Smart glass, often called
smart windows, is defined to be the glass whose light transmission properties are altered when voltage,
light or heat is applied, by changing from translucent to transparent [44].

The function of a smart window is to control the transmission of light into and out of the glazing
system, according to occupants’ comfort. Smart windows can also regulate lighting and heating levels
for energy load management. Smart glass technologies include SPDs, EC devices and LCDs [45].
Installing smart glass in buildings’ envelope, is similar to creating climate adaptable building shells,
in which costs for heating, cooling and lighting are reduced [46,47]. Additionally, smart glass prevents
99.4% of ultraviolet light, which reduces furniture and curtain fabric fading [44,45]. The three systems
require transparent conductors as electrical contacts.

SPDs tend to rapidly switch from a dark bluish-black state to a clear greyish appearance when
voltage is applied to control the amount of light, glare and heat passing through [48].

The EC devices use a technology that utilizes an electrical voltage to control the amount of
light passing through the glass [49]. ECs offer dynamic and responsive control that responds to the
external changing conditions and controls visible transmittance, reduce glare and improve indoor light
environment when compared to regular and low-E glass. Additionally, when compared to the fixed
shading devices, they offer a dynamic solar radiation and do not block the view [49,50].

LCDs use liquid crystals that dissolve into a liquid polymer they will, in turn, solidify. The liquid
crystals are randomly arranged in the droplets, resulting in scattering of light as it passes through the
smart window assembly and forming a translucent film [51].

The performance of smart glazing is first evaluated through the transmittance modulation range
in the visible and whole solar spectrum. Secondly, the expected lifetime and number of achieved cycles
is considered. Finally, its size as the larger the devices, the longer the switching time for coloration and
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bleaching of the glass [45]. Smart glazing acts differently during the transparent and opaque phases to
control the transmitted solar radiation.

The design principle, types, working mechanism, diagrams, special features and benefits of the
three types of smart glazing are summarized in Table 1.

The performance of smart glazing devices is indicated by several factors, such as the electrical,
optical and thermal properties that depend on the structural composition and configuration of the EC
device itself. Typically, the required performance parameters include the specification of: (1) switching
speed; (2) switching voltage; (3) optical reflectance; (4) color rendering; (5) solar heat gain coefficient;
(6) optical memory coefficients; (7) thermal transmittance; (8) optical transmittance coefficients; (9)
lifetime and (10) operating temperature [44,52]. The performance of the three types of smart glazing
systems is summarized in Table 2 according to the climatic conditions while highlighting the main
variables addressed in the studies.
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Table 1. Summary of smart glazing types.

System Electrochromic Glazing (EC) Suspended Particle Devices (SPDs) Liquid Crystal Devices (LCDs)

Design
Principle

• EC glazing is 1µm thick of purely ionic
conductor placed between electrochromic
and counter electrode layers that are placed
between transparent electrical conductor
layers [53].

• Change optical properties by switching
between their oxidized and reduced
forms [45].

• SPDs consist of 3–5 layers by which the
active layer contains needle-shaped dipolar
particles of polyiodides [54].

• Particles are less than 1 µm in linear size [55].
• The size of the particles is usually less than

200 nm to minimize light scattering and
avoid non-desired haze [48].

• LCD consist of liquid crystal material
positioned between two sheets of glass [56].

• LCD has field sequential color displays that
uses red (R), green (G), and blue (B) light
emitting diodes (LEDs) without noticeable
color breakup [57].

Types and
Materials

• Conventional Electrochromic (CEC)
glazing [58].

• NIR switching electrochromic (NEC)
glazing [59].

• “Dual-band” electrochromic (DBEC) [60].

• Evacuated vacuum SPD [61].

• Polymer-stabilized blue phase (PSBP) [62].
• Polymer-dispersed LC (PDLC) reported [63].
• Liquid crystal on silicon (LCoS) displays [64].
• Optically isotropic LC (OILC) [62].
• Gel dispersed liquid crystals (GDLC).

Working
Mechanism

• EC glazing has a visible light transmission of
62% and allows 47% of the incident solar
energy to the building interior in the clear
state [52].

• Amount of incident solar energy going
inside the building is reduced by 81% when
a low DC voltage is applied [65].

• Solar irradiation is absorbed when the films
are tinted.

• Thermal energy is re-radiated based on the
emissivity’s of the films and the glass [65].

• During the “off” state, the SPDs are
randomly oriented and absorb/scatter
visible light [48].

• Then SPD shows a bluish-black dark color.
• The scattering effect is due to the particles

and is most prominent at short wavelengths.
• During the “on” state the electric field is

applied and the particles line up
perpendicularly to the substrates.

• Then, more light is allowed to pass through
to increase the transmission [48].

• Liquid crystal molecules are aligned in
parallel with the glass surface [56].

• When voltage is applied, the direction is
changed and they become vertical to the
glass surface.

• Then light passes through the droplets with
very little scattering and resulting in a
transparent state.

• The quantity of light transmission can be
controlled by combining the motion of liquid
crystal molecules and the direction of
polarization of two polarizing plates
attached to the both outer sides of the glass
sheets [56].
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Special
Features

• Applied on large-size glazing [66].
• Switching speed is influenced by

environmental conditions and glazing area.
The coloring takes longer time than
bleaching [53,67].

• Electrically actuated EC glazing absorbs
Infra-red spectrum of solar radiation [68].

• The higher the glazing surface temperature,
the lower the power required to switch [69].

• A typical EC have visible transmission of
Tv = 0.65 − 0.50 and fully colored
transmittance of Tv = 0.25 − 0.10 [44].

• The shading coefficient (SC) is about
SC = 0.67 − 0.60 for the bleached condition,
and SC = 0.30 − 0.18 for the fully colored
condition [70].

• There is no memory effect for the optical
properties and the electric field must be
maintained for keeping the SPD
transparent [48].

• The light transmission of SPDs is controlled
by the application of high amplitude
alternating current voltage (AC) [48].

• Controls only the visible solar spectrum and
transmit Infra-red (IR) spectrum [44].

• Over all heat transfer of 5.9 W/m2 K [71].
• Solar heat gain coefficient change from 0.05

to 0.38 [72].

• At opaque state, LCD glazing scatters the
light, become haze, and provides no control
of Near-IR [44].

• Operating voltages are in the range of
20–100 Vrms to maintain the clear state of the
device [73].

• This technology is used in interior and
exterior settings for privacy control.

• The visible transmittance range is typically
50–80% and the solar heat gain coefficient
(SHGC) is 0.55–0.69 [74].
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Table 1. Cont.

System Electrochromic Glazing (EC) Suspended Particle Devices (SPDs) Liquid Crystal Devices (LCDs)

Benefits

• Requires power only during switching,
where they consume a low voltage to switch
usually 1–5 V.

• Constant dimming and most designs have
long-term memory usually 12–48 h [44,53].

• Has a low energy consumption, usually
8 W/m2, and becomes almost zero when
they are kept at constant conditions, due to
their considerable open circuit memory [75].

• Coloration phases are virtually infinite and
are capable of blocking both direct and
diffuse solar radiation [52]. Improves the
daylighting of buildings and offices, which
leads to significant cost savings and improve
labor productivity [50].

• SPD glazing is the most suitable among other
types of glazing for building application.

• Can connect directly with AC main power
supply without the need for conversion
system (EC glazing requires an AC to DC
inverter to connect with mains) [76].

• Controls solar heat gain due to its variable
transparency [72].

• Facilitates switchable single or double
glazing systems [71].

Optical response times are around 1–3 s,
which is the same range as for LCD devices
and less than EC devices [48].

• Recent advances in next-generation LCDs
with a fast response time [77].

• OILC use makes wide viewing angle without
an alignment layer [77]. Optical response
times are around 1–3 s, which is less than EC
devices [48].
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Table 2. Performance of smart glazing types according to climatic conditions.

Parameters Performance of EC Performance of SPDs Performance of LCDs

Variable
addressed

• Energy saving
• U-Value
• Switching Power

• Response time
• Material and optical transmittance
• Haze coefficient

Cold climatic
conditions

• Large-size EC windows facing south-east,
used in a building in Oakland, California
during winter was tested and the result
showed that on a clear winter day, the
average window luminance exceeded 850
cd/m2 and the lighting energy was
reduced by 6–24% in the 11% glazing,
while the energy was 3% reduced when
13% glazing was used [53].

• Using a thermally insulated test cell yielded a U-value
of 5.9 W/m2 K in cold climate in Ireland [71]. While the
use of low heat loss switchable SPD glazing offered a
low overall U-value, which varied between 1.00 and
1.16 W/m2 K in Ireland [61].

• Gosh et al. (2016) also tested the potential of powering
SPD glazing from photovoltaic device and found that
for a 1 m2 of SPD glass under cold climatic conditions in
Dublin the switching power consumption is 10.42 kWh
which can be supplied by 1 W PV. Thus, there is a
potential combination for SPD and PV for future low
building annual energy consumption [76]. A 40 Wp PV
device continuously powered a 0.07 W SPD glazing.
Low sizing ratio of 1.12 between PV and inverter
offered less power losses from inverter output [76].

• Glass gel-dispersed liquid crystal (GDLC) which has
high quality electro-optical behavior was investigated in
order to overcome the limitations of regular PDLC at
cold climate in South Korea and showed a fast response
time of ~0.5 and 3 ms which is 10 times shorter than that
of PDLC, respectively for the on and off processes, high
contrast and low haziness [78].

• The use of films of silver nanowires was investigated by
Khaligh et al. (2015) in Ontario, Canada as an alternate
electrode material to the PDLC [79]. It was found that
the material and fabrication costs of silver nanowire
films are lower than ITO and enable transparency of
∆Ton – off = 57% versus ∆Ton – off = 46% for the
ITO-based devices and a lower voltage supply [79].

• A 20 µm commercial PDLC layer has been developed in
South Korea between ITO coated polyester films to
achieve a device with haze coefficient changing from
0.09 to 0.90. The device exhibits good temperature
stability between 0 and 60 ◦C [80].

Variable
addressed

• Power and energy consumption • U-values and SHGC
• Transmittance reflectance, color appearance and haze.

• Light transmittance

Warm and hot
climatic

conditions

• EC devices can lead to a 30% reduction in
the annual power consumption and in
peak demand by 23% in large area
buildings in hot climatic conditions [81].

• Up to 50% of the primary energy
consumed in air-conditioning is saved by
the use of EC windows [82].

• It was claimed by Gosh et al. (2016) that high U-values
and variable SHGC makes the SPD glazing to be
suitable for summer.

• (SHGC) varied between 0.05 (when opaque) and 0.38
(when transparent) and U-value varied between
5.02 W/m2 K and 5.2 W/m2 K for the two states and
showed 6 kW h cooling load reduction [72].

• Total and diffuse components of transmittance and
reflectance, along with color appearance and haze were
used in model calculations to predict the thickness of
the active layer during summer period and showed
thicknesses of 200–300 µm as most optimum for
SPD-based smart window applications [48].

• The light-controlled transmittance in a
polymer-dispersed liquid crystals (PDLC) device was
investigated by Cupelli et al. (2009) during warm
climate in Calabria, Italy. It was claimed to self-increase
scattering as a function of the light intensity and
self-control the incident daylight and glare as a function
of incident intensity both in building and automotive
applications [83].
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Table 2. Cont.

Parameters Performance of EC Performance of SPDs Performance of LCDs

Variable
addressed

• Energy consumption
• Energy savings - -

Mixed climatic
conditions

• The energy consumption of EC windows
was tested in cold and hot climates in two
prototype buildings in Chicago and
Houston. The results suggested that the
annual peak electric demand was reduced
by 7–8% for moderate-area windows and
by 14–16% for large-area windows in
either climates [46].

• The performance of near-infrared
switching electrochromic (NEC) window
glazing was tested, using the COMFEN
software to simulate a broad range of
NEC performance levels, for commercial
and residential buildings in 16 climatic
variations-representative reference cities.
The results showed an annual HVAC
energy savings up to 11.6% with potential
as high as 11 kWh/m2 per year for
commercial buildings, and up to 13% with
15 kWh/m2 per year for residential over
the highest performing static glazing [84].

• EnergyPlus software was used to simulate
annual energy performance of the
dual-band electrochromic (DBEC) glazing
and indicated that DBEC is capable of
achieving annual primary energy savings
between 64.5 and 322.9 kWh/m2 of
window area from reduced heating,
cooling, and lighting demand [58].

- -
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2.2. Kinetic External Shading Systems

Kinetic shading systems follow the same concept as dynamic facades and were introduced to
satisfy some of the energy characteristics of the building envelope. The Lawrence Berkeley National
Laboratory (LBNL) in the U.S. describes kinetic shading systems (dynamic façades) as systems that
enable a building to reduce its lighting and cooling loads [85]. The development of these systems was
a response to the growing awareness of energy reduction in buildings. Their adaptability offers
the potential to achieve an energy-efficient environment, improve the comfort, balances indoor
environmental quality (IEQ), such as, reduced glare, view to outside, privacy, thermal comfort and air
quality and increase satisfaction and productivity of the occupants while minimizing the energy cost
and environmental impact [86–88].

The systems move in response to mechanical, chemical or electrical stimuli by which folding,
sliding, expanding, shrinking and transforming in the shading devices take place [89].

The development of kinetic facades presented in the literature are mainly concerned with the
functional possibilities and enabling technology [37]. The mechanism in the kinetic shading depends
on mechanical, chemical and electrical engineering where folding, sliding, expanding, shrinking and
transforming in the shading devices takes place [89,90]. In this literature review the dominant types;
rotating and folding shading systems have been explored.

2.2.1. Rotating Shading Systems

(a) Design Principle and Performance

As discussed earlier, rotating shading systems consist of a shading device made of either glass,
metal, fabric or timber and is designed to rotate around either a horizontal or vertical axis depending
on the position of its slates [91].

Glass lamella device have a better utilization of daylight over other systems [92]. The rotational
movement of kinetic facades creates slow responses on every panel of the facade, which prevents any
noise or distraction for the building’s occupants throughout the day [88]. The influence of external
dynamic louvers with light dimming strategies in an office building at hot and humid climate in
Abu Dhabi, UAE was explored. The results showed that the dynamic louvers with inclination angle
of −20◦ for the south had 30.31% energy savings, while with a 20◦ inclination angle for the east and
west orientations the savings were 34.02% and 28.57%, respectively [93]. Similarly, a new double skin
façade with movable integrated shading louvers was investigated and showed that during the entire
year the proposed façade significantly improved the building energy behavior, especially when the
winter configuration forced convection was considered [94].

The cooling and heating energy savings of four types of kinetic façade systems; the overhang,
folding, horizontal louver, and vertical louver were investigated by Kensek and Hansanuwat (2011)
at hot climate in California in U.S. It was found out that the most optimal shades are overhang and
horizontal louvers and were able to rotate for 90 degrees, and decreased the energy consumption by
33% for cooling and 30% for heating [95].

(b) Material

The rotating shading devices are made of different materials, but predominantly use:
(i) glass louvers, (ii) metal louvers and (iii) timber louvers. Examples of building applications with
their performance are illustrated in Table 3.

(c) Carrier system of the shading device

The carrier system of the shading device may vary depending on the application type, the size of
the louver and the span (Table 4).
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Table 3. Application of materials of external shading systems.

Material Glass Rotating Shading System [96,97] Reproduced with the Permission from COLT Company, 2017.

Building application example
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Table 3. Cont.

Material Anodized aluminum shading device [99] Reproduced with the permission from COLT company, 2017.

