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Abstract: During the last decades, standards on building construction have risen sharply to integrate
new, ambitious demands regarding energy efficiency, as well as thermal and optical comfort
in the design procedure. Building simulation software assists in the accurate calculation of a
hypothetical or existing building’s performance on several aspects; but they are, in their vast majority,
assessment-oriented, rather than focused on dynamically supporting the decision-making procedure.
During the last two decades, a clear shift of design professionals and academia towards addressing
performance issues from the conceptual stages of a building’s design is observed. In this review,
the methodology of performance-driven design optimization using computational/parametric
design and optimization is presented, and the core literature available on the topic is reviewed
in order to identify the current status, different approaches, obstacles, and areas of future research
on the subject. The review findings confirm that there is enormous potential for the design of
better-performing buildings using this technique, but there are still many obstacles to overcome and
areas for future research.

Keywords: building simulation; design optimization; energy efficiency; performance-based design;
multidisciplinary design optimization; performance-driven design; evolutionary algorithms; early
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1. Introduction

1.1. Background and General Context

Almost four decades after the 1970s energy crisis [1], and under the concrete scientific facts on
human contribution to climate change, the environmental, or “green”, design of buildings has become
both a major concern and a very active research field. This is demonstrated, among other ways, by the
large number of building sustainability assessment schemes that have been developed worldwide,
such as Building Research Establishment Environmental Assessment Method—BREEAM (Britain),
Leadership in Energy and Environmental Design—LEED (USA), Green Building Tool—GB Tool
(Canada), Comprehensive Assessment System for Built Environment Efficiency—CASBEE (Japan),
and so on. These schemes may present variations and singularities [2] but, in their vast majority,
they integrate both social–economic criteria (management, innovation, economics, social, culture,
and quality of services) and environmental performance ones (sustainable site, transport, indoor
environmental quality, energy, waste, water, material, pollution) [3] since they are based on the concept
of sustainability.
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In this context, standards on building design construction have risen sharply to integrate new,
ambitious demands regarding the minimization of impacts on the environment (energy efficiency,
waste, and resource management) and the enhancement of indoor conditions (thermal, optical comfort,
air quality) in the design procedure [4]. New approaches have emerged, which adopt a more holistic
viewpoint, taking into account other factors, such as cost and life cycle considerations [5]. Moreover,
they tend to emphasize the interdisciplinary collaboration of the design and construction team
(integrated design) and the exploitation of technological advances, such as building information
modeling (BIM) [6].

The use of building performance simulation (BPS) tools is essential in the process of green
building design and such tools have assisted architects and engineers enormously in achieving better
standards by evaluating the proposed measures. Many BPS software tools exist to assess building
performance in terms of energy efficiency, indoor air quality, daylight-artificial lighting, acoustics,
solar and photovoltaic analysis, etc. [7]. However, even though the use of BPS software is mostly
valuable in the initial design stages, most BPS tools are assessment-oriented [8], rather than focused on
dynamically supporting the decision-making procedure.

When no optimization routine is present, the architect must explore the design space manually to
achieve a better design. This is normally done through an ineffective and time-consuming creative
process, where a small number of design alternatives is tested, and then, based on the results,
parameters are modified gradually to improve the design through trial and error. Since the late
1990s, a continuously-growing number of studies and reviews on the integration of performance
simulations in the early design stages has been observed, indicating a clear shift of design professionals
and academia towards a more comprehensive exploration of the design space to optimally address
performance issues from the conceptual stages of a building.

The combination of BPS and design optimization is both a design philosophy and a practical
technique [9] that has been around in the design practice and research for many decades. Several
different names have been given to this approach: CDO—computational design optimization [10],
performance-based design [11,12], design by simulation [13], MDO—multidisciplinary design
optimization [14–17], GDS—generative design system, or GOD—goal-oriented design [14,16]; however,
the term performance-driven design optimization [18] accurately represents its philosophy. When
used under a computational/parametric 3D modeling environment the term “generative” or
“computational” could add clarity to its description among architects who are familiar with these terms.
It has now become clear that computational performance-driven design optimization (CPDDO) is an
active research field, continuously gaining momentum among building professionals and academia.

1.2. Purpose and Significance of This Review

The primary objective of this review is to provide a comprehensive overview of computational
performance-driven design optimization techniques through a concise presentation of works that
integrate the simulation and optimization procedures in a parametric 3D modeling environment, and to
highlight the different approaches of engineers and architects on the subject. In an attempt to encourage
the use of CPDDO in the everyday architectural practice, emphasis is given on works that utilize
commercially- or freely-available and widely-used software packages, rather that privately-developed
tools for academic or commercial research purposes [16,19–24].

The significance of this review lies in the fact that even though most architects are highly concerned
with the environmental performance of their designs, they are not familiar with simulation and
optimization software, due to the nature of architectural education in the last decades (which typically
lacks the encouragement of skills’ development in coding, technical aspects, and analytical calculation).
They approach green building design based on general principles, rules of thumb, and passive design
strategies. Engineers, on the other hand, have studied building physics and optimization problems for
many years, under a more technical perspective over the building envelope and systems. They are
accustomed to coding, dynamic building simulations, optimization algorithms, etc. Therefore, an effort
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of bridging these two approaches together in one combined, seamless, and effective methodology is
extremely important and timely. Finally, this review can act as a valuable tool for architects to gain
an overview of the available research on performance-driven optimization so that they can integrate
valuable results in their particular field of study or practice, avoid already-made mistakes, and identify
areas of future research.

The focus on parametric 3D modeling is performed for various reasons:

• New generations of architects are becoming increasingly accustomed to digital processes of design
generation and representation, demonstrating a global trend on algorithmic or parametric design
in architectural practice and academic environment.

• New software tools have been developed that exploit powerful synergies, making it possible for
building design simulation and optimization to be seamlessly integrated in digital representation
software, thus allowing instantaneous feedback for the ongoing process of synthesis.

• The need to address multiple, contradicting objectives at the same time, during all stages of the
design process, is becoming more and more imperative, making the establishment of a holistic
approach for sustainable building design an urgent request.

1.3. Review Contents and Methodology

At first, the general topic of performance-driven design optimization is briefly presented by its
analysis in three combining aspects: environmental performance simulation, design optimization, and
digital/computational design. Then, previous reviews on relevant subjects are referenced and core
literature on computational performance-driven design optimization is identified through a review of
relevant works, mostly journal articles and conference proceedings. Finally, the conclusions drawn are
presented after the discussion section.

The thirteen works that are referenced in Section 2.4 [25–37] were identified as those that present
an integrated and automated procedure of computational performance-driven design optimization for
specific case studies, without the manual exchange of files between different software tools or extensive
custom scripting; i.e., those works that utilized parametric modeling as an organizing framework with
simulation, optimization, and graphical 3D representation integrated and already available in the
same software package. Therefore, works that did not fulfil all of the above criteria (such as generic
optimization [38] or parametric studies [39], computational design studies without an automated
optimization procedure [14,40–43], energy consumption assessment studies, etc.) were excluded from
the study, leading to a very limited number of publications.

2. Analysis

2.1. Computational Performance-Driven Design Optimization

The topic of computational performance-driven design optimization consists of three aspects:
environmental performance simulation, design optimization, and parametric/computational design.
Each individual aspect is considered, by itself, a wide and active research field, but together they
form a powerful synergy for the effective and optimized design of environmentally friendly buildings
(Figure 1).
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Figure 1. Computational performance-driven design optimization is the combination of computational
design, evolutionary optimization, and BPS in a 3D modeling graphical context.

2.1.1. Building Performance Simulation

Building performance simulation (BPS) refers to the methods used to accurately calculate a
hypothetical or existing building’s performance on several aspects, such as energy, daylight, acoustics,
Heating, Ventilation and Air Conditioning (HVAC) systems, indoor air quality, costs, etc. The use of
BPS software is essential in the process of green building design, which aims at reducing the negative
impacts on the environment and the occupants through strategies that conserve resources, reduce
waste, minimize the life-cycle costs, and build a healthy environment for people to live and work.
During the last two decades, simulation software tools have become widely available and specialized,
but their organic integration in the design process is still limited due to obstacles already identified
by Hien et al. in 2000 [44], such as a lack of pressure/appreciation from the client, high cost of
software acquisition, insufficient staff training/skills (due to steep learning curves), and CAD-BPS
interoperability issues [45] that extend the, already limited, design time.

