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Abstract: Controlled islanding is an effective remedy to prevent large-area blackouts in a power
system under a critically unstable condition. When and where to separate the power system are the
essential issues facing controlled islanding. In this paper, both tasks are studied to ensure higher time
efficiency and a better post-splitting restoration effect. A transient stability assessment model based
on extreme learning machine (ELM) and trajectory fitting (TF) is constructed to determine the start-up
criterion for controlled islanding. This model works through prompt stability status judgment with
ELM and selective result amendment with TF to ensure that the assessment is both efficient and
accurate. Moreover, a splitting surface searching algorithm, subject to minimal power disruption,
is proposed for determination of the controlled islanding implementing locations. A highlight of this
algorithm is a proposed modified electrical distance concept defined by active power magnitude
and reactance on transmission lines that realize a computational burden reduction without feasible
solution loss. Finally, the simulation results and comparison analysis based on the New England
39-bus test system validates the implementation effects of the proposed controlled islanding strategy.

Keywords: controlled islanding; transient stability; machine learning; splitting surface searching
algorithm

1. Introduction

A modern power system operates close to its technical limits because of expansions in scale
and load demand. This operation makes a power system more vulnerable to serious disturbances.
To prevent blackouts evolved from rotor angle instability conditions, system separation measures
are implemented and show an effect in certain scenarios [1]. With advances in the development of
measuring and controlling techniques, controlled islanding strategies adapted to different scenarios
are of increasing interest [2–4].

For controlled islanding [5], the splitting initiation criterion, an algorithm for splitting
surface determination and stability control for an isolated sub-group system, are necessary in the
implementation and are usually discussed separately in the literature. Moreover, determining when
and where to separate the power system is primarily studied because of the crucial impact of these
factors on the success rate of controlled islanding. Splitting initiation criterion usually relies on prompt
transient stability status judgment of the power system, which can be categorized into two types
according to which physical model is considered. Rapid time-domain simulation [6] and transient
energy function methods [7] are representatives of model-based methods.

With widely-configured advanced metering infrastructure [8], dynamic data during a power
system transient period can be obtained within milliseconds. On this basis, the use of model-free
methods has expanded rapidly because of their acceptable accuracy and accredited high processing
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speed. On one hand, implicit information in trajectories, e.g., the rotor angle trajectory and the active
power trajectory of a generator, is excavated from the aspect of physical [9–11] and mathematical [12,
13] characteristics. In [9,10], post-disturbance dynamics are analyzed on phase planes ∆ω–∆δ and
P–∆δ to realize stability assessment. These methods rely on correct mapping of an actual power
system, the complexity of which increases vastly with the expansion of the power system scale.
In [12,13], a curve extrapolation technique, including Taylor series expansion and a pattern recognition
method, is applied for fast stability assessment. These methods demonstrate promising performance
in short-term assessment; however, their results in long-term assessment are questionable because
they do not account for power system non-linear characteristics in a dynamic process. On the other
hand, machine learning techniques, including artificial neural networks (ANN) [14,15], support vector
machine (SVM) [16], decision tree (DT) [17,18], and extreme learning machine (ELM) [19], have been
widely utilized for transient stability assessment, showing promising performance. In [18], an adaptive
controlled islanding measure assisted by the DT method is proposed to solve the problem of “when
to island”. However, the accuracy of these machine learning based methods is closely related to the
training sample scale and quantity, as well as the training method.

Three types of methods are used to determine the splitting surface. Slow coherency theory is the
theoretical support for the first type [2,20–22]. This type of method reduces the feasible solution space
by identifying, in advance, slowly coherent groups of generators with which the dynamic behavior
of each generator is considered. However, the time-consuming problem caused by evaluation of
higher order states of the system and iterative calculations is noteworthy. The second type of method
relies on graph theory [23–25]. These methods consider the power system as an undirected graph,
and cut sets of splitting lines are determined by satisfying certain constraints. Although these methods
achieve an increase in computing efficiency, problems with respect to feasible solution loss in the graph
reduction process and rationality of the computing results deserve further research. In [23], breadth
first search (BFS) and depth first search (DFS) were applied to searching for the optimal solution with
minimal power imbalance. In [24], a three-phase method based on an ordered binary decision diagram
(OBDD) highlighted the superiority of graph theory. In [25], the calculation complexity is considerably
reduced with spectral clustering; however, the procedure on generator coherency constraint processing
is controversial [26]. The third type of method is based on an intelligent optimal solving algorithm,
which can help to speed up the calculations and determine globally-optimal solutions that are as close
to the truly optimal solutions as practically possible [27,28].

In most of the relevant literature, research on controlled islanding strategies are conducted
from the aspect of either the start-up criterion or optimal splitting surface determination. However,
a complete controlled islanding strategy should include both aspects in practical implementation.
Moreover, increased configuration of phasor measurement unit (PMU) devices enables a situational
awareness capability of a power system, and an efficient data-processing method is necessary to
achieve such a capability.

Therefore, the main objective of this paper is to propose a controlled islanding strategy with high
efficiency and reliability. For the start-up criterion, a transient stability assessment model aimed at
maximizing the benefits of model-free methods is constructed by integrating machine learning and the
trajectory fitting (TF) method. Furthermore, an optimal splitting surface determining algorithm based
on graph theory is proposed; this algorithm avoids feasible solution loss using the modified network
reduction method.

The remainder of this paper is organized as follows: In Section 2, key issues about controlled
islanding strategy design is discussed. The transient stability assessment model for the start-up
criterion and the searching algorithm for the optimal splitting surface are presented in Sections 3 and 4,
respectively. The implementing structure and process of the proposed controlled islanding strategy is
explained in Section 5. Case studies and the conclusions are presented in Sections 6 and 7, respectively.
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2. Controlled Islanding Strategy Design

In contrast with conventional passive islanding, controlled islanding is an online, centralized,
and globalized implementation method for system separation. This method determines the splitting
locations rapidly with globally obtained operation information and constraints, e.g., power imbalance
and power-flow disruption. Hence, controlled islanding always shows outstanding performance.

Determining both when and where to separate the power system is essential for controlled
islanding. The splitting action occasion is influential on the dynamics of post-splitting systems.
The splitting surface selection determines the operational state of the isolated system and the
subsequent control measures.

Regarding the task of “when”, prompt transient stability assessment is an effective tool.
Model-based transient stability assessment methods, e.g., time simulation and transient energy
function, are restricted by excessive computing time or high complexity in the analysis of a large-scale
power system. Machine learning-based methods have been widely applied in stability assessment,
exhibiting good performance. Among these machine learning methods, the ELM algorithm has been
demonstrated to be useful for transient stability assessment because of its high training efficiency
and preferable accuracy. In [19], the ELM was verified to provide incorrect judgments at relatively
high possibility, if its output is within a certain interval. This result indicated that the accuracy
of the ELM-based transient stability assessment model could be enhanced further with specifical
amendments. In this paper, the TF method in [13] is adopted as the enforcement tool for amendments.
Hence, the start-up criterion for controlled islanding strategy is determined using a transient stability
model constructed based on the ELM and the TF method. The model realizes a balance between
computing speed and accuracy through a proposed coordinating mechanism.

Regarding the task of “where”, it aims to determine a suitable islanding surface to ensure the
stability of the post-splitting subgroup system. In this paper, “suitable solution” corresponds to the
splitting surface with minimal power imbalance and power-flow disruption, where minimal power
imbalance is regarded as the objective function in the optimal splitting surface calculation. Theoretically,
the searching algorithm requires a large calculation quantity because of the extensive possibility of
splitting line sets; this situation is known as a typical NP-hard (non-deterministic polynomial) problem.
For either graph theory-based methods or slow coherency theory-based methods, determining the
splitting surface is intended to search for generator groups with weak connections. Hence, the possible
solution space can be pre-filtered with an evaluation of the electrical connection strength. The electrical
distance with line reactance only is such an evaluation index; however, this index’s static feature may
lead to loss of feasible solutions in the network reduction. In this paper, a modified electrical distance
defined by the ratio of the transmission line reactance and the active power measurements (xij/Pij) is
proposed for solution space reduction.

3. Hybrid Transient Stability Assessment Model for Activation Criterion

Conventional passive islanding relies on local electrical information to function. Controlled
islanding makes a decision based on global system information, and its action state depends on
transient stability assessment results.

In this part, a hybrid transient stability assessment model based on the ELM and the TF method is
constructed, as shown in Figure 1. The proposed model can provide support for making a controlled
islanding decision with post-disturbance system stability assessment results. If the assessment result is
stable, then subsequent measures for controlled islanding (e.g., splitting surface searching and splitting
actions) will not be triggered. Otherwise, the splitting surface searching algorithm will be initiated at
once with generator grouping information.
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3.1. ELM Theory

The ELM is a single hidden layer feed-forward neural network algorithm proposed by Huang [29].
Compared with a conventional neural network algorithm, the ELM algorithm determines the
parameters of hidden nodes using a random assignment and inverse calculation process, rather
than the time-consuming tuning process using the gradient descent method, thereby guaranteeing its
high training speed.

Training samples with N sets can be represented as follows:

ℵN = {(xi, ti)|xi ∈ Rn, ti ∈ Rm}N
i=1 (1)

where xi is a n × 1 input vector, and ti is a m × 1 target vector. A single-hidden layer network with
activation function θ(x) can be modeled as:

Ñ

∑
i=1

βiϑi(wi, bi, xj) = oj, j = 1, . . . , N (2)

where Ñ represents the number of hidden nodes, wi = [wi1, wi2, . . . , win]
T and bi are parameters of the

hidden nodes, and βi = [βi1, βi2, . . . , βin]
T is the weighting vector connecting the i-th hidden nodes

and the output nodes. The structure of the ELM algorithm is shown in Figure 2.
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For each training sample, the calculated outputs are expected to remain the same as the actual

results, which can be represented as
N
∑

j=1
‖oj − tj‖ = 0. Therefore, βi, bi, wi is to be determined to satisfy

Ñ
∑

i=1
βiϑi(wi, bi, xj) = tj, j = 1, . . . , N, which can be written in matrix form as follows:

Hβ = T (3)

where:

H(w1, . . . , wÑ , b1, . . . , bÑ , x1, . . . , xÑ) =

 ϑ(wi, bi, x1) ϑ(wÑ , bÑ , x1)
... · · ·

...
ϑ(wi, bi, xN) ϑ(wÑ , bÑ , xN)


N×Ñ

,

β =


βT

1
...

βT
Ñ


Ñ×m

T =

 tT
1
...

tT
N


N×m

Hence, the training process is to determine βi, wi, and bi. For the ELM training algorithm, the
parameters wi and bi are fixed before training with random values. βi is the only undetermined
parameter. If the number of hidden neurons is equal to the number of training samples, then βi can
be calculated easily [29]. Although the number of hidden neurons is less than the number of training
samples, generally, precise values of βi, wi. and bi, may not exist. The mathematical model can be
transformed to minimize the cost function given below, where βi, bi, wi (the optimal approximate
solution) are to be determined:

E =
N

∑
j=1

(
L

∑
i=1

β̃iϑ(w̃i · Xj + b̃i)− tj

)2

(4)

For fixed w̃i, b̃i, β̃i the approximate solution can be easily determined [29].
The ELM-based transient stability assessment model is constructed through three main steps.

First, historical samples and offline simulation samples, which consist of system features, are collected
for feature selection. The recorded actual data can be used to supplement the prior knowledge base to
ensure the adaptation to a practical power system. Second, Fisher discrimination is implemented to
determine the features that are closely related to the system transient stability status from the initial
features with samples in the prior knowledge base. In this manner, the required data scale is reduced
and the computing efficiency is improved.

In this paper, the initial features (listed in Table 1) can be obtained by PMU measurements.

Table 1. Initial features for Fisher discrimination evaluation.

Notation Description

δi rotor angle variation of generator i
Vi, θi voltage amplitude and phase angle variation of bus i

Pin,i, Qin,i active and reactive power injection variation of bus i
PL,i, QL,i active and reactive power flow of line i

Finfo (ftime and fduration) fault information (fault time and fault duration)
L, Lnode load level

Finally, the selected features are regarded as significant features and applied for training of the
ELM-based classifier. Once the classifier is established, the ELM transient stability assessment model
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is constructed. In practical implementation, the transient stability status is judged by the assessment
model according to the PMU measurements of the significant features within a short time delay.

3.2. ELM-Based Transient Stability Assessment Model

As mentioned above, the accuracy of a machine learning technique-based method is greatly
influenced by the scale and quality of the training samples, as well as the training approach. To improve
the accuracy, the TF method [13] is applied to amend the outputs of the ELM-based stability assessment
model in certain cases; this approach indicates a coordination mechanism exists in the hybrid transient
stability assessment model. The TF method can be constructed using the following two steps:

1. Generator rotor angle trajectories in various scenarios are collected from simulation and historical
samples and comprise the prior sample database for one certain generator. The difference between
samples is measured by the vector distance and is defined as follows:

f (xi,T , xj,T) =

(
T−1

∑
t=0

(xi,t − xj,t)
2

) 1
2

(5)

where xi,T, xj,T are samples i and j with data of T moments. The samples are considered
approximate if the vector distance between them is less than a certain threshold.

2. Approximate trajectory samples are grouped using the hierarchical clustering algorithm.
The trajectory having the minimum vector distance with other trajectories is defined as the
standard trajectory of the group. Standard trajectories comprise the standard trajectory pattern
library, and the measured trajectory is subsequently matched with pattern trajectories in this
pattern library to predict the rotor angle trajectory tendency. If the rotor angle of any generator is
beyond 180◦ with the predicted trajectory, then it is judged as a transient instability. Otherwise,
it is stable in the transient process.

As the essential component of the hybrid transient stability assessment model, the coordination
mechanism is designed for sampling time and result amendment. The ELM- and the TF-based
assessment model require five cycles and 15–20 cycles of sampling time, respectively. If the
measurements are sufficient in quantity and quality, then the assessment model is initiated immediately.
With the conclusion that output of the ELM-based model is problematic in a certain interval in [19],
the result amendment procedure is triggered if the output of the ELM-based model is in an unreliable
interval. In this case, the TF-based method is used for this amendment procedure and determines the
final transient stability assessment result. The determined result is taken as the start-up criterion to
decide whether to start up the controlled islanding surface searching algorithm and the splitting action.

4. Optimal Splitting Surface Search Algorithm

The splitting surface searching approach is always used to determine weakly-connected generator
groups, among which an out-of-synchronization state typically occurs. In this section, a modified
electrical distance index is used to determine those nodes having vague connection with separated
generator groups, which could significantly simplify the solution space without feasible solution loss.
The ‘optimal’ algorithm involves satisfying some other constraints and considering an active power
imbalance of the isolated system as the objective function in the proposed searching algorithm.

4.1. Nodes Classification

Conventionally, a power system is considered to be an undirected graph with edge weight and the
accumulated value of the edge weights between nodes is regarded as the electrical distance. In most
cases, the reactance of lines is defined as the edge weight for network simplification, and nodes in the
electrical network can be divided into two types. Nodes near one certain group of coherent generators
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in electrical distance are labeled as normal nodes (NN). Otherwise, if nodes share a similar connection
with multiple groups of coherent generators, then they are classified as public nodes (PN).

However, considering reactance only in the electrical distance is not complete, theoretically.
The detailed analysis of a specific case is shown below:

Figure 3 shows a structure of a simple power system, where the reactance of two lines is equal, i.e.,
x1 = x2, and the load on buses m and n are S1 = 2S2, where S1 = 2S2, i.e., the active power transmitted
between node i and m is twice as much as that between node i and n. Therefore, the electrical distance
between nodes i and m is equal to that between nodes i and n when only reactance is considered in the
electrical distance. However, this approach neglects the effect of transmitted power on the lines. In this
paper, the ratio of the reactance and the active power of the lines is considered as the edge weight to
evaluate the electrical distance. We take the IEEE-9 test system as an example to show the advantage
of this approach as follows:
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The effect of the edge weight on the results of determining the splitting surface is analyzed on the
IEEE-9 test system [25]. Figure 4 shows the edge weight defined with xij and xij/Pij of the IEEE-9 test
system in (a) and (b), respectively. The minimum accumulating value of the edge weight from node 9
to nodes 1 and 3 are calculated, as summarized in Table 2.
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Table 2. Minimum edge weight cumulative summation.

Edge Weight Definition Minimum Accumulating Edge Weight Value

Node 9 to 1 Node 9 to 3

xij 0.1496 0.2286
xij/Pij 0.4086 0.3620

Table 2 indicates that edge weight defined with xij has smaller weight value from node 9 to 1, i.e.,
node 9 is closer to node 1 than to node 3. While nodes 9 to 3 have relatively stronger connections for
the edge weight defined by xij/Pij. This difference may lead to a loss of feasible solutions in network
reduction for the reactance-only scenario. Hence, further research is necessary to consider reactance
not only in the electrical distance.
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In this paper, xij/Pij is defined as the edge weight of the undirected graph-model. Reduction of
the islanding solution space is executed using the following steps:

1. Calculating the minimum accumulative edge weight among nodes using the Floyd algorithm. The
electrical distance between the load nodes and the coherent generator groups can be written as:

Di→m =
1

Nm

Nm

∑
j=1

Wij (6)

where Nm is the number of generators in coherent group m, and Wij is the minimum accumulative
edge weight between load node i and generator node j in group m.

2. The difference in the electrical distance between load node i and two generator groups m1 and
m2 can be estimated as:

γ = Di→m1 − