
energies

Article

Nearshore Wave Predictions Using Data Mining
Techniques during Typhoons: A Case Study near
Taiwan’s Northeastern Coast

Chih-Chiang Wei ID

Department of Marine Environmental Informatics, National Taiwan Ocean University, No. 2, Beining Rd.,
Jhongjheng District, Keelung City 20224, Taiwan; ccwei@ntou.edu.tw; Tel.: +886-2-2462-2192

Received: 23 October 2017; Accepted: 19 December 2017; Published: 21 December 2017

Abstract: Seasonal typhoons provide energy into the wave field in summer and autumn in Taiwan.
Typhoons lead to abundant wave energy near the coastal area and cause storm surges that can
destroy offshore facilities. The potential for wave energy can be obtained from analyzing the wave
height. To develop an effective model for predicting typhoon-induced wave height near coastal
areas, this study employed various popular data mining models—namely k-nearest neighbors (kNN),
linear regressions (LR), model trees (M5), multilayer perceptron (MLP) neural network, and support
vector regression (SVR) algorithms—as forecasting techniques. The principal component analysis
(PCA) was then performed to reduce the potential variables from the original data at the first stage
of data preprocessing. The experimental site was the Longdong buoy off the northeastern coast
of Taiwan. Data on typhoons that occurred during 2002–2011 and 2012–2013 were collected for
training and testing, respectively. This study designed four PCA cases, namely EV1, TV90, TV95,
and ORI: EV1 used eigenvalues higher than 1.0 as principal components; TV90 and TV95 used the
total variance percentages of 90% and 95%, respectively; and ORI used the original data. The forecast
horizons varying from 1 h to 6 h were evaluated. The results show that (1) in the PCA model’
cases, when the number of attributes decreases, computing time decreases and prediction error
increases; (2) regarding classified wave heights, M5 provides excellent outcomes at the small wavelet
wavelet level; MLP has favorable outcomes at the large wavelet and small/moderate wave levels;
meanwhile, SVR gives optimal outcomes at the long wave and high/very high wave levels; and (3) for
performance of lead times, MLP and SVR achieve more favorable relative weighted performance
without consideration of computational complexity; however, MLP and SVR might obtain lower
performance when computational complexity is considered.

Keywords: wave height; data mining; prediction; typhoon

1. Introduction

Taiwan is situated on one of the main paths of western North Pacific typhoons and is affected
by an average of four typhoons each year [1]. As a typhoon approaches Taiwan, the sea level rises
abnormally due to storm surges caused by strong winds and atmospheric pressure disturbances [2].
Typhoons lead to abundant wave energy near the coastal area and cause storm surges that can destroy
offshore facilities.

The central mountain range (CMR, shown in Figure 1), which is 340 km long and 80 km wide
with an average height of 2500 m, is Taiwan’s principal mountain range. As a typhoon approaches
Taiwan, the topography significantly influences its track and intensity [3,4]. Consequently, typhoon
circulation interaction with the topography produces considerable mesoscale variations in pressure,
wind, precipitation, and offshore waves near Taiwan [5–8]. Typhoon-complicated wind distribution
often causes storm surges that can destroy offshore facilities and coastal infrastructure as well as
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ships [2]. The potential for wave energy can be obtained from analyzing the wave climate [9]. Therefore,
accurately simulating the wave fields produced by typhoons is vital for preventing damage and
understanding the risks posed by this natural hazard [10].
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A useful scheme for nearshore wave forecasts during typhoons is highly desirable in Taiwan.
Data mining, which has popularized data-driven models, has been in widespread use in coastal and
oceanic applications. These methods are based on the analysis of all data characterizing the system
under study to determine an unknown mapping or dependencies between the system’s input and
output from the available data [11]. Numerous applications are used in water-related modeling,
including some in wind–wave modeling [12–15]. For example, Londhe [16] used artificial neural
networks (ANNs) and genetic programming for the estimation of missing wave heights in the eastern
Gulf of Mexico. Etemad-Shahidi and Mahjoobi [17] used model trees (M5) for the same purpose,
and the results were compared with those of ANNs. Tsai and Tsai [18] established a backpropagation
(BP) neural network model to predict four surface waves by using acoustic wave and pressure data
measured by ultrasonic wave gauges. Deka and Prahlada [19] developed a hybrid model of wavelets
and an ANN to forecast significant wave heights for higher lead times up to 48 h on the west coast of
India. Asma et al. [20] used multiple linear regressions (LR) and ANNs to describe the significant wave
height off Goa, located on the west coast of India. The aforementioned studies have been widely used
in hindcasting and forecasting of wave parameters. They indicated that neural networks can provide a
good alternative to statistical regression, time series analysis and numerical methods. The advantages
are due to the improved accuracy, simplicity, smaller computational efforts and in some cases less
data requirements. However, the complicated meteorological conditions resulting from interactions
between typhoons and terrain effects in Taiwan continue to pose tremendous challenges to current
wave models in the predicting of accurate wave heights.

The presented data mining models are designed for hindcasting significant wave heights
for nearshore during tropical cyclones (typhoons) in the paper. As mentioned, when a typhoon
approaches Taiwan, the nearshore waves are significantly interacted by a typhoon’s circulation and
topography factor. This study developed a methodology to address the complicated problem of
wave forecasts during typhoons, and designed a series of steps to deal with the modeling process
(see Section 3). The novelty of this research has two main points. First, this study investigated several
observations from meteorological stations, which are near the study site (a buoy), and collected
the typhoon characteristics, and buoy atmospheric and maritime properties. Second, because a
large number of attributes would be employed as model inputs, this study developed an improved
approach that combines the principal component analysis (PCA) technique and data mining models.
Some researchers, such as [21–24], concluded that PCA can be employed to find a set of orthogonal
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components that minimize the error in the reconstructed data. This paper presents popular data
mining techniques, including k-nearest neighbors (kNN), LR, M5, multilayer perceptron (MLP) neural
network, and support vector regressions (SVR) that are often used for ensemble forecasting problems.
The paper selected these models because the kNN, a typical non-parametric classifier, involves using
neighbor search algorithms to achieve computational tractability [25]. LR is a traditional regression
analysis modeling technique, and can be used as a benchmark model. M5, developed by [26], is a
technique for dealing with continuous class learning problems that provides a structural representation
of the data and a piecewise linear fit of the class. An ANN-based MLP network is extensively used to
model an unknown system with observable inputs and outputs, and widely employed because of its
flexibility and ease of use. Support vector machines (SVM), developed by [27], adhere to the principle
of structural risk minimization seeking to minimize an upper bound of generalization error. SVM has
been extended to solve nonlinear regression estimation problems, known as SVR. These models were
employed for forecasting hourly wave heights during typhoon invasions.

The remainder of this paper is organized as follows. Section 2 describes the study area and selected
typhoons and data. Section 3 describes the proposed prediction model. Section 4 outlines the model
development regarding PCA approach and data mining models. Section 5 evaluates the performance
of predicted results, and various lead time forecasts. Finally, Section 6 offers some conclusions.

2. Location and Typhoons

Figure 1 shows the experimental area and location (121.92◦ E, 25.10◦ N) of the Longdong buoy
near Taiwan’s northeastern coast. As mentioned, when a typhoon approaches Taiwan, the terrain of
the CMR significantly affects a typhoon’s circulation and its track. Therefore, this study investigated
three meteorological stations, namely Keelung, Penjia Islet, and I-lan, which are near the Longdong
buoy, and collected their meteorological observations.

The typhoon data used in this study were recorded in the western Pacific Ocean, northeast of
Taiwan. Table A1 of Appendix A lists 67 typhoons affecting offshore northeast Taiwan in the years
2002–2013 and their corresponding wind intensity scales. The Saffir–Simpson wind scale (Table 1)
classifies tropical cyclones into seven categories (i.e., categories 1–5, tropical storm, and tropical
depression) depending on the intensities of their maximum sustained winds. Table 1 shows the
classification of the 67 typhoons into these seven categories. In total, 24 typhoons were classified as
tropical storms, and 10 as category 3, the strongest among the studied typhoons. Whenever a typhoon
approached the study area, various meteorological and oceanic characteristics are measured by the
Central Weather Bureau (CWB) of Taiwan.

Table 1. Hurricane wind scale and number of 67 collected typhoon events.

Wind Intensity Scale Ranges Event Amounts

Saffir–Simpson wind category

Category 5 ≥70 m/s 0
Category 4 58–70 m/s 0
Category 3 50–58 m/s 10
Category 2 43–50 m/s 16
Category 1 33–43 m/s 17

Additional classifications
Tropical storm 18–33 m/s 24

Tropical depression <18 m/s 0

The data comprised 3654 records measured at hourly intervals. The mean, minimal, and maximal
values of the data attributes are shown in Table 2. The attributes used in this study can be divided
into four.
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Table 2. Range and average values of data attributes.

Attribute Min–Max, Mean Attribute Min–Max, Mean Attribute Min–Max, Mean

h1 15.0–28.5, 22.5 m2,1 950.2–1007.4, 990.6 m3,7 0.1–25.2, 3.8
h2 113.9–131.4, 122.4 m2,2 961.6–1019.7, 1002.5 m3,8 0.0–360.0, 161.8
h3 910.0–1000.0, 966.8 m2,3 16.4–32.7, 26.3 m3,9 0.0–70.5, 1.8
h4 0.0–300.0, 201.1 m2,4 13.7–29.3, 24.2 m3,10 0.0–1.0, 0.4
h5 0.0–50.0, 16.5 m2,5 58.0–100.0, 88.7 m3,11 0.0–3.8, 0.4
h6 15.0–55.0, 33.6 m2,6 15.7–40.8, 30.4 p1 1.1–26.7, 7.0

m1,1 956.9–1014.8, 998.5 m2,7 0.0–50.3, 11.7 p2 1.0–360.0, 174.5
m1,2 959.9–1018.1, 1001.6 m2,8 0.0–360.0, 130.1 p3 1.6–36.1, 10.4
m1,3 15.6–36.7, 27.4 m2,9 0.0–186.0, 1.4 p4 16.1–30.6, 26.4
m1,4 14.5–27.4, 23.4 m2,10 0.0–1.0, 0.3 p5 955.6–1017.4, 1001.2
m1,5 49.0–100.0, 79.6 m2,11 0.0–3.9, 0.5 b1 0.2–12.8, 2.2
m1,6 16.5–36.5, 28.9 m3,1 954.5–1018.0, 1000.7 b2 28.0–193.0, 102.2
m1,7 0.0–24.0, 4.9 m3,2 955.4–1018.9, 1001.6 b3 33.0–129.0, 67.5
m1,8 0.0–360.0, 123.1 m3,3 17.0–38.1, 27.3 b4 11.0–337.0, 90.4
m1,9 0.0–75.5, 1.4 m3,4 14.7–28.9, 23.6 b5 0.0–33.9, 26.8
m1,10 0.0–1.0, 0.4 m3,5 38.0–100.0, 81.0 - -
m1,11 0.0–3.9, 0.4 m3,6 16.7–39.8, 29.2 - -

2.1. Typhoon Characteristics

The attributes of typhoon characteristics, denoted as {H}, are latitude and longitude of the typhoon
center (unit: deg) (denoted as h1 and h2), pressure at the typhoon center (mb) (h3), radius of the typhoon
(km) (h4), moving speed of the typhoon (km/h) (h5), and intensity of the typhoon (m/s) (h6). For the
10 category 3 typhoons, the mean value of typhoon radius is 237.1 km (which is 1.18 times the average
of all records) and the mean value of typhoon intensity is 45.7 m/s (1.36 times).

2.2. Ground Meteorological Properties

The ground meteorological properties, denoted as {M}, are ground air pressure (hPa) (m1), air
pressure at sea level (hPa) (m2), ground temperature (◦C) (m3), ground dew point temperature (◦C)
(m4), ground relative humidity (%) (m5), ground vapor pressure (hPa) (m6), surface wind velocity
(maximum 10-min mean, 10 m above the surface) (m/s) (m7), surface wind direction (deg) (m8), ground
precipitation (mm/h) (m9), rainfall duration within 1 h (h) (m10), and ground global solar radiation
(MJ·m2) (m11). In the table, the suffix of the subset {mi,j} refers to the ground meteorological attribute
j at meteorological station i (where i = 1, 2, and 3 indicate Keelung, Penjia Islet, and I-lan stations,
respectively). For the 10 category 3 typhoons, the mean values of surface wind velocity at Keelung,
Penjia Islet, and I-lan stations are 6.6, 12.9, and 4.9 m/s (which are 1.34, 1.11, and 1.28 times the average
of all records), respectively.

2.3. Buoy Atmospheric Properties

The atmospheric properties of the Longdong buoy at 3 m height, denoted as {P}, are wind speed
at the buoy (m/s) (p1), wind direction at the buoy (deg) (p2), gusty wind speed at the buoy (m/s) (p3),
temperature above the buoy (◦C) (p4), and atmospheric pressure above the buoy (hPa) (p5). For the
10 category 3 typhoons, the mean value of wind speed at the buoy is 8.5 m/s (which is 1.21 times the
average of all records).

2.4. Buoy Maritime Properties

The maritime properties of the Longdong buoy, denoted as {B}, are wave height (h) at the buoy (m)
(b1), maximum wave period (s) (b2), average wave period (s) (b3), wave direction (deg) (b4), and sea surface
temperature (◦C) (b5). Attribute b1 refers to significant wave height, h1/3. Significant wave height is defined
as the average of the highest one-third of the crest to trough waves in that segment of time series by sifting
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through each individual trough to crest waves in the data [28]. For the 10 category 3 typhoons, the mean
value of wave height at the buoy is 2.8 m (which is 1.31 times the average of all records).

3. Methodology

This section presents a methodology for developing a usable scheme for forecasting wave
heights during typhoon periods. As described in the previous section, the model inputs comprise
the six attributes {H} for typhoon characteristics, 33 attributes {M} at three ground meteorological
stations (11 attributes per station), and 10 attributes at a buoy (five attributes {P} for buoy atmospheric
properties and five attributes {B} for buoy maritime properties). In total, 50 input attributes are used
for modeling. First, for lead time = 1 h, the model target is the 1-h ahead observed wave heights
{b1,t+1} at the buoy. To reduce the dimension of model inputs, the study employed the PCA approach
(theorem see Section 3.1) to generate input–output relationships. PCA can gather highly correlated
independent variables into a principal component, and all principal components are independent of
each other so that the analysis’ only function is to transform a set of correlated variables into a set of
uncorrelated principal components [29].

The main processing stages are plotted in Figure 2. First, the collected attributes are preprocessed
as the model inputs. This study then employs the PCA approach to derive new variables from original
attributes, and select the eigenvalues greater than a threshold as principal components. Thus, the new
PCA-derived attributes can be obtained and used to formulate the wave-height data-driven prediction
models using PCA-derived attributes. The five data mining algorithms, kNN, LR, M5, MLP, and SVR,
are involved. Here, the height data-driven prediction models using the original attributes are employed
as a benchmark model. To evaluate the utility of these data-driven approaches, results were compared
with those from various model cases, namely EV1, TV90, TV95, and ORI: EV1 used eigenvalues higher
than 1.0 as principal components; TV90 and TV95 used the total variance percentages of 90% and
95%, respectively; and ORI used the original data. To examine the robustness for the various lead
times, the forecast horizons vary from 1 to 6 h in the nearshore of northeast Taiwan. Finally, the most
accurate model is suggested as the prediction model. The theories of PCA technique and five data
mining algorithms were described in the sequence sections.

Energies 2018, 11, 11 5 of 23 

 

category 3 typhoons, the mean value of wave height at the buoy is 2.8 m (which is 1.31 times the 

average of all records). 

3. Methodology 

This section presents a methodology for developing a usable scheme for forecasting wave 

heights during typhoon periods. As described in the previous section, the model inputs comprise 

the six attributes {H} for typhoon characteristics, 33 attributes {M} at three ground meteorological 

stations (11 attributes per station), and 10 attributes at a buoy (five attributes {P} for buoy 

atmospheric properties and five attributes {B} for buoy maritime properties). In total, 50 input 

attributes are used for modeling. First, for lead time = 1 h, the model target is the 1-h ahead 

observed wave heights {𝑏1,𝑡+1} at the buoy. To reduce the dimension of model inputs, the study 

employed the PCA approach (theorem see Section 3.1) to generate input–output relationships. PCA 

can gather highly correlated independent variables into a principal component, and all principal 

components are independent of each other so that the analysis’ only function is to transform a set of 

correlated variables into a set of uncorrelated principal components [29]. 