BPS is mostly valuable in the early design stages, since design parameters, such as shape,
orientation and envelope configuration can affect a building’s performance by up to 40% [46], but
also affect substantially its construction and operational costs. Nevertheless, most BPS tools are
assessment-oriented [8] and are used to validate the performance or maximize the efficiency of a
project with an already-established geometry (post-optimization) [30], rather than to dynamically
support the decision-making procedure. In addition, the informative support they offer concentrates
mainly on the envelope and systems, rather than the geometry setup. Several challenges contribute to
these facts, such as time-consuming modeling, large design variability, conflicting requirements, input
uncertainties, and other factors [47].

2.1.2. Design Optimization and Genetic Algorithms

The need for design optimization arose from the simple fact that when designing a building, the
architect is faced with choices and measures which may have contradicting effects on the building’s
performance. As Coley and Schukat pointed out [48], simply minimizing the heat loss from a building
is not sufficient for an exemplary low-energy design, since overheating or compromising of the
building’s functionality may occur. Moreover, low energy consumption can be achieved until a certain
point by individual measures, but exceptional performance requires the concerted application of
measures that, combined, optimize the performance of the whole building system.

From as early as 1990, Bouchlaghem and Letherman [49] introduced a numerical optimization
method applied to the thermal design of non-air-conditioned buildings, combining an optimization
technique and a thermal analysis model. Early optimization studies used the generic optimization
process [50], but soon it became clear that multi-objective optimization (MOO) methods were more
suitable to the complex nature of building optimization, because they would allow the assessment of
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multiple variables or conflicting objectives, and find sets of global Pareto optimal (non-dominated)
solutions. According to Marks [51]: “the basic notions in the formulation of a multicriteria optimization
problem are decision variables, constraints, and optimization criteria, also called objective functions”.
The designer can choose his preferred solution over several Pareto optimal ones [52] using an additional
criterion, such as personal aesthetics. On this basis, one can seek to minimize building and heating
costs, greenhouse emissions and other parameters related to the sustainable building design. Therefore,
the environmental design of buildings arises as a MOO problem which, in current design practices,
is solved intuitively and by human judgment.

Stochastic methods, such as evolutionary algorithms (EAs), can be used to assist in the resolution
of MOO problems, by mimicking the systems and techniques encountered in evolutionary biology,
thus shortening the timeframe through a more efficient search of the global solution space (Figure 2).
Concepts, such as inheritance, mutation, natural selection, and crossover, are used to aid in the
search for an optimal set of solutions to a given question. Since the first multi-objective evolutionary
algorithms were introduced in the mid-1980s [53], they have seen a rapid increase in publications
and applications in multiple scientific and engineering disciplines. Several types of EAs have been
utilized in building design optimization, (genetic algorithms, evolutionary programming and genetic
programming, covariance matrix adaptation evolutionary strategy, differential evolution, harmony
search, particle swarm optimization, ant colony optimization and simulated annealing) and genetic
algorithms (GAs) dominate the field in the aspects of envelope, form, HVAC, and renewable energy
systems [54] optimization.
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Figure 2. Diagramatic illustration of how genetic algorithms shorten the time-frame of a solution space
search. In conventional parametric analysis (a) every possible solution is tested to identify the global
optimum whereas when using genetic algorithms; and (b) a more efficient search is conducted utilizing
evolutionary principles.
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GAs are used to search the solution space (building parameter combinations) more efficiently,
since they can handle non-linear problems of many dimensions and are capable of processing large
quantities of noisy data efficiently [48]. Moreover, they can be applied in search spaces with many
local minima, because of their ability to search using a population of points and not a single point,
which limits the probability of the search getting trapped in a local minimum [55]. GAs have been
used in building design applications for spatial problems (floor layout, usage assignment on buildings
and building sites) [46,51,56], optimization of the sizing and control of HVAC systems [57], and for
structural analysis and optimized design of trusses, beams, and columns [21,58]. The latest attempts
follow the whole-part approach [46], attempting to apply GAs on the design of three-dimensional
shapes [26,29] to help architects at early stages of design.