Building application example
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Building application example 

 
University of Potsdam, Germany 

Shading system design description Vertically folding shutters which open and closed according to the position of the sun. 

Benefits 
• Dynamic and variable according to the weather situation. 
• Aesthetical kinetic appearance for the building. 
• Reduction in cooling energy and glare from direct sunlight. 

Table 4. Carrier systems of shading device. 

Carrier Diagram Description Application

System 1: Straight 
carrier bracket [100] 

 

Intended for wider spans, carrier system 1 
incorporates a central aluminum torsion tube 
along the entire length of the louver, and is ideal 
for continuous facades, as well as for roofs. 

Suitable for use with a variety of louver materials 
including glass, metal, fabric and timber wood. 

University of Potsdam, Germany

Shading system design description Vertically folding shutters which open and closed according to the position of the sun.

Benefits • Dynamic and variable according to the weather situation.
• Aesthetical kinetic appearance for the building.
• Reduction in cooling energy and glare from direct sunlight.
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Table 4. Carrier systems of shading device.

Carrier Diagram Description Application

System 1: Straight carrier bracket [100]
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Table 4. Cont.

Carrier Diagram Description Application

System 4: Hung design carrier [100]
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This allows for seamless continuous louvers with 
unobtrusive supports when viewed from the 
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System 5: Metal 
support clip [100] 

The patented louver clip is adjustable in 
increments of 15 degrees. The plastic clip allows 
for thermal expansion of the blade and ensures 
that louver blades cannot rattle against the 
rafters. 

Applied for metal louvers. 
 

 
 

Carrier system 4 provides a back hung
end pivoted solution with hidden control
mechanisms integrated within the main
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2.2.2. Folding Shading Systems

(a) Design Principle and Performance

An effective type of shading systems is the shape morphing solar shading also called the folding
shading system or the Origami shading device. This type of shading had been applied in several
engineering fields, in adjustable and reconfigurable structures. Folding geometries have been used
in biomedical devices [101], and in space and aircraft applications [102]. However, in architecture
the use of folding Origami has only been recently experimented, especially as a shading device.
When installed, they usually have different typologies of movement such as, translation, rotation and
scaling, where external forces are required. Recent trends in shading device design have been trying to
replace traditional mechanical systems with integrated multifunctional and smart actuators and are
responsible for moving or controlling the mechanism [103].

Usually, sensors are able to analyze the variation of an external stimulus and transfer the
information to the actuator, which provides the structure with a change in one of its properties [104,105].
The application of shape morphing solar shading in buildings depends on the following criteria that
are considered to identify and analyze in detail the most suitable smart materials [106]:

• Corrosion resistance.
• Durability (life cycle of the smart movement/shape memory effect)
• Stimulus responsiveness (solar radiation, outside air temperature, electrical stimulus)
• Workability (process and adaptability)
• Achievable movements
• Impressing force

(b) Material

Recently, there are no solar shading devices that are entirely made of smart materials due to the
material properties and costs. Therefore, smart materials are still used either as sensors or as actuators.

The types of smart materials of folding shading systems (either sensors or actuators) are illustrated
in Figure 2 [106].
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Figure 2. Smart materials types for folding shading systems.

Stimulus-responsive materials (SRMs) are the most suitable smart materials for shape morphing
solar skins. This is due to their ability to respond to external stimulus through a change of their
physical or chemical properties [107]. This type of smart materials is grouped into two main types as
shown in Figure 2:

1. Shape change materials (SCMs) [106]: They are able to change their shape when right stimulus is
present commonly a potential difference.

2. Shape memory materials (SMMs) [106]: “They are included in all the materials that are able to
hold the modified shape until the appropriate stimulus is applied to activate the shape recovery
cycle” [107,108]. Usually, those materials are activated by a difference in temperature.
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A study compared, described and listed the properties of the three types of SMMs that are used
either as sensors or actuators for solar shading devices [106]. The comparison showed that the SMPs
is the most promising system, due to the fact that their global deformation is sensibly higher (800%)
than Shape Memory Alloys (SMAs) (up to 10%) and Shape Memory Hybrids (SMHs) (up to 6–8%).
However, in the time being, SMAs are the most durable shape memory materials since they are able
to exceed 200,000 cycles, where SMPs have been tested only up to 200 cycles and SMHs have not
undergone any tests [106].

(c) Building Applications

There are different types of shape morphing shading systems that can be applied in buildings.
They usually move in response to variable external conditions, and they have the ability of minimizing
energy required to perform adaptation. The movement of the folding shading systems has two main
typologies [106]:

1. Translational movement which performs a bi-dimensional change of shape. It is linear and allows
adjustment levels in the building skins by size-opening variation and by overlapping layers.

2. Rotational movement which performs a tri-dimensional change of shape; and performs swivel
motion both in the same axis and/or around a different axis.

In both typologies an actuator is required, and it can be completely embedded into the device or
strategically located to trigger a specific action. The different typologies of folding shading devices
applied in buildings are shown in Table 5.

Table 5. Different types of folding shading systems.

Reference Study Shape Motion Smart Actuator

Flectofin [109]
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2.3. Integration of Renewable Energy Systems

2.3.1. PV Integrated Shading Device

(a) Design Principle and Performance

The integration of PV materials into shading systems was introduced in 1998 [116]. Integration of
renewable energy generation can be applied in a very effective way in the shading devices, combining
a dual benefit: shading and production of electricity. Integrated PV shadings could be used to provide
energy controlling shape morphing devices.

