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Abstract: In this paper the problem of health parameter estimation in an aero-engine is investigated by
using an unknown input observer-based methodology, implemented by a second-order sliding mode
observer (SOSMO). Unlike the conventional state estimator-based schemes, such as Kalman filters (KF)
and sliding mode observers (SMO), the proposed scheme uses a “reconstruction signal” to estimate health
parameters modeled as artificial inputs, and is not only applicable to long-time health degradation, but
reacts much quicker in handling abrupt fault cases. In view of the inevitable uncertainties in engine
dynamics and modeling, a weighting matrix is created to minimize such effect on estimation by using
the linear matrix inequalities (LMI). A big step toward uncertainty modeling is taken compared with
our previous SMO-based work, in that uncertainties are considered in a more practical form. Moreover,
to avoid chattering in sliding modes, the super-twisting algorithm (STA) is employed in observer
design. Various simulations are carried out, based on the comparisons between the KF-based scheme,
the SMO-based scheme in our earlier research, and the proposed method. The results consistently
demonstrate the capabilities and advantages of the proposed approach in health parameter estimation.

Keywords: second-order sliding mode observer; robust estimation; health parameters; gas path
health monitoring; turbofan engine

1. Introduction

In aircraft turbofan engine operations, reliability and efficiency are of utmost importance.
Subjected to harsh environments, the gas-path performance of aero-engines gradually deteriorates
over flights. Common causes of gradual degradation include the increase of the blade-tip clearance in
the turbine, wear and erosion, the compressor fouling, and corrosion in hot sections. Besides, abrupt
performance degeneration may happen due to foreign-object damage, such as birds, pieces of ice,
and runaway debris. To manage a collection of such assets, the accurate estimation of current engine
performance and fast diagnosis of machinery faults are necessary to maintain flight safety and reduce
operating costs [1].

Gas-path related analyses have been effective in detecting faults in turbo machinery [2].
The variations of efficiency and flow capacity of rotary components, called “health parameters”,
capture the nature of engine performance. They deviate from the nominal baseline gradually with time
as engine parts wear from regular usage, and also abruptly due to component fault events. The health
parameters provide crucial information for operating an aero-engine in a safe and efficient manner, but
they cannot be directly measured during the flight [3]. Fortunately, the deterioration causes changes in
sensed measurements. The goal of gas path health monitoring (GPHM) is to relate observed changes
in measurements to internal changes in health parameters, to provide performance trend monitoring,
which will be further used in engine fault diagnostics.
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Various algorithms have been proposed to the GPHM, which can be classified as model-based
algorithms (such as observers and filters) and data-driven algorithms (such as fuzzy logic [4],
neural networks [5] and genetic algorithms [6]). Common model-based approaches to estimate
health parameters are Weighted Least Squares [7], Generalized Observer [8] and Kalman filter [9,10].
Kalman filter approaches seem to be the most well-known methods for GPHM design. With health
parameters treated as state variables, the linear Kalman filter is employed to optimally estimate state
variations for on-board in-flight applications. Litt proposed a real-time Kalman filter approach for
estimating helicopter engine degradation due to compressor erosion [11]. Simon D.L. developed
a systematic sensor selection approach for on-board engine models for health monitoring use [12].
Lu reported an improved extended Kalman filter with inequality constraints for gas turbine engine
health monitoring [13]. In general, the use of model-based approaches will inevitably lead to challenges
due to model mismatches, which are not considered in the researches mentioned above. In view of
this, some researchers proposed a unique hybrid model (eSTORM) that fused the self-tuning on-board
real-time model (STORM) with an empirical neural net model [14,15], to provide modeling error
compensation. However, the neural net is built based on off-line calculation and large amounts of
flight data, which is laborious and time-consuming. Among the KF-based methods, it worth noting
that they are under the assumption that performance deterioration is slowly evolving, and health
parameters are modeled without dynamics. As a result, the Kalman filter responds in a sluggish
manner in rapid or abrupt performance changes [16].

Recently there has been a wide interest in exploiting sliding mode observer techniques in the field
of fault diagnosis. Due to the property of the discontinuous switched term, when a sliding motion is
induced the observer is able to robustly estimate states/faults considering uncertainties. Thus sliding
mode observer has been widely used in robust state estimation [17–19], constructing fault detection and
isolation (FDI) scheme [20], detecting actuator faults [21] and handling sensor faults [22–24]. One problem
of using sliding modes is the system chattering, however, since there is no output execution, the chattering
is acceptable so long as it does not blur the observation results. Another problem is that the considered
uncertainties in traditional sliding modes are restricted to be in a certain form, which is not realistic.
Besides, in most of related work, robust fault diagnosis can be achieved only when the available
measurements outnumber the faults, but in some applications this assumption is hard to meet and
assuming “non-faulty sensors” inevitably reduce the system reliability. So far uses of SMO in fault
detection have mainly been in handling actuator/sensor fault cases, but in our previous research,
an aircraft engine health estimation system based on SMO was investigated [25]. The proposed scheme
in [25] performs superior over the KF-based scheme with model mismatches considered, but some
problems remain unsettled: one is the health parameters are still modeled without dynamics, like that
in KF-based scheme; and another is the harsh restriction on allowed uncertainties, i.e., the uncertainty
distribution matrix is forced to be in a certain form, which is hard to meet practically.

In this paper, an approach based on a second-order sliding mode observer is investigated for the
estimation of health parameters in a civil aero-engine. Other than being as state variables like those in
KF-based scheme, health parameters are modeled as unknown inputs, thus the assumption that health
parameters are without dynamics is no more required, which results in a much quicker diagnosis
speed. To solve the problem that the involved engine contains equal number of available sensors
and health parameters, a transformation is introduced to create a fictitious output that dimensionally
exceeds the health parameter vector, which make it possible for the robust observer design. Then the
super-twisting algorithm is utilized to construct a second-order sliding mode observer, to ensure
the sliding surface can be reached regardless of uncertainties. Also the high switching chattering is
attenuated via the 2-order sliding mode methodology. Once sliding motion is achieved, a weighting
matrix is designed to minimize the disturbance effect on the health estimation via linear matrix
inequalities (LMI). Since robustly reaching the sliding surface is ensured by super-twisting algorithm
and robustly estimation after sliding reaching is enabled by the weighting matrix, there is no any
restrictions on uncertainty formulation.
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This paper is organized as follows: First, the system description and transformation of the linear
engine model are described, to make preparation for the observer design. Next, the SOSMO approach
is introduced and the overall GPHM architecture is depicted. Then, the proposed method is verified in
a nonlinear engine model with different deterioration scenarios. Finally, conclusions are presented.

2. System Description and Transformation

This paper is concerned with the design of a sliding mode observer for an uncertain state variable
model (SVM) of an aero-engine subject to health degradation. A SVM of a steady-state operating point
that subjected to health degradation and uncertainties is represented by

.
x(t) = Ax(t) + Bu(t) + Lh(t) + Q1ξ(t)

y(t) = Cx(t) + Du(t) + Mh(t) + Q2ξ(t),
(1)

where x = [NL, NH]
T, u = [Wf, θVSV, θVBV]

T, and y = [NL, NH, P25, T25, P3, T3, T495]
T are the state

variables, the known inputs and the outputs, respectively. h = [h1, h2, .., h7]
T stands for the health

parameters, which can be regarded as unknown inputs. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
L ∈ Rn×q, and M ∈ Rp×q are constant coefficient matrices. Here, n = 2, m = 3, p = 7, q = 7.
Q1 ∈ Rn×r and Q2 ∈ Rp×r represent the uncertainty distribution matrix, while ξ(t) ∈ Rr×1 denotes
uncertainties. Assume h(t), ξ(t) and their first time derivatives are unknown but bounded

‖ξ(t)‖ < α1, ‖
.
ξ(t)‖ < α2, ‖h(t)‖ < β1, ‖

.
h(t)‖ < β2, (2)

where α1, α2, β1, and β2 are known real scalars. The notation ‖·‖ represents the Euclidean norm for
vectors and the induced spectral norm for matrices.

In the case discussed here, the attempt to achieve robust health estimation is with the fact that
p = q, whereas in most classical publications the condition p > q is required to ensure robust design
freedom. Note that most of sensors used to conduct GPHM are installed on the engine for control
purposes. The fact that these sensors also enable GPHM is an added benefit [26], thus it is impractical to
use more sensors just for GPHM usage. To this end, a linear transformation is introduced to y(t) to create

yV(t) = Vy(t), (3)

where V ∈ R(p+1)×p is a designed matrix with a full column rank, and yV(t) ∈ R(p+1)×1 is the
augmented output. Since V has a full column rank, the left pseudo-inverse of V is well defined. Then
y(t) can be directly calculated as

y(t) =
(

VTV
)−1

VTyV(t), (4)

which indicates y(t) and yV(t) are in a one-to-one correspondence. Substituting yV(t) for y(t) in
Equation (1) yields

.
x(t) = Ax(t) + Bu(t) + Lh(t) + Q1ξ(t)

yV(t) = VCx(t) + VDu(t) + VMh(t) + VQ2ξ(t),
(5)

where yV(t) dimensionally outnumbers h(t).

Remark 1. Considering the fact rank(VC) = rank(C), the “measurement information” in yV(t) is actually
identical to that in y(t), and yV(t) does not have any physical meaning. However, yV(t) makes it possible to
create a degree of freedom in robust design, which will be shown in detail later.

To let h(t) and ξ(t) exist only in state equation, a practical method is to create a new state
zV(t) ∈ R(p+1)×1, that filtered by yV(t)

.
zV(t) = −A f zV(t) + A f yV(t), (6)
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where −A f ∈ R(p+1)×(p+1) is a stable filter matrix. Substituting zV(t) for yV(t) in Equation (5),
and combining x(t) and zV(t) to create an augmented state xa(t) ∈ R(n+p+1)×1, the following
representation can be obtained[ .

x(t)
.
zV(t)

]
=

[
A 0

A f VC −A f

]
︸ ︷︷ ︸

Aa

[
x(t)

zV(t)

]
︸ ︷︷ ︸

xa(t)

+

[
B

A f VD

]
︸ ︷︷ ︸

Ba

u(t) +

[
L

A f VM

]
︸ ︷︷ ︸

Ha

h(t) +

[
Q1

A f VQ2

]
︸ ︷︷ ︸

Qa

ξ(t)

zV(t) =
[

0 Ip̃

]
︸ ︷︷ ︸

Ca

[
x(t)

zV(t)

]
,

(7)

where Aa ∈ Rñ×ñ, Ba ∈ Rñ×m̃, Ha ∈ Rñ×q̃, Qa ∈ Rñ×r̃, and Ca ∈ Rp̃×ñ are coefficient matrices,
and Ip̃ ∈ Rp̃× p̃ denotes identity matrix. Comparing to the original form in Equation (1), it gives
ñ = n + p + 1, m̃ = m, q̃ = q, r̃ = r, and p̃ = p + 1.

For Equation (7), with health parameters treated as unknown inputs, the idea is to apply sliding
mode observer to estimating performance degradation via “fault reconstruction” technique, like
described in [27–29]. As argued in [30], the necessary and sufficient conditions for the existence of
a stable sliding motion and feasibility of fault reconstruction are:

1. The first Markov parameter (the product of Ca and Ha) must have full column rank, i.e.,
rank(CaHa) = q̃;

2. Any invariant zeros (if there exists) of (Aa, Ha, Ca) are Hurwitz.

However, x(t) is the first nth elements of y(t) in Equation (1), it is obvious that the first nth rows
of M are all zeros, which means rank(M) = p− n. Provided A f is a diagonal matrix and V has a full

column rank, it can be proved rank
(

A f VM
)
= rank(M). Thus in Equation (7) it is straightforward to

show that rank(CaHa) = rank
(

A f VM
)
= p− n < q̃.

For the system whose first Markov parameter is not full rank, Tan proposed a method to create
a fictitious system by using multiple sliding mode observers in cascade [31], to render Condition (1)
being satisfied. However, the approximation of the equivalent injections by low pass filter at each step
will typically introduce some delays that lead to inaccurate estimations or to instability for high order
systems [29]. In this special application, a simpler way is to adjust the outputs to render first Markov
parameter full rank. Provided the first nth elements of zV(t) is a filtered version of x(t), it is possible
to replace a half value of the first nth elements of zV(t) with a half value of x(t) to create a new output

zt(t) =

[
1/2In 1/2In 0

0 0 Ip+1−n

]
︸ ︷︷ ︸

Cat

[
x(t)

zV(t)

]
, (8)

With the form of Cat, it can be verified that

rank(CatHa) = rank(1/2L) + rank
(

A f VM
)
= n + p− n = q̃, (9)

Thus Ca in Equation (7) is replaced by Cat. Then considering Condition (2), by constructing the
Rosenbrock matrix for (Aa, Ha, Cat), the invariant zeros of (Aa, Ha, Cat) are given by the values of s
for which

Ra(s) =


sIn −A 0 L
−A f VC sIp+1 + A f A f VM
−1/2In

0
−1/2In 0

0 −Ip+1−n
0

 < n + 2p + 1, (10)
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It is clear that

rank(Ra(s)) = rank(sIn −A) + rank


 A f VM sIp+1 + A f

0
−1/2In 0

0 −Ip+1−n


, (11)

If s is not an eigenvalue of A, then det(sIn −A) 6= 0, and Rank(Ra(s)) = n + 2p + 1. Hence the
invariant zeros of (Aa, Ha, Cat) ∈ λ(A). Therefore, the open-loop system matrix A in Equation (1)
is required to be stable, and this is always satisfied since the system matrix is intrinsically stable in
engine dynamics.

Eventually the system to be designed on can be described as

.
xa(t) = Aaxa(t) + Bau(t) + Hah(t) + Qaξ(t)

zt(t) = Catxa(t),
(12)

Edwards et al. in [30] have proven that if Condition (1) is satisfied, there exists an invertible
change of coordinates xb(t) = Tbxa(t), in which Cat and Ha have transformed to the following structure

Cb = CatT−1
b =

[
0 T

]
, Hb = TbHa =

[
0(ñ− p̃)×q̃

Hb2

]
=

 0(ñ− p̃)×q̃
0( p̃−q̃)×q̃

Hb0

, (13)

where T ∈ Rp̃× p̃ is orthogonal, Hb0 ∈ Rq̃×q̃ is non-singular, and Hb2 ∈ Rp̃×q̃. With the change of
coordinates the Equation (12) is given by

.
xb(t) = Abxb(t) + Bbu(t) + Hbh(t) + Qbξ(t)

zt(t) = Cbxb(t),
(14)

where Ab = TbAaT−1
b and Bb = TbBa. Ab is in the form of

[
Ab11 Ab12
Ab21 Ab22

]
where Ab11 ∈ R(ñ− p̃)×(ñ− p̃).

Equation (14) is a canonical form from [31], which constitutes a useful starting point for observer design.

3. Health Estimation via a SOSMO

Next, a 2-order sliding mode observer is designed to reconstruct degrading parameters based on
Equation (14). Define ez(t) = ẑt(t)− zt(t) as output estimation error, where ẑt(t) is the estimate value
of zt(t). The proposed observer is in the form of

.
x̂b(t) = Abx̂b(t) + Bbu(t)−Glez(t) + Gnν(t)

ẑt(t) = Cbx̂b(t),
(15)

where x̂b(t) is the estimate value of xb(t). Gl ∈ Rñ× p̃, Gn ∈ Rñ× p̃ are linear gain matrix and nonlinear

gain matrix, respectively. Define ez(t) =
[
ez,1(t), ez,2(t), .., ez,̃p(t)

]T
, then ν(t) =

[
ν1(t), ν2(t), .., νp̃(t)

]T

is defined component-wise as

νi(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 + di(t).
di(t) = −ςsign(ez,i(t))− ϕez,i(t), (i = 1, 2, .., p̃)

(16)

where ψ, ς and ϕ are design scalars to be chosen. Assume that Gn has the structure

Gn =

[
−ETT

TT

]
, (17)



Energies 2017, 10, 1040 6 of 19

where E ∈ R(ñ− p̃)× p̃ represents the design freedom. As in [32], a special structure is imposed on E

E =
[

E1 0
]
, (18)

With E1 ∈ R(ñ− p̃)×( p̃−q̃). Define e(t) = x̂b(t)− xb(t) as state estimation error. The following error
system is obtained from Equations (14) and (15)

.
e(t) = Abe(t)−Glez(t) + Gnν(t)−Hbh(t)−Qbξ(t), (19)

According to the form of Cb, e(t) can be partition as
[
eT

1 (t), eT
2 (t)

]T where e1(t) ∈ Rñ− p̃.

Let Gl =

[
Gl1
Gl2

]
where Gl1 ∈ R(ñ− p̃)× p̃, and Qb =

[
Qb1
Qb2

]
where Qb1 ∈ R(ñ− p̃)×r̃, then the

error system can be written as[ .
e1(t)
.
e2(t)

]
=

[
Ab11 Ab12
Ab21 Ab22

][
e1(t)
e2(t)

]
−
[

Gl1
Gl2

]
ez(t) +

[
−ETT

TT

]
ν(t)−

[
0

Hb2

]
h(t)−

[
Qb1
Qb2

]
ξ(t), (20)

Consider a further coordinate transformation associated with the invertible matrix

TL =

[
Iñ− p̃ E

0 T

]
, (21)

Then

e(t) = TL

[
e1(t)
e2(t)

]
=

[
e1(t) + Eez(t)

ez(t)

]
=

[
e1(t)
ez(t)

]
, (22)

Thus the error system in Equation (20) can be written in the new coordinates as[ .
e1(t)
.
ez(t)

]
=

[
Ab11 Ab12
Ab21 Ab22

]
︸ ︷︷ ︸

Ab

[
e1(t)
ez(t)

]
−
[

Gl1
Gl2

]
︸ ︷︷ ︸

Gl

ez(t) +

[
0
Ip̃

]
︸ ︷︷ ︸

Gn

ν(t)−
[

0
Hb2

]
︸ ︷︷ ︸

Hb

h(t)−
[

Qb1
Qb2

]
︸ ︷︷ ︸

Qb

ξ(t), (23)

where Ab11 = Ab11 + EAb21, Ab21 = TAb21. Provided the structure of E in Equation (18), Ab11 can be
written as Ab11 +E1Ab211, where Ab211 is the first p̃− q̃ row of Ab21. As argued in [33], if Condition (2) is
satisfied, then the pair (Ab11, Ab211) is detectable. Suppose that E in accord with Equation (18) has been
chosen such that Ab11 is stable i.e., there exists a symmetric positive definite matrix P11 ∈ R(ñ− p̃)×(ñ− p̃)

such that
AT

b11P11 + P11Ab11 < 0, (24)

Then a choice of the linear gain Gl is of the form

Gl =

[
Gl1
Gl2

]
=

[
Ab12

Ab22 + χIp̃

]
, (25)

where χ is a scalar to be chosen. Substituting Equation (25) into Equation (23) yields[ .
e1(t)
.
ez(t)

]
=

[
Ab11 0
Ab21 −χIp̃

][
e1(t)
ez(t)

]
+

[
0
Ip̃

]
ν(t)−

[
0

Hb2

]
h(t)−

[
Qb1
Qb2

]
ξ(t), (26)

With the sliding manifold chosen as

S =

{[
eT

1 (t) eT
z (t)

]T
∣∣∣∣ez(t) = 0

}
, (27)
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The objective is to force ez to zero in finite time, and induce a sliding motion on S. Applying the
structure of ν(t) in Equation (16) into Equation (26), the equation related to ez(t) in Equation (26) can
be written component-wise as

.
ez,i(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 − χez,i(t) + Ab21,ie1(t)−Hb2,ih(t)−Qb2,iξ(t) + di(t).

di(t) = −ςsign(ez,i(t))− ϕez,i(t), (i = 1, 2, .., p̃)
(28)

where Ab21,i, Hb2,i, and Qb2,i are the ith row of Ab21, Hb2, and Qb2, respectively. By defining a
new variable

d0,i(t) = Ab21,ie1(t)−Hb2,ih(t)−Qb2,iξ(t) + di(t), (i = 1, 2, .., p̃) (29)

the Equation (28) can be rewritten as

.
ez,i(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 − χez,i(t) + d0,i(t).

d0,i(t) = −ςsign(ez,i(t))− ϕez,i(t) + φi(t), (i = 1, 2, .., p̃)
(30)

where φi(t) = Ab21,i
.
e1(t)−Hb2,i

.
h(t)−Qb2,i

.
ξ(t). Then

‖φi(t)‖ < ‖Ab21,i‖·‖
.
e1(t)‖+ ‖Hb2,i‖·‖

.
h(t)‖+ ‖Qb2,i‖·‖

.
ξ(t)‖, (31)

Since Ab11 is stable by assumption in Equation (24), the autonomous system associated with
e1(t) is stable. Consequently both ‖e1(t)‖ and ‖

.
e1(t)‖ are bounded. Provided ‖

.
h1(t)‖ and ‖

.
ξ1(t)‖

are bounded, it follows ‖φi(t)‖ < ε for some sufficiently large scalar ε. As discussed in [27,28],
Equation (30) is a special case of the super-twisting structure from [34]. Choose the scalar gains from
Equation (30) as

ψ > 2
√

ε, χ > 0, ς > ε, ϕ >
χ2(ψ3 + 5/4ψ2 + 5/2(ς− ε)

)
ψ(ς− ε)

, (32)

Consequently from the results of [34], it follows that
.
ez,i(t) = ez,i(t) = 0 in finite time.

Once the sliding motion takes place on the sliding manifold, the error dynamics in Equation (26)
are simplified as

.
e1(t) = Ab11e1(t)−Qb1ξ(t)

0 = Ab21e1(t) + Ip̃νeq(t)−Hb2h(t)−Qb2ξ(t),
(33)

where the signal νeq(t) is the so-called equivalent output injection signal. As in [32], νeq(t) represents
the averaged behavior of ν(t) and is required to maintain a sliding motion. Provided Qb1 = Qb1 +EQb2,
Qb2 = TQb2, and Hb2 = THb2, the Equation (33) can be rearranged and rewritten as

.
e1(t) = (Ab11 + EAb21)e1(t)− (Qb1 + EQb2)ξ(t)

νeq(t) = −TAb21e1(t) + THb2h(t) + TQb2ξ(t),
(34)

Define a weighting matrix W in the structure of

W =
[

W1 H−1
b0

]
, (35)

where W1 ∈ Rq̃×( p̃−q̃) represents design freedom. Then an estimation signal is defined as

ĥ(t) = WTTνeq(t), (36)

Note that WHb2 = Ip̃. Multiplying the second equation in Equation (34) with WTT and rearranging
Equation (34) yields

.
e1(t) = (Ab11 + EAb21)e1(t)− (Qb1 + EQb2)ξ(t)

ĥ(t)− h(t) = −WAb21e1(t) + WQb2ξ(t),
(37)
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And therefore
ĥ(t)− h(t) = Ĝ(s)ξ(t), (38)

where the transfer function matrix

Ĝ(s) = WAb21

(
sIñ− p̃ − (Ab11 + EAb21)

)−1
(Qb1 + EQb2) + WQb2, (39)

From Equation (37) it is clear that the objective is to minimize the effect of ξ(t) on the estimation
error ĥ(t) − h(t). In addition, note that the sliding surface can be reached only if Equation (24)
is satisfied. Thus the design is aimed at stabilizing Ab11 + EAb21 while minimizing the effect
of ξ(t) on ĥ(t) − h(t). Using the Bounded Real Lemma in [35], if there exists a matrix P11 as
defined in Equation (24), and another matrix P12 ∈ R(ñ− p̃)× p̃ in the form of

[
P121 0

]
, where

P121 ∈ R(ñ− p̃)×( p̃−q̃), such that P11Ab11 + AT
b11P11 + P12Ab21 + AT

b21PT
12 ∗ ∗

−(P11Qb1 + P12Qb2) −γIr̃ ∗
−WAb21 WQ2 −γIq̃

 < 0, (40)

Then the system (37) is stable, and the L2 gain of the transfer function Ĝ(s) will not exceed γ,
i.e., ‖ĥ(t)− h(t)‖ < γα1. The objective is therefore to find P11, P12, E and W to minimize γ subjected
to inequality (40). This can be numerically solved by mincx solver in standard Matlab LMI tool box.
Once P11, P12 is synthesized, E is chosen as P−1

11 P12, and it is obvious Equation (24) is satisfied. Then Gn

is obtained and Gl can be calculated as T−1
l Gl .

Finally the estimation of h(t) is then given by the signal ĥ(t) defined in Equation (36) with some
corruption, which E and W is employed to minimize.

Remark 2. For the system whose p̃ = q̃, it can be seen that E1 from Equation (18) and W1 from Equation (35)
do not exist. Consequently there is no design freedom left to enable error dynamics stable and to weaken the effect
of ξ(t) on ĥ(t). That is why yV is employed previously to ensure p̃ > q̃.

4. The GPHM Architecture

In this section, the architecture for gas path health monitoring is described based on the proposed
approach. The method is applied to a twin-spool turbofan engine with high bypass ratio, which
is shown in Figure 1. An aircraft engine will experience slow-evolving degradation due to usage,
which is an inevitable and normal aging process. The degradation of rotary components, such as
compressors and turbines, has a negative impact on flight reliability and safety if no corrective
action is taken. Besides, components’ sudden machinery damages can lead the engine into an
undesirable operating condition, such as a reduced compressor stall margin, or high exhaust gas
temperature. Long-time degradation and these sudden damages both result in the change of
component performance and characteristics, such as capacity and efficiency. Thus the flow capacity
and efficiency of engine components are chosen as “health parameters” to reflect component health
performance. The normalized degradation of health parameters is described as

∆hi = hi/hi,r − 1, i = 1, .., 7 (41)

where hi is the health parameter and hi,r denotes the nominal value of hi. Generally hi,r values 1 to
represent the completely health condition, while hi values in the form of percentage to represent
degradation level. The maximum level of deterioration indicates an engine overhaul is necessary.
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Figure 1. Schematic description of two-spool turbofan engine.

Health parameters are not directly measurable, but the deterioration causes changes in sensed
measurements. The goal of engine GPHM is to use available measured information to track health
condition and detect component faults, which is essential in ensuring flight reliability and safety.
The relationships in the GPHM are shown in Figure 2.
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Figure 2. Schematic of relationships in the GPHM.

This paper describes a new GPHM architecture using sliding mode observer. As analyzed in the
last section, the proposed method utilizes the 2-order sliding mode technique to reconstruct the health
degradation, which is shown in Figure 3. With health parameters treated as unknown inputs, the
proposed approach reacts much quicker in tracking abrupt faults compared to KF method. By robust
design of observer gains, the impact of uncertainties to reconstruction signal is minimized in 2-norm
sense. Due to the SVM of the turbofan engine being time-invariant, the gain matrix of SOSMO can be
computed off-line. Then the proposed method can be applied in real-time for in-flight health tracking.



Energies 2017, 10, 1040 10 of 19

Energies 2017, 10, 1040 9 of 18 

 

 
Figure 2. Schematic of relationships in the GPHM. 

 
Figure 3. Health parameter estimation via SOSMO. 