2.1.3. Digital/Computational Architectural Design and Parametric 3D Modeling

Due to rapid technological advances, the nature and scope of computer aided design (CAD) have
evolved from, initially, a replacement method for hand drawings (to maximize efficiency), to, later,
a tool for rule-(or grammar)-based design generation [59] and, currently, into tools that can handle
some of the complexity of biological design processes which are still being discovered by scientists
(bio-CAD). Therefore, there needs to be a distinction between CAD (computer-aided design) and
DAD (digital architectural design), since the first imitates paper-based design, whilst the second is
introducing a different, computational method of conceptualization and synthesis [60].

In 2014, Jabi [61] defined computational design as “a process based on algorithmic thinking
that enables the expression of parameters and rules that, together, define, encode, and clarify the
relationship between design intent and design response”. Algorithmic or computational design is
mainly an efficient way of flexibly describing and creating geometry through scripting, a way in
which decision variables and constraints (parameters) are linked to geometry, interdependencies are
established between objects, and transformational behavior of these objects is defined [59]. When
designing forms or systems, this method offers dynamic control over geometry and components,
allowing the designer to seek appropriate solutions on complex problems with the assessment of
multiple variants at the same time.

In an attempt to make scripting more accessible to architects and designers, for them to be able to
produce parametric 3D models, visual programming (VP) systems were developed. In 1990, Myers [62]
defined a VP system as “any system that allows the user to specify a program in a two- (or more)
dimensional fashion”. In the same way, VP systems make it possible for nonprogrammers to create
fairly complex parametric 3D models with little training. Since then, it is clear that VP systems have
evolved enormously, making parametric 3D modeling increasingly accessible to the design practice
through software like Grasshopper (Robert McNeel & Associates) [63], Dynamo BIM (Autodesk,
Inc.) [64], and GenerativeComponents (Bentley Systems) [65]. Figure 3 is intended to provide a general
sense of the user interfaces (UIs) of the above-mentioned widely-used VP systems, in order to highlight
the difference, not only in mindset, but also in the every-day designing practice (software layout, UI,
drawing tools) of architects when using CPDDO.
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2.2. CPDDO’s Influence on the Creative Process

Based on the above, it is clear that there is a shift from analytical simulation to simulation for
synthesis and generation [60]. Architectural design is conventionally viewed as a process of repetitive
cycles of generation/evaluation/modification until the design objectives are satisfied. Following this
inefficient workflow, there is practically no way to determine that proposed solutions are even close
to a realistic optimum [48]. In computational performance-driven design optimization, the desired
performance can be selected and activated as a mechanism that can generate and modify designs
through the optimization procedure [11,67] (Figure 4). With the development of user friendly software,
such as the Galapagos Evolutionary Solver (Robert McNeel & Associates) [68], Octopus (University of
Applied Arts Vienna and Bollinger+Grohmann Engineers) [69], and Optimo (Mohammad Rahmani
Asl, Alexander Stoupine, Saied Zarrinmehr, Wei Yan) [70], EAs are no longer confined within the
walls of the academic world and research labs, but are largely available for exploitation in real projects
by architectural practices, engineers, and students worldwide. When coupled with instantaneous,
dynamic building performance simulations on a 3D digital representation framework, they make
partial automation of the design procedure possible, and integrate in it very large amounts of data.
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Parametric design implies a change in the perception of creativity as we know it towards a more
explicit form of expression, presenting itself as a new design paradigm [71]. The creative process
consists of the combination of certain measures/decisions recalled from the architect’s memory based
on his aspirations regarding a project (owner’s needs, location, and surroundings of the site, available
built area based on codes, environmental performance, cost efficiency, aesthetics, etc.). In parametric
modeling, this synthetic procedure becomes explicit, and all of these parameters are expressed to
form an algorithm that will drive the design process. Without an optimization procedure, parametric
design is merely a conscious approach for the formulation of a problem and a tool for experimentation.
If an optimization routine is present, the variation of the produced design alternatives depends on
the extent of set parameters and the configuration of the optimization engine. However, even when
a large number of parameters are already set, the designer can always boost the creative process by
incorporating another level of “resolution”, adding new parameters to define textures, patterns, and
forms. Therefore, the creativity of the designer in CPDDO is not only compromised, but it is rather
enhanced by the abundance of equally well-performing solutions on a Pareto front, and the ability to
choose depending on his priorities and then further adjust a chosen design solution.