Several studies were done on integrating PV panels as solar shadings and providing maximum
PV performance. Researches were carried out different studies during 2002 and 2011 about integrating
PV in the building as shading devices, the results showed that the use of BIPV as exterior solar shading
devices produces on-site electricity and reduces cooling loads by 10% and 9.2% in building [117,118].
In another study, a prototype of a PV-integrated shading device on venetian blinds was built and
monitored, where each blind consisted of a glazed static concentrator and of crystalline silicon bifacial
solar cells. The result showed that the efficiency of PV cells was improved by 85% and represented
a very good result for facades’ applications [119].

Building integrated PV (BIPV) systems are used for generating electricity and as shading devices,
they can be integrated into the building envelope, such as the roof, cladding, window shading,
semi-transparent windows and façades. Additionally, they can reduce the use of building materials
and electricity costs, reduction in use of fossil fuels and emission of ozone depleting gases [120].
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Visual and the thermal performances of transparent BIPV on windows have been compared and
revealed that in residential buildings in hot humid climate regions BIPV with slat angles of 60◦ and
68◦ provided good visual and thermal effect [121]. Mandalaki et al. also carried out several studies
during 2012 and 2014 in hot climatic conditions on the visual and thermal comfort of PV-integrated
with fixed shading devices. It was found out that shading devices with integrated south facing PV can
produce electricity to be used for lighting and that the theoretical efficiency of 12% is satisfactory for
simple geometries [41].

A prototype of a solar-powered automatic shading device was built and tested in Indonesian
climatic conditions. The results showed a 3 ◦C decrease in the indoor air temperature due to the control
of incoming solar radiation [122]. Kim et al. performed a study on a PV-integrated adjustable shading
device combined with daylight responsive dimming system in Korea and results showed 32% increase
of power production and a 35% reduction of energy consumed by lighting systems [123].

(b) Building applications

The design characteristics of shading devices (SDs) with integrated photovoltaic panels (PVs)
for residential building facades were studied for cooling and heating weather conditions in Crete.
The results defined the best position PV-integrated shading devices according to the best lighting
levels for tasks [124]. Thirteen different forms of monocrystalline PV panels mounted on south-facing
shading devices of office buildings in Mediterranean region were evaluated [125]. The results showed
that the best form of shading device integrated with PV was the “Brise-soleil full façade” which had
the best optimization in the heating, cooling and lighting loads [125]. Integration of PV panels on
louvers is another alternative in which the blade is exposed to provide full ventilation and can be tilted
to maximize the efficiency [126]. The integration of PV panels on several fixed shading systems was
tested by Mandalaki et al. (2014) for cooling purposes in Crete and found that the Brise–Soleil systems
is the most efficient system where it ensures visual comfort and sufficient energy production [126].

2.3.2. Solar Collectors Integrated Shading Devices

(a) Design Principle and Performance

Solar collectors are used in buildings to reduce energy consumption and carbon emissions [127]; they
are usually installed on building facades, roofs, balconies, awnings and outdoor spaces, which are
called building-integrated solar thermal (BIST) systems [128,129]. Integration of solar collectors with
exterior shading devices can reduce solar radiation and at the same time generate heat.

Solar collector devices have been investigated in some researches, and research methods typically
include heat output estimation, numerical model calculation [43,130] and simulation analysis [131].

A study integrated shading device with a solar thermal system for water heating and analyzed the
system in buildings in temperate and Mediterranean climatic conditions of Portugal and Spain [132].
The two cases were compared; a real case that has a completely sunlit louver and two shaded louvers,
and an ideal one with three completely sunlit louvers. For the real case, the shadings reduced
transmitted energy by 7% for the 15◦ inclination on horizontal plane, 12% for the 30◦ inclination and
17% for the 45◦ inclination. For the ideal case, the optimum angle was 25◦ [132]. The payback period
was 6.5 years and the CO2 savings was 8.6 tons [132].

(b) Building applications

A full-size prototype of solar collector was installed on a shading louver and showed that
when the solar radiation was enough, the systems did not require auxiliary heating equipment and
the performance was 20% more than the performance of conventional solar collectors with natural
circulation function [133].

The integration of solar collectors in buildings at hot and humid weather in Kuala Lumpur
has been investigated by Saadatian et al. and the results highlighted that there are several ways of
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integration including mounting on a structure on the roof or window separated from the building
or superimposed, where the collectors are mounted on a structure of the building envelope and are
arranged in parallel [134].

Another study evaluated the heat pipe solar collector attached on a louver under a range of
climatic conditions in the UK [133]. The indoor experimental results showed the performance of the
new design to be very promising, even though the collector materials were not carefully selected.
Increased collector efficiency can be achieved by increasing the number of heat pipes in the louver
with only minimal increase in louver cost [131].

2.3.3. Algae Façade Systems

(a) Design principle

Algae façade systems grow micro-algae in order to generate heat and electricity and are used as
external cladding elements and dynamic shading devices [42]. Double skin façades were developed
for the purpose of protecting curtain walls from the sun. Several transparent façade technologies have
been introduced in buildings, such as insulated glass unit (IGU) and shading device (such as stretched
metal, frit, suspended film) [135]. The use of those technologies in buildings is to protect the building
from excessive heat gain and improve the performance of the building. However, those technologies
are not enough for achieving high performance building. In order to do that, energy generation must
be achieved from the integration of those technologies; such as Photovoltaic and solar thermal systems.
As an alternative for high performance facade, an algae facade system has been introduced.