5. Simulation Results 

In this section, simulation results and performance evaluations of the proposed SOSMO-based 
scheme corresponding to various fault scenarios are presented. The same estimation tasks are 
implemented by the Kalman filter based scheme and the scheme in our previous work [25], to 
provide comparative results. Although the described algorithm is based on the linear state model, it 
is applied to a nonlinear component-level model (CLM), which is a simulation platform as a 
representative of a real double-shaft turbofan engine with highly fidelity. The detail description of 
the employed CLM can be found in [8], and the CLM has been validated versus the testing data. 

The simulations are carried out at the cruise condition, with ܪ	 = 	10,668	m, ܯୟ 	= 	0.785, and ୤ܹ 	 = 	0.3606	kg/s. To represent real working condition, the white Gaussian measurement noise 
and process noise are introduced with standard deviations (percentage of the nominal value) ߪ௡௢௜௦௘,௠ 	= 	0.0015 and ߪ௡௢௜௦௘,௣ 	= 	0.0005, respectively. The magnitude of noises is determined by 
practical experience and previously published data [8].  

The values of SVM matrices used in Equation (1) are ࡭	 = 	 ቂ−1.29 1.28−0.05 −1.31ቃ, ࡮ = ቂ0.23 0.47 0.060.19 0.24 0.12ቃ, 	ࡸ	 = 	 ቂ 0.18 −0.11 −0.16 0.52 0.02 0.35 −0.03−0.10 0.33 0.43 0.01 −0.01 −0.30 0.06 ቃ, 	

Figure 3. Health parameter estimation via SOSMO.

5. Simulation Results

In this section, simulation results and performance evaluations of the proposed SOSMO-based
scheme corresponding to various fault scenarios are presented. The same estimation tasks are
implemented by the Kalman filter based scheme and the scheme in our previous work [25], to provide
comparative results. Although the described algorithm is based on the linear state model, it is applied
to a nonlinear component-level model (CLM), which is a simulation platform as a representative of a
real double-shaft turbofan engine with highly fidelity. The detail description of the employed CLM
can be found in [8], and the CLM has been validated versus the testing data.

The simulations are carried out at the cruise condition, with H = 10, 668 m, Ma = 0.785,
and Wf = 0.3606 kg/s. To represent real working condition, the white Gaussian measurement
noise and process noise are introduced with standard deviations (percentage of the nominal value)
σnoise,m = 0.0015 and σnoise,p = 0.0005, respectively. The magnitude of noises is determined by practical
experience and previously published data [8].

The values of SVM matrices used in Equation (1) are

A =

[
−1.29 1.28
−0.05 −1.31

]
, B =

[
0.23 0.47 0.06
0.19 0.24 0.12

]
,

L =

[
0.18 −0.11 −0.16 0.52 0.02 0.35 −0.03
−0.10 0.33 0.43 0.01 −0.01 −0.30 0.06

]
,

C =

[
1 0 0.34 1.06 0.05 0.58 −0.31
0 1 −0.15 −0.52 1.51 3.01 −0.96

]T

,

D =

 0 0 0.01 −0.01 0.03 0.10 −0.54
0 0 −0.02 −0.02 0.11 0.01 −0.06
0 0 0.03 0.01 −0.17 −0.08 0.02


T

,

M =



0 0 −0.19 −0.06 −0.03 0.27 −0.18
0 0 −0.01 −0.04 −0.68 −0.03 −0.39
0 0 −0.01 −0.06 −0.07 0.06 −0.46
0 0 0.01 0.03 −0.01 −0.10 −0.01
0 0 0.03 0.21 −0.00 0.11 −0.06
0 0 −0.04 −0.17 0.21 0.87 −0.39
0 0 0.01 −0.00 0.23 0.87 −0.03



T
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The filter gain A f = 0.1× I8×8, and scalars ψ = 0.21, χ = 0.11, ς = 0.19 and ϕ = 0.10. By solving

LMI, W1 =
[

0.76 0.57 −3.25 −0.08 −1.04 −1.07 −6.32
]T

and E1 =
[
−24 −20

]T
.

There are totally six fault scenarios considered in this work, labeled Mode 1 to Mode 6, separately,
as shown in Table 1. The simulations cover abrupt fault and long-time degradation, meanwhile single
fault and concurrent faults are both involved.

Table 1. The description of the considered faults.

Fault Type Mode Label Description

Abrupt fault applied at t = 5 s

Mode 1 −8% on h6
Mode 2 −3% on h3
Mode 3 −4% on h2
Mode 4 −2% on h1 and −4% on h5
Mode 5 −6% on h2, −2% on h4 and +2% on h7

Long-time degradation over 5000 cycles Mode 6 −4% on h2

5.1. Scenarios without Uncertainties

The simulations start with scenarios without uncertainty injections. Figure 4 depicts the health
estimation by three tools, namely, the KF, the SMO in published work [25], and the SOSMO depicted in
this paper, corresponding to the injected 8% decrease on h6 that is applied at t = 5 s (Mode 1).
In Figure 4 all three tools are capable of health estimation under this circumstance, but their
performance varies much. In Figure 4a, the KF performs with an acceptable accuracy, but the interval
of the estimation process after the fault occurs (detection times) is about 7.85 s, which is the slowest
reaction among three tools. Figure 4b depicts the estimation by the SMO, with a detecting time around
4.25 s, which is better than the KF. However, the chattering problem is evident, which may cause
inaccurate estimation. Another problem is several healthy parameters (h3 and h7) decrease below 98%
during estimation dynamics, and it may lead to misdiagnoses and false alarm. Finally Figure 4c shows
the results conducted by SOSMO, with a desired accuracy and detection times. Compared to the first
two tools, the SOSMO reacts much quicker, with the detection times about 1.05 s. Moreover, with
super-twisting algorithm, the SOSMO performs better than SMO w.r.t the system chattering.