2.3. Previous Reviews and Key Works on Relevant Subjects

Prior to this, several reviews and studies focusing on different aspects of the subject have been
published. They investigate and compare the different methodologies and means, such as algorithms
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and software, optimization objectives, and policy or application issues. Readers can recur to the
following studies if interested for an in-depth analysis of building performance optimization aspects:

• Optimization methods and software:

Østergård et al. [47] reviewed papers on building simulations in early designs identifying the
following research areas: statistical methods, optimization, proactive simulations, knowledge-based
input generation and CAD-BPS interoperability. Huang and Niu [72] studied papers on the
optimization of building envelope design, compared popular algorithms, objectives, limitations,
and potential breakthroughs. Machairas et al. [73] studied the algorithms used for building design
optimization. Tian [74] reviewed sensitivity analysis methods used in building performance analysis.
Hamdy et al. [75] compared the performance of seven popular multi-objective optimization algorithms
for near-zero energy buildings (nZEB) design problems. Iwaro et al. [76] proposed an integrated
criteria-weighting framework incorporated into an integrated performance model (IPM) for the
assessment of sustainable performance and selection of a sustainable envelope design.

• nZEBs and solar design:

Stefanovic [77] reviewed studies of simulation-based optimization of passive solar design
strategies. Attia et al. [78] attempted to assess the gaps and needs for integrating building
performance optimization tools in the design of nZEBs by reviewing trends in simulation-based
building performance optimization (BPO) and outlining major criteria for optimization tools selection
and evaluation (literature review and interviews with 28 optimization experts). Lu et al. [79]
studied the issues related to the design and control of nZEBs, including design optimization issues.
Kanters et al. [80] presented the results of a survey and interviews on tools and methods architects use
for solar design. Zhao and Magoulès [81] reviewed models for the accurate prediction of building
energy consumption, including elaborate and simplified engineering methods, statistical methods, and
artificial intelligence methods. Pacheco et al. [82] conducted a review on the energy-efficient design of
buildings. Ochoa et al. [83] examined the state of the art in lighting simulations related to building
science research. Fumo [84] reviewed the basics and classified whole building energy estimations.

• BPS software:

Hopfe et al. [85] compared six BPS tools and their potential use in the conceptual stages of
building design. Crawley et al. [86] compared the features and capabilities of 20 major building energy
simulation programs. Attia et al. [87] conducted an online survey to compare ten major BPS tools.
Attia and Herde [8] compared 10 early design simulation tools.

• Holistic approaches:

Negendal [88] reviewed the different ways designers and analysts use BPS in the early design
stages and proposed integrated dynamic models as a combination of a design tool, a visual
programming language and a BPS to provide better support for the designer. Nguyen et al. [89]
provided an overview of the research and applications of simulation-based optimization methods
in the building sector. Shi [18] reviewed the evolution of performance-based/driven architectural
design and also discussed the optimization technique and its application in architectural design.
Evins [54] reviewed research works applying computational optimization to sustainable building
design problems. Shi et al. [9] analyzed and classified 116 works on building energy efficient design
optimization and examined subjects such as the general procedure, the origin and development, the
design objectives and variables, the energy simulation engines, the optimization algorithms, and the
applications of this technique.

Table 1 summarizes the areas of focus of the above-mentioned works.
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Table 1. Focused areas of previous published reviews and key works on topics related to
performance-driven optimization in building design. The symbol x is used to indicate the focused
topics of each paper.

Researchers Year
Area of Focus

Methodology Tools Objective
Functions

Policy and
Evaluation

Østergård et al. [47] 2016 x x - -
Stefanovic [77] 2013 x - x -

Huang and Niu [72] 2015 x x x x
Attia et al. [78] 2013 - x x x

Lu et al. [79] 2015 x - - -
Negendal [88] 2015 x - - x

Nguyen et al. [89] 2014 x x x x
Machairas et al. [73] 2014 - x x x

Shi [18] 2010 x - - -
Kanters et al. [80] 2014 - x - x
Hopfe et al. [85] 2005 x x - x

Crawley et al. [86] 2008 - x x -
Attia et al. [87] 2009 - x - x

Attia and Herde [8] 2011 - x - -
Zhao and Magoulès [81] 2012 x - - x

Pacheco et al. [82] 2012 x - - -
Ochoa et al. [83] 2012 x x - -

Tian [74] 2013 x x - x
Evins [54] 2013 x - x x

Iwaro et al. [76] 2014 x - x -
Fumo [84] 2014 x x - -

Shi et al. [9] 2016 x x x x
Hamdy et al. [75] 2016 - x - x

2.4. Practical Examples of Computational Performance-Driven Design Optimization

A number of works investigate the theoretical framework of computational performance-driven
design optimization [11,12,18,19,67,90,91], including some of the above-mentioned reviews and
papers [9,18,47,54,72,76,77,87,88]. However, the following 13 works were found to utilize this
framework in a practical manner:

Suyoto et al. [25] used the software packages Grasshopper, Ecotect, Geco, Galapagos, and other
tools to solve problems during all stages of the design process (programming, site planning, massing,
structure planning, and facade planning) of a mixed use project. Specifically, he used this method to
maximize the built area, to search for the shortest pedestrian pathway, to form masses in line with
skyline changes and regulation requirements, to reduce heat gains due to solar radiation, to position
seating areas and public activities, to optimize a diagrid structure system and to verify deflections and
material behavior. Finally, exterior walls of the buildings were analyzed to identify areas that needed
additional shading devices, to select types of glass, suitable shading devices, and Overall Thermal
Transfer Value (OTTV) calculation.

Jin and Jeong [26] conducted an optimization process for a free-form building shape to predict
and optimize the heat gain and loss characteristics in the early design stages. They applied a
GA optimization process using Galapagos Evolutionary Solver to a free-form building model in
Grasshopper in order to minimize passive heat gain and loss for various climate zones. Santos et al. [27]
applied the methodology on three prototype glass pavilions to determine the optimal fritting density
of different glass panel clusters for energy efficiency and daylight for winter, and especially summer
conditions. They used the add-on for Grasshopper Kangaroo Physics 2.0 [92] to panelize and planarize
the initial NURBS models and transform them to mesh objects in order to automatically translate
them to EnergyPlus. They reached energy-efficient passive solutions that resulted in percentages of
improvement of almost 70%. Qingsong and Fukuda [28] used Grasshopper, Ladybug, Honeybee,
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and Galapagos Evolutionary Solver to optimize an office building’s openings for minimum energy
consumption and maximum useful daylight illuminance.

Zhang et al. [29] applied parametric modeling with Rhinoceros and Grasshopper to generate a
free-form building model, and optimize its shape using a multi-objective genetic algorithm plugin
(Octopus) to achieve three objectives—i.e., to maximize solar radiation gain, to maximize space
efficiency, and to minimize the shape coefficient. A Pareto frontier was generated to represent the
optimal solutions and to assist in final decision-making. The authors conclude that, compared
with a cube-shaped reference building, the total solar radiation gain of the optimized free-form
shape building is 30–53% higher, whilst the shape coefficient value is reduced by 15–20%, with a
decrease of less than 5% of the space-efficiency. Rahmani Asl et al. [31] used Autodesk Revit and
Dynamo to minimize energy use while maximizing the appropriate daylighting level on a residential
building. A prototype of an integrated MOO system was created using a non-dominated sorting
genetic algorithm-II (NSGA-II). This integrated framework for BIM-based performance optimization is
later referenced as BPOpt [93] and the optimization nodes in Dynamo as Optimo [70].

Zboinska [32] used a simulated annealing optimization algorithm in Grasshopper and DIVA for
Rhino to fine-tune the design of a multi-curved façade element for annual solar energy harvesting.
Anton and Tanase [30] developed several architectural forms using parametric design tools and
solar/daylight analysis, and a canopy optimized for the least solar energy absorbed on its faces that
would, at the same time, provide the most shadow area. Both objectives were used as criteria for
a genetic algorithm (using Galapagos) that searched through a series of parameters to establish the
general shape of the canopy. Ercan and Elias-Ozkan [33] produced custom design alternatives for
shading devices to optimize daylight while blocking out excessive solar heat gains in an office building
in Larnaca, Cyprus. They used Grasshopper, Diva, and Galapagos and achieved significantly better
performance compared to the initial design. The design alternatives were generated by evolutionary
algorithms in accordance with daylight performance requirements and simulated to assess their
shading and daylight efficiencies. Ashour and Kolarevic [34] utilizing Grasshopper, Octopus, and
DIVA for a retrospective design case of the “De Rotterdam” building (designed by OMA Architects)
with the aim of increasing the floor area ratio (FAR), financial profit, average daylight factor and views.

Konis et al. [35] applied this methodology on a 4982 m2 (53,819 sq.ft) medium office building
test case for four different urban settings and climates. Using Grasshopper, Honeybee, and Octopus
they optimized the building’s shape, orientation, window-to-wall ratio (WWR), and shading devices
to minimize energy use intensity (EUI) and maximize spatial useful daylight illuminance (sUDI).
Results showed that the proposed workflow can deliver between a 4% and 17% reduction in energy
use intensity (EUI) while simultaneously improving daylighting performance by between 27% and
65%, depending on the local site and climatic conditions compared to an ASHRAE 90.1-compliant
reference building of equal floor area. Liuti et al. [36] used this method to optimize a roof structure
in Singapore for solar and structural performance. Negendahl and Nielsen [37] used Grasshopper,
Ladybug/Honeybee, Termite (Andy Payne, Panagiotis Michalatos, Eddy Man Kim, and Marshall
Prado) [94], and Octopus to optimize a building project for energy use, daylight, and capital cost
without external shading systems.

3. Discussion

3.1. Current Status of Computational Performance-Driven Design Optimization

During the last decade, many researchers have attempted to create custom CPDDO workflows
under different names (creative optimization tool, parametric method, EEPFD, PPOF, BPOpt, ParaGen,
EcCoGen, etc.) [16,19–24] and using a variety of tools. However, the implementation of these
frameworks outside the research teams themselves has been extremely limited for various reasons
(coupling strategies and software capabilities were not adequately explained, implementation
would be extremely time consuming, special skills in coding were required, etc.). Building
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design and construction is a multi-disciplinary process. Nevertheless, it is extremely important
to address, specifically, the architects’ needs with regard to computational performance-driven design
optimization, since their role in the design process when it comes to performance issues is dominant
(typically they decide on shape, functions, morphology, and envelope design) [91].

Based on the above it is clear that the following features are essential for the successful
implementation of the CPDDO framework [24]:

(1) User-friendly interface adapted to designers’ needs;
(2) Platform integration and automation between BPS and optimization engines in order to alleviate

interoperability issues and reduce iteration times;
(3) Rapid generation of design alternatives utilizing computer capacity in full;
(4) Ability to evaluate the design alternatives through parallel visualizations coupled with

comparative performance data;
(5) Data interpretation guidance to overcome domain knowledge gaps;
(6) Trade-off analysis for conflicting criteria; and
(7) Sensitivity and uncertainty analyses to provide guidance on the impact of the decisions made.

Comparing this framework to conventional environmental design, it is evident that it still requires
an increased amount of effort and time even though many of the above-mentioned issues have
been addressed to some extent (user-friendly interface, platform integration, evaluation of design
alternatives).

Systematic literature research on the subject revealed that the most popular software for
computational performance-driven design optimization among architects is, by far, Grasshopper
for Rhinoceros 3D, followed by Dynamo for Revit. This is highlighted by the practical implementation
examples of the previous section: twelve out of thirteen examples utilize the VP system of Grasshopper
for Rhinoceros 3D, whereas only one uses Dynamo for Revit. A possible explanation for this trend
is that Rhino is a widely-used software among Architects and Grasshopper is a free tool with many
developers that constantly provide support and new components. Moreover, Grasshopper features
a multitude of already developed tools, such as Ladybug/Honeybee, DIVA, Kangaroo, Galapagos,
Octopus, and others, that provide many capabilities and render it an accessible method of using
environmental performance simulation via a VP interface. On the other side, the use of BIM software in
the global construction industry is expanding [95] and Revit has already integrated BPS tools in its main
software package, as well as the relatively new Optimo package for Dynamo. Overall, publications on
the subject with practical implementation of the workflow are very few, since CPDDO is still a relatively
new methodology, and cases outside academia are usually not published in scientific journals.