Kim investigated the algae façade system, which consists mainly of an algae panel, aluminum
framing and algae growing apparatus in the University of North Carolina in the U.S. as illustrated
in (Figure 3) [42]. The size of the system is 1.5 m wide by 3.65 m tall or taller depending on building
conditions, consisting of both vision zone and algae zone [42]. The purpose of the clear vision zone
is for view, daylight and ventilation, while the algae zone is for growing algae. The algae growing
apparatus is comprised of intake systems for supplying CO2, and growing algae (e.g., algae, nutrients,
medium etc.) and discharging systems for emitting O2 and collecting grown algae [42]. The mechanism
of work in this system is achieved first by water being filled in the vertical glass louvers that contains
nutrients which convert daylight and CO2 to algal biomass through the bio-chemical process of
photosynthesis; at the same time the water is being heated up. Secondly, the biomass and the heat that
is generated by the façade elements are transported by a closed loop system to the plant room, where
both forms of energy are exchanged by a separator and a heat exchanger respectively. The temperature
levels of the heat generated can be adjusted by using a hot water pump for the supply of hot water
and for heating the building [136].
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(b) System Performance

Kim has performed a few studies about the performance of algae façade systems. In one of
the studies [42] the aim was to identify the feasibility of the algae façade system through schematic
design and prototyping. The mechanism of algae facades was explained. Tests were conducted
in a sunny winter noon in outdoor environment using a FLUKE (2006, SmartView (Version 3.2),
NC, USA) thermography system with its software package. The result showed that the algae façade
system has the future potential for sustainable façade alternatives and energy generation possibilities.
The computer simulation on structural behaviors provided alternative design solutions to meet stress
and stiffness criteria under various loadings, in addition to fabrication challenges associated with
watertight interfaces between the vision zone and the algae zone [42]. Another study by Kim about
bio-facades or algae façade systems showed a retrofitting case of a building [137]. The result showed
that the algae facades reduces the energy consumption and CO2 emissions, where the retrofitted
building energy consumption was reduced by 30% compared to an existing building due to the
thermal and daylighting performance improvements. Moreover, the retrofitted façade reduces the
life cycle cost by $110,000 and reduces the life cycle by 200 tons, and CO2 generation due to the
photosynthesis process, which was 150 tons over the 30-year life cycle [136].

Usually, about 40 ◦C heat is obtained from the façade and is either used directly to heat water or
stored in the ground to be used in a geothermal system. The efficiency of the conversion of light to
biomass is 10% and to heat 38%. For comparison, photovoltaic systems have an efficiency of 12–15%
and solar thermal systems 60–65% [136]. Therefore, algae façade is a competitive opportunity relative
to these other technologies. Additionally, the algae façade helps improve the overall CO2 balance by
removing CO2 from flue gas at quantities equivalent to the build-up of biomass [136].

(c) Building applications

The first algae façade integrated in a building was in the BIQ which is a part of the International
Building Exhibition (IBA) 2013 in Hamburg, Germany [136]. The building used 129 "bioreactors” or
algae façade, when sunlight hits the facade, photosynthesis process causes the microorganisms to
multiply and causes the water to go about 40 ◦C , the heat then stored to be used for other uses [136].
Currently, the building reduces the overall energy needs by 50%, and the designer of the system says
100% is achievable by combining it with solar panels to power the pumps and heat exchangers [136].

Another application of the algae façade system was in the GSA Federal Building in Los Angeles
that won first place scheme for the 2011 Ideas competition, where an “algae photo bioreactor tube”
was attached to the top surface of the opaque building envelopes [136]. Similarly, the same company
made a net energy zero Battery Park project in San Francisco that applied “algae photo bioreactor
panels” to grow algae and reduce CO2 [136].

3. Controls of Active Shading Systems

The control of the movement of dynamic shading can be either user manual control strategy or
automatic control strategy.

3.1. User Control Shading Devices

Shading devices in buildings are linked to occupants’ behavior. There are many studies that
focused on the relationship between user comfort and shading operation.

Most of the researches done on user’s response to these systems are related to the manual use
of blinds [138]. A survey explored the factors that affect the occupants’ comfort in Danish residential
buildings [139]. The results suggested that most of the occupants preferred manually-controlled,
especially for artificial light, windows opening and solar shading [139]. In another study, 800 building
occupants were interviewed, and 90% preferred the use of automatic blinds because they thought they
provided a better indoor quality [140]. The position of remotely controlled blinds in eight individual
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offices for 30 weeks was evaluated and showed that remotely controlled blinds were used three times
more often than manually controlled ones [141].

Galasiu and Veitch pointed out that the results of the studies on manually operated blinds are
helpful in favoring automated ones in Ontario, Canada [142]. Reinhart and Voss studied the reasons
that trigger occupants’ reaction to shading devices in Germany and found out that they tend to close
their blinds to avoid direct sunlight above 50 W/m2 on the work plane surface [143].

Wienold analyzed different shadings control strategies in Germany in order to design a shading
system based on real user behaviors and the result showed that when a manual control is provided
especially in summer, the shading device is rarely activated [144].