Figure 5 depicts the average detection times for each fault mode (Mode 1 to 5). It can be seen that
the SOSMO consumes less time compared to the other two tools. This is because both the KF and the
SMO work as state-estimator, and health parameters are modeled as state variables, the dynamics
of which are assumed to be non-exist. That is to say the health parameters are expected to be slow
evolving, which implies the KF and SMO schemes are not suitable for rapid fault cases. For SOSMO
method, health parameters are modeled as unknown inputs, and the estimation is implemented by
“fault reconstruction” concept. That means the SOSMO scheme have no limit on health parameters’
dynamics, which explains the ascendency of SOSMO in detection times.

The accuracy of estimations performed by three tools is assessed in terms of the rooted square
mean error (RSME) and the standard deviation (SD):

RMSE(m) =

√√√√ 1
D f−Ds+1

D f

∑
k=Ds

(
ĥk(m)− hk(m)

)2

SD(m) =

√
1

D f−Ds
∑

D f
k=Ds

(
ĥk(m)− 1

D f − Ds+1 ∑
D f
k = Ds

ĥk(m)
)2

,

(42)

where Ds and D f are the start point and the end point of the testing sequence, respectively. hk(m) is
the kth value in the sequence of the mth health parameter, and ĥk(m) is its estimation value. From the
definition, the RSME represents the precision of the estimation, while the SD reflects the dispersion
degree. Figure 6 shows the statistics reflecting the averaged RSME and SD of seven health parameters
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in each fault mode. The RMSE results consistently imply the ascendency of the sliding mode observer
in accuracy, while the SD results show the system chattering in sliding modes is well controlled to an
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5.2. Scenarios with Uncertainties

When a linear observer/filter is used in GPHM scheme, one of the major concerns is the validity of
the implemented tools subjected to model mismatches and system disturbances. The observer/filter may
generate false estimation results in case of large uncertainties. However, by implementing the SOSMO
in GPHM, uncertainties are automatically taken into account and become the prior optimized target.
To demonstrate this advantage, in the next set of simulations, the performance of the proposed scheme
is evaluated with modeling mismatches and disturbances injections. Similarly, the same problems
conducted by the KF and SMO are also presented as comparison. Specify ξ(t) = [ξ1(t), ξ2(t)]

T, where
ξ1(t) ∈ R1×1 denotes model mismatches, and ξ2(t) ∈ R1×1 denotes disturbances. Assume that the
model mismatches are in A and C, then ξ1(t) is given by

ξ1(t) =
[

0.2 0.13 0.11 0.15 −0.4 −0.12 0.03 0.54 0.21 −0.14
]
xa(t), (43)

Further, a sine wave signal is employed to the state equation, to simulate disturbances on the
actual engine, given by

ϑ(t) = 0.01 + 0.01sin(4πt), (44)

Then by designating ξ2(t) = [ϑ(t)], the uncertainty term in Equation (7) is attained by Qaξ(t),
where Qa governs the distribution of ξ(t). The uncertainties modeled here are much different from
that in [25]. The distribution matrix in [25] is strictly constrained to match a designed gain matrix,
which is merely impractical in real application. In this work, although the choice of Qa has an influence
on the reconstruction performance, there is no restriction on the structure or the value of Qa, which is
obviously more convincing.

Figure 7 depicts the results corresponding to the injected 6% decrease on h2, 2% decrease on h4

and 2% increase on h7, that is applied at t = 5 s (Mode 5). The results from Figure 7a,b are conducted
by KF and SMO, separately. Due to the uncertainty injection, both two methods are failed to track
the off-nominal parameters, and the normal ones are also wrongly estimated. This is because the
uncertainty term is not covered in the design procedures of KF; meanwhile it does not follow the
“matching condition” in SMO. In comparison, the results conducted by SOSMO are shown in Figure 7c,
in which the health conditions are well tracked. Figure 8 shows the output errors in the estimation
by three methods. In Figure 8b output errors in SMO never converge to 0, which means the sliding
manifold is never arrived after the faults occur, and that explains the poor performance in Figure 7b.
Figure 8c demonstrates the achievement of the output error convergence, and the sliding mode in
SOSMO is attained soon after the faults occur, which is in accordance with the results in Figure 7c.



Energies 2017, 10, 1040 14 of 19

Energies 2017, 10, 1040 13 of 18 

 

an influence on the reconstruction performance, there is no restriction on the structure or the value 
of ࡽ௔, which is obviously more convincing. 

Figure 7 depicts the results corresponding to the injected 6% decrease on ℎଶ, 2% decrease on ℎସ and 2% increase on ℎ଻, that is applied at ݐ	 = 	5 s (Mode 5). The results from Figure 7a and 
Figure 7 are conducted by KF and SMO, separately. Due to the uncertainty injection, both two 
methods are failed to track the off-nominal parameters, and the normal ones are also wrongly 
estimated. This is because the uncertainty term is not covered in the design procedures of KF; 
meanwhile it does not follow the “matching condition” in SMO. In comparison, the results 
conducted by SOSMO are shown in Figure 7c, in which the health conditions are well tracked. 
Figure 8 shows the output errors in the estimation by three methods. In Figure 8b output errors in 
SMO never converge to 0, which means the sliding manifold is never arrived after the faults occur, 
and that explains the poor performance in Figure 7b. Figure 8c demonstrates the achievement of the 
output error convergence, and the sliding mode in SOSMO is attained soon after the faults occur, 
which is in accordance with the results in Figure 7c. 

Again all considered abrupt fault modes (Mode 1 to 5) are examined by three tools in 
uncertainty-injection scenarios. Firstly the detection times in SOSMO scheme are investigated 
compared with the uncertainty-free cases. Table 2 shows the results. The detection times are closed 
in both cases, which means they are not affected by the uncertainty injection. Then the estimating 
performance is evaluated in terms of the average RMSE and SD, shown in Figure 9a,b, respectively. 
From Figure 9a it’s evident that the SOSMO is significantly more robust to uncertainties than the 
other two tools, with a much better precision. Moreover, the SD results imply the chatting of 
SOSMO is on an acceptable level. The simulations demonstrate the ascendency of the proposed 
SOSMO scheme in health estimation problem considering uncertainties. 

(a) (b)

(c)

Figure 7. The health estimation corresponding to the injected 6% decrease on ℎଶ, 2% decrease on ℎସ 
and 2% increase on ℎ଻,that is applied at ݐ	 = 	5 s (Mode 5) in scenarios with uncertainties. (a) 
Results by KF; (b) Results by SMO; (c) Results by SOSMO. 

Figure 7. The health estimation corresponding to the injected 6% decrease on h2, 2% decrease on h4

and 2% increase on h7,that is applied at t = 5 s (Mode 5) in scenarios with uncertainties. (a) Results by
KF; (b) Results by SMO; (c) Results by SOSMO.

Again all considered abrupt fault modes (Mode 1 to 5) are examined by three tools in
uncertainty-injection scenarios. Firstly the detection times in SOSMO scheme are investigated
compared with the uncertainty-free cases. Table 2 shows the results. The detection times are closed
in both cases, which means they are not affected by the uncertainty injection. Then the estimating
performance is evaluated in terms of the average RMSE and SD, shown in Figure 9a,b, respectively.
From Figure 9a it’s evident that the SOSMO is significantly more robust to uncertainties than the other
two tools, with a much better precision. Moreover, the SD results imply the chatting of SOSMO is on
an acceptable level. The simulations demonstrate the ascendency of the proposed SOSMO scheme in
health estimation problem considering uncertainties.

Table 2. The detection times of SOSMO scheme in scenarios with uncertainties (s).

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

With uncertainties 1.25 0.95 1.51 1.68 2.26
Without uncertainties 1.05 1.16 1.46 1.82 2.21
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Considering engine parts wear from regular use, in the next simulation long-time degradation
of is evaluated. The health parameters drift linearly away from the nominal values during flight
cycles, and a rapid fault is imposed to the degraded health parameter, to check the effectiveness
of observers/filters in real situations. The uncertainties are considered similarly, and the scenario
simulated here is a rapid fault occurring during gradual degeneration, in which h2 deteriorates to
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−4% of its nominal value in 5000 flight cycles (Mode 6). Figure 10a shows the estimating results
conducted by SOSMO. The degraded parameters can be faithfully tracked, regardless of the slowness
of degrading evolvement and the existence of disturbances, and the rapid fault occurred at 3000th
cycle is detected and estimated accurately. By contrast, the KF scheme employed in the same condition
produces poorer accuracy, as shown in Figure 10b, while SMO scheme produces higher chattering, as
shown in Figure 10c. The average RMSE and SD results are shown in Table 3, which again confirm and
demonstrate the capability of the proposed SOSMO scheme in dealing with long-time degradation.
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Table 3. The average RMSE and SD corresponding to the injected 4% decrease on h2 that is applied
over 5000 cycles (Mode 6) in scenarios with uncertainties. (%)

KF SMO SOSMO

RMSE 0.86 0.45 0.13
SD 0.38 0.44 0.28

6. Conclusions

A second-order sliding mode observer based GPHM system for an aero-engine has been
developed in this paper. Unlike the traditional state-estimator-based schemes, the proposed method
estimates degradation via “unknown input reconstruction”. With health parameters modeled as
artificial inputs, the described approach is applicable to both slow degradation and abrupt faults,
and reacts much quicker than state-estimator-based schemes in abrupt fault cases. Considering the
fact that the involved engine contains equal amount of available sensors and health parameters,
instead of assuming “non-faulty sensors”, a transformation has been introduced to create a fictitious
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output that dimensionally outnumbers the health parameter vector, which makes the room for the
robust design and meanwhile the diagnostic reliability is ensured. Then a second-order sliding
mode observer has been described. The observer gains are synthesized by solving LMI problem,
aiming at robustly estimating the degradation of health parameters, where the modeling mismatches
and disturbances are considered. Also the high switching chattering is attenuated via the 2-order
sliding mode methodology. A set of simulations have been conducted on the component-level model,
and comparisons with the KF-based scheme and our previous SMO-based work have proven the
ascendency of the proposed approach.
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Nomenclature

Notation Description

H Height
Ma Mach number
NL Low pressure rotor speed
NH High pressure rotor speed
h Health parameter vector
h1 Low pressure compressor (LPC) efficiency
h2 High pressure compressor (HPC) efficiency
h3 High pressure turbine (HPT) efficiency
h4 Low pressure turbine (LPT) efficiency
h5 LPC flow capacity
h6 HPC flow capacity
h7 HPT flow capacity
Wf Fuel flow rate
θVBV Variable bleed valve angle
θVSV Variable stator vane angle
P25 HPC inlet pressure
T25 HPC inlet temperature
P3 Combustor inlet pressure
T3 Combustor inlet temperature
T495 Exhaust gas temperature
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