It is beyond doubt that artificial intelligence is gaining momentum in architecture: computational
design is now considered a valuable method to explore design potential and enrich the process of
architectural synthesis in all scales, from urban [96,97] to industrial object design. In combination with
the sustainable design movement, it seems that CPDDO is attracting continuously more attention from
both professionals and academia as a holistic approach able to bridge the gap among architects and
BPS tools, since it combines human (non-determinant decision-making, creativity, pattern recognition,
aesthetics) and computer advantages (consistency, calculating, iterative) [25]. Instead of being
confined in the offices of experts, used only as a compliance check for various green codes, dynamic
environmental performance simulation can now play an active role in the building planning and
design process [12].

3.2. Challenges and Future Work

The proposed framework still requires a substantial investment of time and interdisciplinary
collaborations in the very early phase of the design, but especially requires a shift in the way we
conceive the design process: from designing the building itself we must move to defining the
structure and interconnections of the building’s parameters. Moreover, we need to seamlessly combine



Energies 2017, 10, 637 13 of 18

modeling, methods, tools, and people that are willing to embrace technological advances and emerging
computational methods in architecture. Therefore, architectural education should be adapted to foster
the development of advanced logical and digital skills, required for the design of appropriate formulas,
as well as the knowledge of technical aspects such as daylighting, solar, acoustics, energy, structural,
air, thermal, and moisture issues.

Future research should concentrate in making user interfaces even more architect-friendly, since
learning curves are still very steep, and ensure that no coding skills are required, especially in
BIM-based CPDDO which presents additional challenges [14]. Additionally, further integration is
needed to achieve truly seamless operation and interoperability without multiple software installation
packages and the need for extensive customization. Finally, standardization of processes for typical
building cases could further reduce preparation times and address the large gap that still exists between
research and practice. Simplification of these procedures would also allow for older professionals to
catch up.

4. Conclusions

Computational performance-driven design optimization exploits powerful synergies between
already-developed software tools and can skyrocket the efficiency of environmental building design.
Based on all previous sections, several conclusions can be drawn and are summarized in the
following points:

• Solutions proposed in a CPDDO context are based on scientifically sound performance analysis
rather than human judgment, without compromising aesthetics. Therefore, the quality of the
design is enhanced by intelligent decisions, and the designer’s understanding and knowledge on
the project are improved.

• Overall, publications on the subject with practical implementation of the workflow are very few,
a result of the fact that the integrated tools needed for its implementation were developed during
the last decade.

• Rhino and Grasshopper are the software packages that currently dominate the field, but BIM
growth may change this, if the right tools are developed and introduced efficiently in the
BIM workflow.

• Architect-friendly platforms that seamlessly integrate all relevant functions are essential for the
successful implementation of CPDDO in everyday architectural practice.

• To extend expertise in the field, architectural education must adapt to the technological advances
and encourage professionals to embrace new concepts and think outside the box. CPDDO needs
to be appropriately situated in the broader topic of computational design.

• Efforts need to be made to improve time feasibility, gains in performance and cost for the whole
process to be meaningful enough to justify the effort involved. This includes the improvement
of tools that are still too limited for the complex nature of three-dimensional problems and
advanced systems, such as kinetic facades, interactive architecture, etc. Improvement of all
building stakeholders’ awareness on the importance of optimization in the design procedure is
also essential. This could be addressed, among other ways, with comparison studies on buildings
designed with and without an optimization procedure.

• More detailed simulations are advised after the final design decisions have been made, since this
framework is primarily meant to offer a direction/guidance over a multitude of possible solutions.

• CPDDO should not be treated as a threat for creativity and architectural expression because its use
can actually enhance an architect’s imagination by informing the physical and aesthetic properties
of the building envelope with different densities or patterns; and cannot embed qualitative criteria,
such as aesthetics.
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