It was claimed that occupants had a positive experience when automated dynamic shading was
applied [145]. It is concluded that automated control strategies of shading systems are preferred and
are more beneficial in buildings.

3.2. Automatic Control Strategies

The use of sensors and actuators for controlling the movement of dynamic shading devices is more
beneficial when it comes to adapting to various external environmental conditions. Control strategies
and advanced control shading systems have positive impact on both the occupants’ comfort and the
energy performance of the building [146].

The operation of the façade components could be by occupancy, environmental variable, time or
utility price signals. Two types of loop controls can be used in buildings; open and closed loop control
systems [147,148]. The open loop motorized shading systems working mechanism depends on the
pre-calculated angle of incidence of sun light [149–151], or the illuminance sensor measurements of
the façade [143]. The control of the shading is based on three main types of control algorithms that
depend on the performance criteria they address [30]:

1. Threshold controllers: where the shading device gets activated when an external solar illuminance
or irradiance limit is exceeded.

2. Sun blocking controllers: moves the shading system or adjust the blind slat angle depending on
the sun position.

3. Mode and scene controllers: use a variety of sensors and different control algorithms [30].

Three types of control of the external shading devices were analyzed [152]. The first type was
based on external vertical irradiation level only; the second type was based on the interior temperature
level only, while the third type was the most effective one which was a combination of both types.
The external shadings are closed when both conditions are met and opened when at least one of the
conditions is met. A scaled model was built to test two types of control strategies for external venetian
blinds [153]. One strategy provided maximum slat openness, while the other one provided maximum
work-plane illuminance. The results indicated that for the low ground reflectance the energy savings
was 38.1%, while for the high ground reflectance, the energy savings was 55.3%. Bauer et al. developed
a logic based control algorithm that minimized thermal and artificial lighting energy demand [154].
The result showed that the smart blind controller achieved saving of 11% for the artificial lighting and
between 20% and 50% savings for heating/ cooling. A significant application of sensors application
in buildings is the case of the “Arab World Institute” in Paris, which is the one of first buildings to
apply sensor based automated response shading systems based on the environmental conditions.
The lens opens or closes according to the light quality inside the building. The system consisted of
photosensitive mechanical automated devices, 30,000 light sensitive diaphragms on 1600 elements,
which function like, a lens of the camera and all the mechanical devices are connected to a central
computer [155]. Examples of innovative controls of shading devices that depends on different strategies
for their movement are discussed in Table 6 below.
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Table 6. Innovative shading control systems.

Control Type Description Working Mechanism Diagram

Non electrical thermo-hydraulic
controlling system [156].

A self sun-tracking device designed to
control the external shading louvers.
Controls the louvers without the use of
electrical power or digital electronic
devices [156,157].

Consist of two fiber-reinforced polymer
absorber tubes. The tubes are filled with
special thermo-hydraulic fluid. When
the sun moves, one tube is more
irradiated to sun and heats up more than
the other tube. This causes the hydraulic
cylinder to move and rotate the louvers
into optimal shading position
throughout the day [156,157].
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4. Challenges, Limitations and Future Opportunities in Active Shading Systems

The application of dynamic smart shading has grown widely in order mitigate the building
conditions against excessive heat gain and glare. However, there are some challenges inherent to these
systems that should be considered in future research. Challenges, limitations and opportunities of
active shading systems are discussed in Table 7.

Table 7. Challenges and future developments of dynamic shading systems.

Dynamic Shading Type Challenges and Limitations Opportunities and Development

Electrochromic Glazing

• High initial cost (between 100–1000 US $/m2) and is more
expensive than other smart glazing types [44].

• High labor and maintenance cost compared to other
conventional glazing types [44].

• The optical properties that change the Near-infrared
switching electrochromics (NIC) are still little known [68].

• The performance of the NIC glazing might be affected by
the present climate changes [68].

• Low durability (sensitive to UV) [159]
• High increased surface temperature and slow coloration

process [160].

• Improve the Electrochromic glazing life time
expectancy and durability to be similar to
those of standard coated windows [44].

• Develop faster switching speeds (<5, 6 min) in
order to promote better savings in energy and
occupants’ visual comfort [161].

• Develop higher visible transmittances in the
bleached state (τV > 0.6) to allow more
daylight [161].

SPDs

• Lower transparency in the SPDs’ bleached state,
compared with the EC glazing [48].

• Undesirable haze [48].

• Improve the properties of the SPD glazing
and increase its transparency.

• Remove haze from the SPD glazing.
• Further research is required on the integration

of SPD glazing in buildings.

LCD

• LCD glazing is hazy because it scatters rather than absorb
light, so there is a fog factor even when the device is in
transparent state [44,82].

• LC glazing is either transparent or opaque with no
in-between states [44].

• Remove the haze from the LCD glazing.
• Improve the properties of the LC glazing to

have intermediate states between opaque and
transparent states.

• Investigate the application of the emerging
(GDLC) which less haze and yellowing than
conventional LCDs in different climate
conditions [78].

• Carry out further researches on the
integration of LCD glazing in buildings.

Folding shading systems

• Variable external conditions could limit the efficiency and
the movement of the folding shading systems [106].

• The behavior of the SMPs is limited to one-dimensional
deformation which limits their movement [162].

• Further studies should be undertaken on the
use of shape memory actuators in the
building industry; life cycle, solar activation,
and resistance to external weather
conditions [106].

• Further research on the use of smart materials
with dynamic shading devices [106].

• Further research on the control of the folding
shading systems in response to the
climate variations.

PV mounted shading

• Higher temperatures will decrease the power production
of the PV panels.

• Dust accumulation and limited tolerance to overheating
will restrict the expected performance and lower
the efficiency.

• Gap in PV shading systems in Mediterranean countries
where the amount of solar radiation is high.

• Further research required on cost assumption
of PV shading systems, particularly for
movable PV shading devices.

• To investigate materials that have long-term
durability and can stand the various climate
conditions (Snow, heat, dust, wind and air
tightness) [163].

Algae Façade System

• High initial cost (approximately $2500 per square meter
for the bioreactor system alone) [164].

• High maintenance cost.

• More research is required on working
mechanism alternates of the algae façade
systems in order to reduce their initial cost.

• More research to test its performance under
several climate conditions.

• As relatively new, the Verde system was
introduced in the market after the
development of algae façade system. Its main
function is to collect light and transfer it
through fiber optic cables, then algae is grown
within the bioreactor to generate energy. More
research is necessary to establish its properties
and part of the market [165].
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5. Conclusions

This paper reviewed the current status of active shading systems in buildings, exploring
their design principle, performance, working mechanism and building application. Six types
of active shading systems including the electrochromic glazing, the automated shading systems
consisting of the rotating and folding shading devices and the shading systems that integrated
renewable energy generation such as the PV, algae façade and solar thermal collectors were discussed.
The design principle, performance and application of each system were explored. Additionally,
the control strategies of the systems including user control automated control were reviewed. In this
literature review, 165 papers were examined to evaluate the different types of active shading systems.
The significant conclusions inferred from the reviewed studies states that:

1. The use of electrochromic windows is increasing; however, its high cost is still a challenge.
2. The electrochromic windows have always progressed in their performance and there is always

an emergence of new types such as the NIR and POMs which have better performance. However,
they are hindered by their high initial costs.

3. The use of folding shading systems is still limited because of the need of expensive smart actuators
and sensors.

4. Rotating shading system is the most applied and studied system among active shading systems.
Its low initial cost and available resources and materials including glass, metal, timber and fabric
make it attractive.

5. The use of automatic control strategies has been proven to be much more effective than the use of
manual user controlled systems due to the benefits they provide including the adaptation to the
external conditions.

6. The use of robotic controlling systems and the thermo-hydraulic controlling systems are emerging
automatic control systems that requires further investigation as there are limited number of
studies done on their performance, building application and use in varying climate conditions.

7. Additionally, more studies should be done on the integration of PV panels on this emerging type
of shading devices.

Furthermore researches must be done on to develop faster switching speeds of electrochromic
glazing to increase energy savings. Additionally the SPDs and LCDs suffer from haze in the
glazing, thus, further research must be carried out in order to decrease the haze and test their
integration in buildings. The movement of folding shading systems could be limited by the variable
external conditions, therefore further investigation under different climatic conditions is required.
Finally, the algae façade system is a promising immerging system that needs further exploration in
terms of performance and building application.
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Nomenclature

PV Photovoltaic
SPDs Suspended particle devices
EC Electrochromic devices
LCD Liquid crystal devices
LEDs Light emitting diodes
CEC Conventional electrochromic glazing
NEC Near-infrared Switching Electrochromic
DBEC Dual-band Electrochromic
PSBP Polymer-stabilized Blue Phase
PDLC Polymer-dispersed Liquid Crystal
LCoS Liquid crystal on silicon displays
OILC Optically isotropic LC
GDLC Gel dispersed liquid crystals
AC Alternating current
IR Infra-red
SHGC Solar heat gain coefficient
Tv Visible transmission
SC Shading coefficient
ITO Indium tin oxide
IEQ Indoor environmental quality
SRMs Stimulus-responsive materials
SCMs Shape change materials
SMMs Shape memory materials
BIPV Building integrated PV
BIST Building-integrated solar thermal
IGU Insulated glass unit
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39. Loonen, R.; Trčka, M.; Cóstola, D.; Hensen, J. Climate adaptive building shells: State-of-the-art and future

challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [CrossRef]
40. Drozdowski, Z. The adaptive building initiative: The functional aesthetic of adaptivity. Archit. Des. 2011, 81,

118–123. [CrossRef]
41. Mandalaki, M.; Zervas, K.; Tsoutsos, T.; Vazakas, A. Assessment of fixed shading devices with integrated PV

for efficient energy use. Sol. Energy 2012, 86, 2561–2575. [CrossRef]
42. Kim, K.H. Beyond Green: Growing Algae Facade. In Proceedings of the ARCC Conference Repository,

Charlotte, NC, USA, 12–15 February 2014.
43. Matuska, T.; Sourek, B. Façade solar collectors. Sol. Energy 2006, 80, 1443–1452. [CrossRef]
44. Lampert, C.M. Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells

1998, 52, 207–221. [CrossRef]
45. Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic

daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94,
87–105. [CrossRef]

46. Lee, E.S.; Tavil, A. Energy and visual comfort performance of electrochromic windows with overhangs.
Build. Environ. 2007, 42, 2439–2449. [CrossRef]
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