The main processing stages are plotted in Figure 2. First, the collected attributes are 

preprocessed as the model inputs. This study then employs the PCA approach to derive new 

variables from original attributes, and select the eigenvalues greater than a threshold as principal 

components. Thus, the new PCA-derived attributes can be obtained and used to formulate the 

wave-height data-driven prediction models using PCA-derived attributes. The five data mining 

algorithms, kNN, LR, M5, MLP, and SVR, are involved. Here, the height data-driven prediction 

models using the original attributes are employed as a benchmark model. To evaluate the utility of 

these data-driven approaches, results were compared with those from various model cases, namely 

EV1, TV90, TV95, and ORI: EV1 used eigenvalues higher than 1.0 as principal components; TV90 

and TV95 used the total variance percentages of 90% and 95%, respectively; and ORI used the 

original data. To examine the robustness for the various lead times, the forecast horizons vary from 

1 to 6 h in the nearshore of northeast Taiwan. Finally, the most accurate model is suggested as the 

prediction model. The theories of PCA technique and five data mining algorithms were described in 

the sequence sections. 

 

Figure 2. Flowchart of the proposed principal component analysis (PCA)-based data-driven wave 

height prediction models. 
Figure 2. Flowchart of the proposed principal component analysis (PCA)-based data-driven wave
height prediction models.



Energies 2018, 11, 11 6 of 23

3.1. PCA Approach

In data analysis, reducing the dimensionality of data is vital because it helps understand the data
and decreases computational cost [30]. The PCA approach is used in the proposed prediction model
to simplify and orthogonalize the original data set in order to optimize the models because a small
set of uncorrelated variables is easier to understand and use in further analyses than is a larger set of
correlated variables [22].

PCA was first introduced by Pearson [31] and developed by Hotelling [32]. PCA is a linear
decomposition of data that results in a set of eigenvectors that form the basis for a new coordinate
system [33]. Principal components performed on a data matrix of (N samples × P variables) yield
linearly transformed random variables that exhibit special properties in terms of variances. In effect,
transforming the original vector variables to the vector of principal components to a rotation of
coordinate axes to a new coordinate system that possesses inherent statistical properties [34]. The first
principal component (Y1) can be defined as a linear combination of the elements of the data matrix,
that is [23]:

Y1 = e11X1 + e12X2 + . . . + e1PXP (1)

where coefficients chosen to maximize the variance represented by the first principal component are
simply the eigenvectors of the symmetric covariance matrix. The eigenvalues of the covariance matrix
represent the variation of each principal component, where Var(Yi) = λi. Ideally, a PCA yields several
components that describe the majority of the total variation of the data set.

3.2. Data Mining Models

3.2.1. kNN

The difficulty in using kNN is determining the nearest k neighbors for a query point from a given
data set. This difficulty occurs in scientific and engineering applications, including pattern recognition,
data clustering, and function approximation [35]. kNN is a type of instance-based learning in which
a function is only approximated locally, and all calculations are deferred until classification [36].
This method can be used for regression by simply assigning the property value for an object as the
average of the values of its kNN [37]. The kNN can be defined by [38]. Given a set of N points, [pi]

N
i=1,

defined in real d-dimensional space, S⊂ <d, and a query point, q ∈ <d, the k points of S with a minimal
Euclidean distance to q are determined, where k ≥ 1. This problem is solved simply by calculating
the distances between the N points in S to the query point q. The k points with the smallest distances
comprise the desired subset of S; that is, the kNN to q.

3.2.2. LR

LR is the most widely used of all statistical techniques. LR estimates the most efficient-fitting
linear equation for predicting the output field according to the input fields. The regression equation
represents a straight line or plane that minimizes the squared differences between predicted and actual
output values [39,40]. The multiple LR can be defined as

Y = Xβ + E (2)

where Y is the (p × 1) vector of observations, X is the (p × q) vector containing q input factors, β is the
(q × 1) vector containing the regression coefficients, and E is the (p × 1) vector containing the noise terms.

3.2.3. M5

M5 combines a conventional decision tree with the possibility of LR functions at the leaves [41].
An M5 tree-based model is constructed using the divide-and-conquer method. Splitting in M5 ceases
when the class values of all the instances that reach a node vary only slightly, or when only a few
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instances remain. The splitting criterion is based on treating the standard deviation of the class values
that reach a node as a measure of the error at that node, and calculating the expected reduction in error
as a result of testing each attribute at the node [42]. The attribute that maximizes the expected error
reduction is chosen. Standard deviation reduction (SDR) is calculated by the formula

SDR = sd(T)−∑
i

|Ti|
|T| × sd(Ti) (3)

where T is the set of examples that reaches the node, Ti is the subset of cases that have the ith outcome
of the potential test, and sd() is the function of the standard deviation.

3.2.4. MLP

ANNs are the information processing systems that are inspired by the models of biological neural
networks. MLP is a feedforward network in which there may be one or more hidden layers besides
one input and one output layer. Studies have suggested that one hidden layer may be sufficient for
most problems [43–45]. All layers except the output layer contain a bias or threshold node whose
output is set to a fixed value of 1. All the nodes of a lower layer are connected to all the nodes of an
upper layer through links called weights. For MLP, the procedure used to perform the learning process
is called the learning algorithm, the function of which is to modify the synaptic weights of the network
in an orderly fashion to attain a desired design objective [46]. The BP algorithm, a generalized steepest
descent algorithm, is the most popular learning technique used to train the MLP. The weights of the
MLP are updated by using the BP algorithm during the training phase. The knowledge acquired by
the network after learning is stored in its weights in a distributed manner.

3.2.5. SVR

SVR is a learning machine based on statistical learning theory. Let

f (x) = ωTx + bω, x ∈ Rd (4)

where x is the input vector; f (x) is the output vector; ω and b are the slope and offset of the regression
line, respectively; and Rd is d-dimensional input space. In SVR, the regression function is calculated
by minimizing:

1
2

ωTω +
1
M

M

∑
i=1

c( f (xi), yi) (5)

where (1/2)||w||2 is the term characterizing the model complexity, M is the number of support
vectors, and c(f (xi), yi) is the loss function determining how the distance between f (xi) and the target
values yi should be penalized.

The constrained optimization problem can be reformulated into dual problem formalism by using
Lagrange multipliers [27], which leads to the solution:

f (x) =
M

∑
i=1

(αi − α∗i )K(xi, x) + b (6)

where αi and α∗i are the Lagrange multipliers, and K(xi, x) represents the kernel function. A suitable
kernel function makes it possible to map a nonlinear input space to a high-dimensional feature space,
in which LR can be performed [47]. The researcher adopted the prevalent radial basis function (RBF)
kernel. The Euclidean distance-based RBF-kernel function is defined as follows:

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(7)
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where σ is the standard deviation that determines the width of the RBF kernel.

4. Model Development

The collected typhoons were classified into training and testing sets when modeling. The training
data (years 2002–2011, 56 typhoons) were used to build the models, and the testing data
(years 2012–2013, 11 typhoons) were used to evaluate the performance levels of the built models.

4.1. PCA

PCA was performed on the original data to explore possibilities for data dimension reduction.
Figure 3 plots the eigenvalue of components and total variance explained for wave-height predictions.
On the basis of [48], the components with an eigenvalue greater than one are suggested to
replace the original attribute values for further analysis. Thus, the researcher selected eigenvalues
greater than 1.0 as principal components. As Figure 3 shows, 10 components are greater than 1.0,
and the corresponding total variance percentage of these components is 77.29%. Through PCA,
the PCA-derived components (variables) then replaced the original ones. This model case is called
EV1 in the subsequent section. The relationships between new variables and original inputs can be
expressed in a matrix form, such as

y1
y2

y3

y4
...

y10


=



0.170 −0.012 −0.054 0.089 · · · −0.005
0.019 0.072 0.011 0.003 · · · 0.251
−0.048 −0.201 −0.351 0.302 · · · 0.056
−0.269 −0.052 −0.114 0.036 · · · −0.050

...
...

...
...

. . .
...

−0.026 −0.042 0.105 −0.134 · · · 0.166





h′1
h′2
h′3
h′4
...

b′5


(8)

where h′1 is the normalized input h1, and yj are the PCA-derived inputs (j = 1, 10).
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For TV95, the relationships between new variables and original inputs was expressed as

y1
y2

y3

y4
...

y25


=



0.170 −0.012 −0.054 0.089 · · · −0.005
0.019 0.072 0.011 0.003 · · · 0.251
−0.048 −0.201 −0.351 0.302 · · · 0.056
−0.269 −0.052 −0.114 0.036 · · · −0.050

...
...

...
...

. . .
...

−0.002 0.162 0.051 0.044 · · · 0.104





h′1
h′2
h′3
h′4
...

b′5


(10)

Additionally, the model case that used the original data was designed as another case, namely, ORI.

4.2. Model Constructions

The parameter calibrations of various model cases were subjected to sensitivity analysis. The root
mean square error (RMSE) was used to measure the errors of the results, that is,

RMSE =

√
1
nr

nr

∑
i=1

(
Opre

i −Oobs
i

)2
(11)

where Opre
i is the prediction for record i, Oobs

i is the observation for record i, and nr is the number of records.
The smaller the RMSE criteria, the more favorable is the performance of the predicted outcome.

First, the processes of modeling the EV1 are described. For kNN, the favorable choice of k
depends on the data. In this study, the k neighbor points were chosen by performing sensitivity
analysis. Figure 4a plots the RMSE calculations using the testing data set. In the figure, the optimal
RMSE value was at k = 14. For LR, the researcher used a stepwise regression method and specified
selection criteria based on the statistical probability (p value) associated with each field. The criteria
and stepwise estimation were used to add and remove fields. The p value used was 0.05.
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Figure 4. Sensitivity of model parameters on the root mean square error (RMSE): (a) neighbor points
for k-nearest neighbors (kNN), (b) minimum number of instances for M5, (c) learning rate for multilayer
perceptron (MLP), (d) momentum for MLP, and (e) standard deviation for support vector regression (SVR).

For M5, the minimum number of instances to allow at a leaf node were chosen by performing
sensitivity analysis. According to Figure 4b, the suitable minimum number of instances can be chosen
between 1 and 4. To train an MLP network, a three-layer feedforward network was created. This study
introduced sigmoid and linear activity functions in the hidden and output layers, respectively. The number
of neurons in the hidden layer was determined according to the method proposed by [49], namely adding
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up the number of neurons in the input and output payers, minusing the sum by 1, and dividing this
number by 2. In addition, the parameters of learning rate and momentum were validated according
to a sensitivity analysis. According to Figure 4c,d, the suitable learning rate and momentum can be set
at 0.6 and 0.3, respectively. For SVR, the parameters involve the penalty parameter and small positive
number, in which both parameters are embedded in dual problem formalism. Here, this study sets penalty
parameter and small positive number at 1.0 and 0.001, respectively. As mentioned, the RBF kernel was
employed. According to sensitivity analysis (Figure 4e), the favor σ value can be set at 2. The other model
cases (ORI, TV95, and TV90) were calibrated by using the same processes as those in EV1.

5. Evaluation

As stated in the previous section, the various trained models were validated by the 11 testing
typhoons (years 2012–2013). Figure 5 plots the prediction results of testing typhoons for four PCA cases
using five models.
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LR: linear regressions; M5: model trees; MLP: multilayer perceptron; SVR: support vector regression.
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5.1. Effect of Dimension Reduction

First, the researcher evaluated the effect of data dimension reduction using a PCA method on
the prediction ability and computation efficiency. Figure 6 illustrates the relationships among RMSE
prediction errors, computational time, and four designed cases by using a testing set. The total numbers
of attributes (comprising input attributes and a target) are 11, 20, 26, and 51 for EV1, TV90, TV95,
and ORI, respectively. As seen in these subfigures, when the number of model attributes decreases,
the computing efficiency increases because of a decrease in computational time. For the kNN model,
the computing time increased from 0.8 to 2.0 s using the four cases. For other models, the computing
times range of 0.02–0.78 s, 2.95–4.70 s, 7.0–237.94 s, and 22.31–570.43 s were for the LR, M5, MLP,
and SVR models, respectively. This study found that the computing times for kNN, LR, and M5 are
short regardless of input attribute amounts. By contrast, the computing time on MLP and SVR rise
considerably when the number of input attributes increases. For prediction errors, the results show
that the RMSE values are in the range 0.988–1.032 m, 0.555–0.816 m, 0.553–0.793 m, 0.553–0.766 m,
and 0.557–0.775 m for the kNN, LR, M5, MLP, and SVR models, respectively. LR takes advantage of
computational time, because LR whose regressions depend linearly on their unknown parameters are
easier to fit than are models (such as MLP and SVR) that are nonlinearly related to their parameters.
Moreover, the researcher found that when the number of model attributes decreases, the number of
prediction errors increase. The reason for this might be that although PCA processes data dimension
reduction, it may partially lose pattern information.
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Figure 6. Effect of data reduction on computational time and prediction errors for (a) kNN, (b) LR,
(c) M5, (d) MLP, and (e) SVR.

To easily present the overall performance with respect to the prediction errors and computational
time, Table 3 lists the average of RMSE measures and computational times of the four PCA cases.
As Table 3 shows, (1) in terms of prediction errors, the researcher determined that the optimal one
occurs at MLP (RMSE = 0.691 m), and the secondary favorable one occurs at SVR (RMSE = 0.694 m),
in which the RMSE is close to that in MLP; meanwhile, the least favorable one appears at kNN
(RMSE = 1.034 m). (2) In terms of computational time, the favorable one is LR (0.2 s), and the most
time-consuming is SVR (169.6 s).

Table 3. Average performance of RMSE and computational time of four PCA cases on five models.

Performance kNN LR M5 MLP SVR

Time (s) 1.5 0.2 3.9 75.8 169.6
RMSE (m) 1.034 0.712 0.699 0.691 0.694



Energies 2018, 11, 11 12 of 23

5.2. Performance of Classified Wave Heights

5.2.1. Error Measures

To evaluate the performance of different wave strengths which are defined by CWB, the wave
heights were classified into five levels, namely, small wavelets (<0.6 m), large wavelets (0.6–1.5 m),
small and moderate waves (1.5–2.5 m), long waves (2.5–5.0 m), and high and very high waves (>5.0 m).
The criterion used to assess the wave strengths were the mean absolute error (MAE), RMSE and
correlation coefficient (r). MAE is defined as:

MAE =
1
nr

nr

∑
i=1

∣∣∣Opre
i −Oobs

i

∣∣∣ (12)

Then, the r is defined as:

r =

nr
∑

i=1

(
Oobs

i −Oobs
)(

Opre
i −Opre

)
√

nr
∑

i=1

(
Oobs

i −Oobs
)2 nr

∑
i=1

(
Opre

i −Opre
)2

(13)

where Oobs is the average of the observations, and Opre is the average of the predictions. Generally,
lower MAE values indicate more accurate performance measures and larger r values indicate favorable
performance measures.

Figure 7 illustrates the performance measures of the five levels of wave heights. The figure plots
the performance measures regarding MAE (Figure 7a–d), RMSE (Figure 7e–h), and r (Figure 7i–l)
for the four cases (ORI, EV1, TV90, and TV95). The results from MAE (Figure 7a–d) and RMSE
(Figure 7e–h) show that (1) the highest predicted errors seem to appear at the high and very high wave
level, whereas the lowest predicted errors occur at the small wavelet level. (2) The kNN resulted in
more errors in the small wavelet, large wavelet, long wave, and high and very high wave levels (except
for small and moderate wave levels) on the four model cases. Moreover, for the correlation between
observed and predicted values (Figure 7i–l), the researcher determined that the highest r results might
be at the large wavelet level, whereas the lowest r results are at the small and moderate wave level.
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(e–h) RMSE, and (i–l) r. MAE: mean absolute error.

The analysis shows that the error measures from MAE and RMSE belong to “absolute errors.”
To assess the “relative errors” regarding the classified wave-height predictions, the relative MAE
(rMAE) and coefficient of variation of the RMSE (CVRMSE) were calculated. rMAE is computed using

rMAE =
MAE

Oobs (14)

Then, the CVRMSE is computed using

CVRMSE =
RMSE

Oobs (15)

Generally, precise predictions are those whose rMAE and CVRMSE are nearly 0. Figure 8 plots
the performance rMAE and CVRMSE measures of the classified wave heights for the four model cases.
Results from rMAE (Figure 8a–d) and RMSE (Figure 8h) show that the highest relative predicted
errors seem to appear at the small wavelet level, whereas the lowest predicted errors occur at the long
wave level.
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and (e–h) CVRMSE.

5.2.2. Performance Graphically Using Taylor Diagrams

In this section, the researcher employed Taylor diagrams to graphically indicate which of various
prediction models is most realistic. The Taylor diagram, invented by [50], is an alternative means of
understanding the relative merits of the forecast models. The diagram can provide a concise statistical
summary of how well patterns match each other in terms of their correlation, their root-mean-square
(RMS) difference, and the standard deviation.

The Taylor diagram shown in Figure 9 provides a summary of the relative skill with which
five models simulate the various wave levels: (a) small wavelet, (b) large wavelet, (c) small/moderate
wave, (d) long wave, and (e) high/very high wave. For Figure 9a, M5 agrees best with observations,
with the lowest centered RMS error. Of the models, kNN has the lowest pattern correlation.
For Figure 9b, MLP has a slightly higher correlation with observations and a slightly lower standard
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deviation as the observed. Although kNN and LR have about the same centered RMS errors, LR
predicts the wave heights much better than kNN, resulting in a higher correlation with observations.
For Figure 9c, MLP has the lowest standard deviation, and the highest correlation with observations.
For Figure 9d, SVR has a slightly higher correlation with observations and a slightly lower standard
deviation as the observed. Finally, in Figure 9e, SVR, MLP, M5 and LR agree best with observations,
each with about the same RMS errors. SVR, however, has a slightly higher correlation with observations.
Hand et al. [51] reported that ANN-based models (e.g., MLP and SVR) can more easily overcome the
high dimensionality problem, that is, the problem that arises when a high number of input variables
are present relative to the number of available observations.
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5.3. Evaluation of Various Lead Times

5.3.1. Error Measures

In this section, the researcher examines the forecast horizons varying from 1 to 6 h, and using the PCA
case of TV90 as a demonstration. Figure 10 shows the observations and predictions at lead time from 2 h
to 6 h (predictions of 1 h can see Figure 5c). In addition, Figure 11 shows the scattered plots contrasting
the observations with the predictions at the lead time at 1, 3, and 6 h. The plots that the slopes calculated
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are greater in the MLP model than in other models, and the kNN was the least correlation among the
models. Figure 12 shows the model performance measures with corresponding rMAE, CVRMSE, and r
values to enable a comparison of forecast horizons varying from 1–6 h. According to figure, as expected,
the researcher found that the 1-h-ahead predictions were more accurate than the 2-h-ahead predictions,
and the 6-h-ahead predictions were the least accurate among the predictions. This indicated that increased
forecasting horizons yielded increased errors in the prediction of wave heights.
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To determine the prediction ability, the researcher calculated the average performance measure
for 1–6 h predictions (Table 4). The results showed that the MLP achieved more favorable performance
(lower rMAE and CVRMSE, and higher r values) than did other models.

Table 4. Average performance measures of relative error terms (rMAE and CVRMSE) and correlation
for 1–6 h predictions.

Performance kNN LR M5 MLP SVR

rMAE 0.309 0.254 0.252 0.251 0.251
CVRMSE 0.500 0.436 0.432 0.429 0.437

r 0.753 0.809 0.816 0.823 0.809

5.3.2. Effect of Ranking Average and Computational Complexity

To further determine the most suitable model for different lead times, the model accuracy and
complexity were estimated and then the relative weighted performance was computed. The relative
weighted performance comprises two terms: the ranking performance, which was estimated for each
of the models based on r, MAE and RMSE, and the computational complexity, which comprises both
the model training time and the test set evaluation time [52]. For the ranking performance, the best
performing model on each of these measures is assigned the rank of 1 and the worst is 0. For MAE and
RMSE, the rank of the model i is calculated as [53,54]:

Ri = 1− ei −min(ei)

max(ei)−min(ei)
(16)

where ei is the measured value. For r, the rank is calculated as

Ri = 1− ei −max(ei)

min(ei)−max(ei)
(17)

The total number of the best and worst ranking models is computed by

Ci =
1
ρ

(
si − fi

n

)
+

1
ρ

(18)

where ρ = 2 is the weight shifting parameter, si is the total number of successes or best cases for the
model i, fi is the total number of failures or worst cases for the same model, and n is the total number
of datasets.

Subsequently, the relative weighted performance can be measured by

Z = α · ai + β · ti (19)

where α and β are the weight parameters for ranking average accuracy against computational
complexity. The average accuracy and computational complexity are denoted by ai and ti respectively.
Higher Z values indicate superior metrics.

Figure 13 shows the relative weighted performance for the 1, 3, and 6 h lead forecast with
respect to different β values. The Z values were calculated by assuming α = 1 and varying β from
0 to 2. From Figure 13a, MLP obtained the highest Z values when β = 0 (without consideration of
computational complexity); however, M5 obtained the highest Z values when the β value increases.
Similarly, Figure 13b,c, MLP and SVR obtained the higher Z values than M5, LR, and kNN when β = 0;
however, MLP and SVR might obtained lower Z values than others when considering computational
complexity. This indicates that the training periods of the MLP and SVR were much longer than those
of the kNN, LR, and M5, because fitting all the training data and generating a global approximation in
the MLP and SVR training process is typically time consuming.
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6. Conclusions

This paper reports a comparative study of PCA-derived data-driven wave-height prediction
models during typhoon periods. The used data mining models are kNN, LR, M5, MLP, and SVR.
The experimental site was the Longdong buoy, off the northeastern coast of Taiwan. The processing
stages of model development were undertaken. First, the researcher performed PCA and used
the results to reduce the potential attributes from the original data at the data preprocessing stage.
On the basis of the PCA, the researcher designed four model cases: EV1, TV90, TV95, and ORI. Data
concerning typhoons occurring during 2002–2011 and 2012–2013 were collected for training and
testing, respectively. After calibrating the parameters of various model cases by using a training set,
the simulation results made by a testing set were evaluated and discussed. The researcher obtained
the following findings:

First, comparisons among four PCA cases: The results show that (1) when the number of attributes
decreases, computing time decreases, and the prediction error increases. Reasons for this could be that
although PCA performs the processing of data dimension reduction, pattern information is partially
lost. (2) MLP and SVR result in the optimal ones compared with other models when averaging the
RMSE measures of the four model cases.

Second, comparisons among the classified wave heights: The results show that (1) M5 provide
the superior outcomes at small wavelet level compared with other models, (2) MLP has the optimum
outcomes at the large wavelet and small/moderate wave levels compared with other models,
and (3) SVR provides the optimal outcomes at the long wave and high/very high wave levels of
all models.
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Third, evaluation of various lead times: The results show that MLP and SVR achieved more
favorable relative weighted performance without consideration of computational complexity; however,
MLP and SVR might obtained lower performance when computational complexity is considered.
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Appendix A. Typhoons Affecting Offshore Northeast Taiwan 2002–2013

Table A1. Typhoons affecting offshore northeast Taiwan and typhoon intensity classification.

Typhoon Period
(yy/mm/dd) Intensity Typhoon Period

(yy/mm/dd) Intensity

Rammasun 2002/7/2–4 Category 2 Sepat 2007/8/17–19 Category 3
Nakri 2002/7/9–10 Tropical storm Mitag 2007/11/26–27 Category 1

Sinlaku 2002/9/4–8 Category 1 Kalmaegi 2008/7/17−18 Category 1
Kujira 2003/4/21–24 Category 2 Fung-Wong 2008/7/27−29 Category 2

Nangka 2003/6/1–3 Tropical storm Nuri 2008/8/19–21 Category 1
Soudelor 2003/6/16–18 Category 1 Sinlaku 2008/9/12–14 Category 3
Imbudo 2003/7/21–23 Category 2 Hagupit 2008/9/21–23 Category 2
Morakot 2003/8/2–4 Tropical storm Jangmi 2008/9/27–29 Category 3
Vamco 2003/8/19–20 Tropical storm Linfa 2009/6/19–21 Tropical storm

Krovanh 2003/8/22–23 Category 1 Molave 2009/7/16–18 Tropical storm
Dujuan 2003/8/31–9/2 Category 2 Morakot 2009/8/5–10 Category 1
Melor 2003/11/2–3 Tropical storm Parma 2009/10/3–6 Category 2

Conson 2004/6/7–9 Category 1 Namtheun 2010/8/30–31 Tropical storm
Mindulle 2004/6/30–7/2 Category 2 Lionrock 2010/8/31–9/2 Tropical storm
Kompasu 2004/7/14–15 Tropical storm Meranti 2010/9/9–10 Tropical storm
Rananim 2004/8/10–13 Category 1 Fanapi 2010/9/19–20 Category 2

Aere 2004/8/24–26 Category 1 Megi 2010/10/21–23 Category 2
Haima 2004/9/12–13 Tropical storm Aere 2011/5/9–10 Tropical storm
Meari 2004/9/26–27 Category 1 Songda 2011/5/27–28 Category 3

Nanmadol 2004/12/3–4 Category 1 Meari 2011/6/23–25 Tropical storm
Haitang 2005/7/17–19 Category 3 Muifa 2011/8/4–6 Category 2
Matsa 2005/8/3–6 Category 1 Nanmadol 2011/8/28–31 Category 3
Sanvu 2005/8/11–13 Tropical storm Talim 2012/6/19–21 Tropical storm
Talim 2005/8/31–9/1 Category 3 Doksuri 2012/6/28–29 Tropical storm

Damrey 2005/9/21–23 Tropical storm Saola 2012/7/31–8/3 Category 1
Longwang 2005/10/1–3 Category 3 Haikui 2012/8/6–7 Category 1
Chanchu 2006/5/16–18 Category 2 Kai-Tak 2012/8/14–15 Tropical storm
Ewiniar 2006/7/7–9 Category 2 Tembin 2012/8/21–28 Category 2

Bilis 2006/7/12–15 Tropical storm Jelawat 2012/9/27–28 Category 3
Kaemi 2006/7/24–26 Category 1 Soulik 2013/7/11–13 Category 3
Bopha 2006/8/8–9 Tropical storm Trami 2013/8/20–22 Tropical storm
Saomai 2006/8/9–10 Category 2 Kong-Rey 2013/8/27–29 Tropical storm

Shanshan 2006/9/14–16 Category 2 Fitow 2013/10/4–7 Category 1
Pabuk 2007/8/7–9 Tropical storm - - -
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