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Abstract: This study seeks to address the problems of major geo-environmental hazards caused
by high-intensive coal mining in China’s western eco-environment frangible area including
strong mining pressure, surface subsidence, soil and water loss, and land desertification. Using
the high-intensive mining at the Xiao-jihan Coal Mine, this paper investigates the compaction
characteristics of aeolian sand-based backfilling materials, and then the evolution of water-conducting
fractures and surface deformation laws with different backfill material’s compression ratios (BMCRs)
by using physical simulation and numerical simulation analysis methods. This study presents the
technical system of water-preserved and environmental protection with rapid-backfilling methods in
China’s western eco-environment frangible area. The backfill coal mining technique and application
prospects are assessed and discussed. The results will be helpful for coordinated development
of coal resources exploitation and environmental protection in China’s western eco-environment
frangible area.
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1. Introduction

China’s West Development Program has encouraged rapid urbanization and industrialization in
western China, resulting in intense coal resource exploitation [1]. At the same time, the eastern coal
resources have become increasingly scarce, which has contributed to the acceleration of the construction
of coal resource centers and strategic bases. Coal resource exploitation has gradually shifted to the
western areas, which has contributed to the rapid development of the western local economy and
is consistent with the concept of the “Silk Road economic belt”, put forward by Chinese President,
Xi Jinping [2]. However, with the continuing developments and innovations in coal production
technology and processes, the mining and production capacities and of coal mines have also increased
in intensity. The production capacity of new large coal mines generally reaches 10 million tons with
the longwall panel length reaching 300 m in the dip direction, the mining height reaching 5 m, and the
advancing speed reaching 20 m/d. The annual production capacity of a single longwall panel is the
sum of a dozen longwall panels in an eastern coal mine [3].

Theoretical research and field measurement show that coal resource exploitation can easily result
in environment damage in western China [4–6]. Common environmental problems and hazards caused
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by shallow buried depth coal mining under a thick, loose sand layer include strong mining pressure
with hydraulic support damage (Figure 1a), surface subsidence (Figure 1b), surface fissures and water
loss (Figure 1c), and land desertification (Figure 1d). To respond to the effects of phreatic pore water in
the loose beds of the Quaternary system and the thick surface layer of aeolian sand, many coal mines
in China’s western area pump water before mining, use a combination of pumping and mining during
coal resource exploitation, or adopt the room mining method where large coal pillars are left behind
underground; these methods result in a significant waste of water and coal resources. A solution
is urgently needed that will allow for social and economic development as well as ensuring for the
harmonious development of the western coal mining area. The search for a reasonable mining method
is very important.
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ground piles. Nevertheless, considering the special mining and geological conditions in western 
China, backfill materials (e.g., gangues and solid waste) are not very abundant; the resulting high 
cost of backfill greatly limits its application. However, the abundant aeolian sand on the surface in 
the western coal mining area provides the basic conditions for the smooth implementation of the 
technology. There have not been any comprehensive studies regarding mining technology in China’s 
western area. In consideration of the long-term development and the ecological protection of the 
western mining area, research on the technical systems and applications of effect evaluation is of 
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backfill mining methods in western China. 

Figure 1. Geo-environmental hazards caused by coal mining. (a) Strong mining pressure; (b) Surface
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In recent years, solid backfill mining (SBM) technology has gained popularity in China [7–10].
This technology has obvious economic and environmental benefits for exploiting coal resources under
buildings, bodies of water, railways, and for controlling strata movement [11–15]. So far, the technology
has been successfully applied in more than twenty mining areas in China. Most of the mining areas
are coal resource-exhausted mines. The remaining coal resources can be found under villages in
eastern China. The backfill material is mainly composed of crushed waste rock of gangue ground piles.
Nevertheless, considering the special mining and geological conditions in western China, backfill
materials (e.g., gangues and solid waste) are not very abundant; the resulting high cost of backfill
greatly limits its application. However, the abundant aeolian sand on the surface in the western
coal mining area provides the basic conditions for the smooth implementation of the technology.
There have not been any comprehensive studies regarding mining technology in China’s western area.
In consideration of the long-term development and the ecological protection of the western mining
area, research on the technical systems and applications of effect evaluation is of great significance.
Therefore, there is significant need for this issue to be addressed.

This paper is organized as follows: first a review of the geological and hydrogeological conditions
typical of the western mining area with high-intensive coal resource exploitation is presented.
This is followed by a presentation of the aeolian sand-based backfill materials and the experimental
tests. Then the results of the characteristics of the fracture evolution and surface deformation in
high-intensive coal resource exploitation with different BMCRs are presented and discussed. Next,
the technical system and the rapid-backfill technology are established. Finally, we analyze and discuss
the application perspective and present our conclusions. The goal of this study is to encourage Chinese
and international scholars to further research water-preserving mining with backfill mining methods
in western China.
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2. Study Area Description

Xiao-jihan Coal Mine, was formed during the Jurassic period and is located in the Yuheng north
mining area of North Shaanxi. It is the first 10 million ton modern mine from the national program
in Shaanxi Province, Yulin. The area of the mine field is about 251.75 square kilometres and it has
a geological reserve of 31.7 billion tons and recoverable reserves of 18.9 billion tons. There are nine
layers of coal in the mine, and the #2 coal is the main mining coal seam with a thickness of 3.25–5.04 m
(average thickness is 4.5 m). The buried depth of the #2 coal seam ranges from 173.98 m to 460.36 m,
and the floor elevation changes between 768.14 m and 460.36 m. The coal seam follows a northwest
to west trend monoclinic dumping relief with an average drawdown extent of 12 m/km. The inner
geology structure of the coal mine is simple, the east mining field is relatively gentle, and the #2 coal
seam is a near horizontal coal seam. The 11,215 working face, located in the No. 11 panel, is the current
mining area. The 11,213 working face to the east and the 11,217 to the west have closed borders with
the 11,215 working face. The main haulage roadway and air return are located to the south of the coal
mine. The advancing distance of the 11,215 working face is about 4888 m, the working face length is
280 m, the mining height is 4.5 m, the advancing speed reaches up to 16 m/d, and the production
capacity is up to 10 million tons. Due to the large thickness and shallow buried depth of the coal seam,
geo-environmental hazards and environmental damage phenomena (e.g., strong mining pressure, rib
fall off coal wall, roof caving, and surface subsidence) continue to occur in the mining process. Figure 2
shows the longwall panel layout of the Xiao-jihan Coal Mine.
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water bearing the Quaternary sand layer is 28.51 m3/h and is 15–30 m thick. However, the actual 
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Figure 2. Longwall panel layout of Xiao-jihan Coal Mine.

Based on analysis of the borehole data of Xiao-jihan Coal Mine, the stratigraphic column and
section of No. 11 panel and No. 12 panel were obtained, as shown in Figure 3. According to the
Hydrogeological testing data, the main aquifers of the mine are the phreatic aquifer in the loose bed
of the Quaternary Salawusu formation, mainly composed of loose stratum with silt sand and sandy
soil. This aquifer is an important water source for biological growth on the surface and has a thickness
of 20–40 m. The Neogene Jingle formation and the Quaternary Lishi formation, composed mostly of
sandy clay and purple clay with calcium and conglomerate, are the main water-resisting layers in this
area. The hydrologic geology conditions have a significant effect on coal exploitation in Xiao-jihan
Coal Mine. For example, during shaft construction, the predicted water inflow of the surface water
bearing the Quaternary sand layer is 28.51 m3/h and is 15–30 m thick. However, the actual water
inflow reaches more than 185 m3/h. Water or sand inrush at this rate is so serious that it affects normal
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construction before drainage. However, because of the effects of mining-induced stress, the overlying
strata water-conducting fractures and water inrush development are obviously underground in the
No. 11 panel during roadway driving and advancement of the working face (Figure 4a,b). Although
some relatively effective strategies for preventing water disasters have been employed, including the
transient electromagnetic method, forward boring water drainage, and pumping-drainage system
ground surface (Figure 4c,d), some parts of the working face or roadway are affected seriously in the
local water-enriched area. This is especially true when the roof pressure is strong or the drainage
system is not unobstructed; in these cases, the efficiency and safety production will be severely affected.
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3. Backfill Material Properties Testing

It is essential to appropriately monitor overlying strata for water-conducting fracture development
and surrounding rock failures, in order to promote efficient water-preservation mining and
environmental protection. The testing and study of the compacting properties of aeolian-sand material
for backfill is of greatly significant, considering the abundant natural aeolian sand material on the
surface in China’s western mining area, combined with the mature SBM technology. The loading
equipment used in this experiment was a YAS-5000 electro-hydraulic servo-motor test system
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(Changchun Kexin Instruments Company, Changchun, China). Additionally, a steel chamber was
designed specifically for the study. The chamber had a maximum uniaxial pressure of 20 MPa
and a maximum radial pressure of 13.4 MPa in its inner wall. And the height and diameter are
250 mm and 305 mm, respectively. The maximum load used was set at 6 MPa and the load was
implemented at a relatively slow rate (0.15–0.20 kN/s). Testing data was collected every three seconds.
Each test was repeated three times and the average of the three results was regarded as the final
results [16,17]. The basic experimental testing materials include natural aeolian sand, lime and loess,
the experimental equipment, and the materials shown in Figure 5. Four mix proportions were used in
this experiment [18,19]; Table 1 shows the details of the test scheme and results. Figure 6 shows the
results of stress-strain curves at different mix proportions.
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Table 1. The testing of the compacting properties of aeolian-sand materials.

Scheme No. Material Ratio
(By Weight)

Maximum Strain
(0–2 Mpa)

Maximum Strain
(2–5 MPa)

Aeolian sand I 1:0 0.043 0.055

Aeolian sand:
Loess

I 1:0.3 0.22 0.27
II 1:0.5 0.25 0.30
III 1:0.8 0.275 0.325

Aeolian sand: Lime
I 1:0.12 0.23 0.27
II 1:0.15 0.25 0.28
III 1:0.20 0.275 0.32

Aeolian sand:
Loess: Lime

I 1:0.3:0.12 0.25 0.29
II 1:0.3:0.16 0.23 0.26
III 1:0.3:0.20 0.26 0.30
IV 1:0.5:0.14 0.26 0.30
V 1:0.5:0.18 0.30 0.35
VI 1:0.5:0.22 0.28 0.32
VI 1:0.8:0.16 0.28 0.32
VII 1:0.8:0.22 0.33 0.36
IX 1:0.8:0.28 0.35 0.39
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Figure 6. Stress-strain curves of aeolian sand-based materials.

The results shown in Table 1 and Figure 6 show that the compaction stress-strain curves of aeolian
sand-based mixing materials have a logarithmic relationship. In the initial compaction stage (0–2 MPa,
tamping arm pressure), the strain grows quickly and the deformation velocity is high. As the pressure
gradually increases, the materials gradually compact and the changes in growth decrease. In the
first scheme, the aeolian sand deformation is relatively small during the compaction process. This is
mainly because of the physical characteristics including small solid particles, lack of cohesion, and bad
hydrophilicity. The maximum strain is 0.055, with a stress of 5 MPa (in-situ stress), the strain ratio in
0–2 MPa to the total strain is more than 70%. In the second scheme, when the proportion of aeolian
sand to loess is 1:0.3, the strain is relatively small during the compaction process, which indicates that
these materials have a relatively strong deformation resisting capability. The maximum strain is 0.22
and 0.27 with stress of 2 MPa and 5 MPa, respectively. In the third scheme, the ratio of aeolian sand to
lime is 1:0.12, which is a relatively small strain. The maximum strain is 0.23 and 0.27 with stress of
2 MPa and 5 MPa, respectively. In the fourth scheme, the optimal proportion of aeolian sand, loess, and
lime is 1:0.3:0.1:6. When the stress is 2 MPa and 5 MPa, the strain is 0.23 and 0.26. The experimental
results show that the different levels of lime and loess can restrain the compressive property of mix
backfill materials. However, the lime and loess can improve the cohesiveness and self-stability of
backfill materials. Therefore, different mix proportions of aeolian sand-based backfilling materials can
be selected according to the different specific geological conditions. In this article, we select the single
nature aeolian sand materials as the research backfill materials.

4. Fracture Evolution and Surface Deformation with High-Intensive Mining

4.1. Physical and Numerical Simulation

In order to study the characteristics of geo-environmental hazards in high-intensive coal
mining, we focus on the evolution of water-conducting fractures and surface deformation laws
with different BMCRs by using physical simulation and numerical simulation analysis methods.
The two-dimensional physical simulation was conducted to study water-conducting fracture evolution
in the overlying strata at BMCRs of 0%, 70%, and 90%. According to in situ conditions, the geometric
similarity constant was 1:150, the bulk density similarity constant was 1:1.67, and the time similarity
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constant was 1:10. The simulation model dimensions were 2.5 m × 0.2 m × 1.6 m (length × width
× height). The bottom and both sides of the model were fixed, and the vertical displacement at the
base of the model was set to zero. In this paper, the backfill materials in the physical simulation were
composed of sponges and papers, and optimally similar materials were selected until the simulation
results of the stress-strain characteristics were in good agreement with the experimental data [20,21].
During backfill coal mining, a non-contact strain measurement system and Vic-2D software were used,
as shown in Figure 7. The numerical model assumes a length of 600 m in the dip direction, a width of
480 m in the strike direction, and a height of 240 m, as shown in Figure 8. The failure criterion used in
the numerical analyses is the Mohr-Coulomb model. During extraction, the goaf area is filled with
different soft elastic materials to approximate the different BMCRs [22,23]. The physical and numerical
simulation parameters employed in the model have been scaled and adjusted using the laboratory
results for the mechanical properties of the rock and coal samples; the final parameters are given in
Table 2.
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Table 2. Simulation parameters of the test model.

No. Lithologic Thickness (m) Bulk Modulus (GPa) Shear Modulus (GPa) Cohesion (MPa) Tensile Strength (MPa) Internal Friction Angle (◦) Density (kg/m3)

1 Surface layer 25 0.08 0.05 0.2 0.05 16 1670
2 Sandy soil 17 0.12 0.08 0.5 0.1 18 1800
3 Sandy clay 15 0.5 0.3 0.8 0.5 18 2200
4 Clay and mudstone 26 1.8 1.2 1.2 0.7 22 2300
5 Medium sandstone 7.5 1.5 1.0 1.4 0.9 22 2500
6 Mudstone 21 2.2 1.8 1.8 0.7 26 2250
7 Fine Sandstone 10 2.4 2.0 2.2 1.2 25 2400
8 Medium sandstone 17 1.5 1.0 1.4 0.9 22 2500
9 Fine Sandstone 6 2.4 2.0 2.2 1.2 25 2400

10 Sandstone 31 2.8 2.2 2.5 1.5 28 2550
11 Mudstone 12 2.2 1.8 1.8 0.7 26 2250
12 Medium sandstone 25 1.5 1.0 1.4 0.9 22 2500
13 Fine Sandstone 6 2.4 2.0 2.2 1.2 25 2400
14 Coal seam 4.5 2.5 2.3 2.5 1.5 28 1400
15 Mudstone 4 2.2 1.8 1.8 0.7 26 2250
16 Siltstone 13 2.8 2.2 2.4 1.1 30 2400
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4.2. Simulation Results and Analysis

Figure 9 shows the characteristics of overlying strata movement and the evolution of
water-conducting fractures during full caving method coal mining. This corresponds to backfill
coal mining with a BMCR of 70% and 90% as shown in Figures 10 and 11, respectively.
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The results in Figure 9 show that during full caving coal mining in the physical model, the
first caving of the immediate roof will occur with a face excavation of 45 m. As mining advances,
the horizontal delamination fractures and vertical fractures develop. The breaking of the main roof
happens at a face excavation of 90 m and caving pace of 35 m, as shown in Figure 9c,d. The results
also show that the maximum heights of the overlying strata water-conducting fracture were 26.7,
56.7, 90, and 188.7 m at face excavations of 60, 90, 135, and 210 m, respectively. When the face
excavation reached 300 m, the vertical and horizontal delamination fractures of the bottom strata are
re-compacted under the interaction of overlying strata, and the mining-induced water-conducting
fractures are able to develop to the water-resisting layer and surface. The mining-induced overlying
strata water-conducting fractures developed in the water-resisting layer and surface at a mining height
of 4.5 m, which leads to major geo-environmental hazards at the underground mining face and ground
surface eco-environment.

As shown in Figure 10, during the backfill coal mining with a BMCR of 70%, fractures are mainly
horizontal delamination fractures and there is a relative decrease in the vertical water-conducting
fractures. The maximum height of the overlying strata water-conducting fractures increased from
8.5 to 137.4 m as the face advanced from 60 to 300 m. During this period, the overlying strata
fracture evolution laws were visible as fracture development, fracture expansion, and bottom fracture
compaction; these were accompanied by subsidence of the entire overlying strata. The results indicate
that the water-conducting fractures of the overlying strata were not connected from beneath the ground
to the surface during backfill coal mining with a BMCR of 70%, although the fractures had developed
to the water-resisting layer. Compared to simulation results obtained for the caving method, backfill
coal mining may prevent major geo-environmental hazards in high-intensive coal mining. Therefore,
a reasonable BMCR in backfill coal mining is a key factor for coordinated development of coal resource
exploitation and environmental protection in China’s western eco-environment frangible area.
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During backfill coal mining with a BMCR of 90%, the degree of overlying strata water-conducting
fracture development was relatively low, as seen in Figure 11. The maximum heights of the overlying
strata water-conducting fractures were 23.2, 25.1, 28.5, and 34.3 m with a face excavation of 135, 165,
195, and 255 m, respectively.
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During this period, the fractures were mainly distributed in the bottom of the overlying strata,
which is far from the water-resisting layer and surface. When the face excavation reached 300 m,
the maximum height of the overlying strata water-conducting fractures was only 37.5 m. To further
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understand the influence of BMCR on surface deformation and environmental damage, surface
deformation (subsidence and horizontal displacement) at BMCRs of 0, 40%, 70%, and 90% were
studied using the numerical simulation method, as shown in Figure 12.
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The results in Figure 12 show that the maximum subsidence of the surface were 850, 480, 320, and
50 mm at BMCRs of 0, 40% 70%, and 90%, respectively. The maximum horizontal displacements along
the X direction were 290, 180, 70, and 22 mm at BMCRs of 0, 40%, 70%, and 90%, respectively. Compared
to simulation results obtained for a larger BMCR of backfill coal mining, the caving mining method
and a smaller BMCR of backfill coal mining cause significant damage to the surface environment.
The details of water-conducting fractures developed with different BMCR is shown in Figure 13a and
the vertical displacement along the Z direction and horizontal displacements along the X direction is
shown in Figure 13b.Energies 2017, 10, x FOR PEER REVIEW  12 of 16 
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Results indicate that when the BMCR is 90% in the backfill coal mining, the backfill materials can
support the overlying strata load effectively. Compared to simulation results obtained for a BMCR
of 70% and caving method, the overlying strata water-conducting fractures and surface deformation
have been controlled well, which can prevent water flooding disasters and geo-environmental hazards.
Therefore, the backfill coal mining method is an optimal strategy for safe and efficient mining in
shallow depths with high-intensive mining in China’s western eco-environment frangible area, and a
BMCR of 90% is determined to be a reasonable mining scheme for Xiao-Jihan Coal Mine.

5. Analysis and Discussion

The West Development Program and the Silk Road Economic Belt project of China play a vital
role in changing the imbalance between eastern and western economic development and modernized
construction. In recent years, the western mining area of China has become an important economic
hub due to its rich coal resources. With human activity intensifying and increased high-intensive
coal mining, geo-environmental hazards have increased in severity. Therefore, methods for realizing
the coordinated development of coal resource exploitation and environmental protection in China’s
western eco-environment frangible area are significant for both local residents’ lives and economic
development. SBM technology, has been successfully applied in more than twenty mining areas in
China. This technology has technical advantages in extracting “under three” coal resources (under
railways, buildings, and water bodies), handling solid waste, and controlling surface subsidence [24,25].
The technology has mainly been applied in the eastern mining area in recent years, with gangue
waste rock used as the main backfilling material. Combing technology with the selection of aeolian
sand-based materials as backfilling materials in local mining area is an effective method to solve the
geo-environmental hazards discussed above.

In this paper, Xiao-jihan Coal Mine, a typical western mining area of with high-intensive
coal mining, was selected as the research area. The compaction properties of aeolian sand-based
backfilling materials were tested and analyzed by a self-dependent testing device. The evolution of
water-conducting fractures and surface deformation laws with high-intensive mining of different
BMCRs was examined through physical simulation and numerical simulation analysis methods.
Geo-environmental hazards of the key water-resisting layers’ stability in the Neogene Jingle formation
and the Quaternary Lishi formation and surface deformation were assessed and analyzed. This paper
presents possible integrated prevention and treatment systems for high-intensive mining. Prevention
strategies can be divided into the following main stages (Figure 14): first hazard analysis; then
mining-induced strong mining pressure, water-resisting layer fracture, water bursting, surface
subsidence and other hazards assessment; next the aeolian sand-based backfill materials are used
for underground backfilling at a reasonable BMCR; lastly, the realization of safe and efficient mining
in China’s western eco-environment frangible area with geo-environmental hazards prevention and
environmental protection.

Compared with traditional mechanized caving mining, the backfill hydraulic support is the key
equipment for the success of rapid-backfilling mining. A specially designed backfill support is made
up of a front beam, a back beam, six columns, a four-bar linkage, a tamping arm, and a support
base. The front beam supports the roof, providing a safe space for operating mining machines, and
the back beam provides the space needed for transporting the backfill material, and for dumping
and compacting it in the gob. The backfilling scraper conveyor used for transporting the backfilling
materials is hung below the back beam [26]. The tamping arm can provide a pressure of 2 MPa to
push the backfilling materials in to the gob and compact them to a sufficient density to support the
roof effectively. The basic technology and process of backfilling at the working face can be described
as follows (Figure 15): After the equipment is installed and debugged, the aeolian sand-based backfill
materials are transported and unloaded into the gob at a steady rate (Figure 15a), and then the
unloading holes are closed until the materials reach two-thirds of the tamping arm baffle (Figure 15b).
After that, the primary and secondary tamping arm will extend to compact the materials (Figure 15c);
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after a first round of backfilling, the unloading holes will open again to unload and backfill the
materials. At this stage, the angle of the tamping arm can be adjusted to backfill the upper area
between the roof and the materials (Figure 15d–f). The backfilling process is repeated until a reasonable
BMCR is reached that meets the engineering design requirements. After backfilling, the support along
with the coal shearer advances to the next backfill circulation.Energies 2017, 10, x FOR PEER REVIEW  13 of 16 
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In this study, a rapid-backfilling technology with water-preservation was proposed as a 
prevention and control mining solution for major geo-environmental hazards in China’s western 
high-intensive mining and eco-environment frangible area. By theoretical analysis, experimental 
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major geo-environmental hazards in China’s western high-intensive mining and eco-
environment frangible area. The key Technology and process of rapid-backfill coal mining with 
aeolian sand are presented.  

(4) Mining operations in China’s western area are usually associated with strong mining pressure, 
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hazards. SBM technology with aeolian sand-based materials can improve coal resources 
exploitation and environmental protection and has expansive application foreground, which is 
helpful for economic and social development in the eco-environment frangible area in western 
China. 
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Figure 15. Technology and process of rapid-backfill coal mining with aeolian sand.

However, the dynamic mechanism of instability and seepage properties of water-resisting
layers and the long-term stability of the surface are important to the material selection and mining
operations [27,28]. Therefore, it will be interesting and useful in future research to investigate
the seepage-stability of water-resisting layers and measurement of the surface deformation with
this method.

In this study, the nature aeolian sand backfilling materials had no effect on the quality of
underground water resources, and the mining-induced fractures were well-controlled—there were
no interactions between backfill materials and the upper aquifer water, so these materials did not
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produce groundwater pollution. However, for the mix of backfilling materials containing lime and
loess, the interactions between the backfill materials and groundwater could, in some cases, affect the
water. This issue is complex and needs more attention; it will be our next topic of research.

6. Conclusions

In this study, a rapid-backfilling technology with water-preservation was proposed as a prevention
and control mining solution for major geo-environmental hazards in China’s western high-intensive
mining and eco-environment frangible area. By theoretical analysis, experimental testing, physical and
numerical simulation, the following conclusions were reached:

(1) Natural aeolian sand is an optimal backfilling material, the maximum strain of nature aeolian
sand is 0.22 and 0.27 with stress 2 MPa and 5 MPa, respectively. The amount of lime and loess can
improve the cohesiveness and self-stability of backfilling materials and restrain the compressive
property of mix backfilling materials.

(2) The data from the physical and numerical simulation in Xiao Ji-han Coal Mine shows that the
maximum heights of the overlying strata water-conducting fracture was 219.2, 137.4, and 37.5 m
with BMCRs of 0, 70%, and 90%, respectively. The maximum subsidence of the surface was 850,
480, 320, and 50 mm with BMCRs of 0, 40%, 70%, and 90%, respectively. The maximum horizontal
displacement along the X direction was 290, 180, 70, and 22 mm with BMCRs of 0, 40%, 70%, and
90%. SBM with aeolian sand backfilling materials can effectively control strata movement and
deformation, achieving efficient and safe mining.

(3) A rapid-backfilling technology and system with water-preserved are established to prevent major
geo-environmental hazards in China’s western high-intensive mining and eco-environment
frangible area. The key Technology and process of rapid-backfill coal mining with aeolian sand
are presented.

(4) Mining operations in China’s western area are usually associated with strong mining pressure,
surface subsidence, soil and water loss, land desertification, and other geo-environmental hazards.
SBM technology with aeolian sand-based materials can improve coal resources exploitation
and environmental protection and has expansive application foreground, which is helpful for
economic and social development in the eco-environment frangible area in western China.
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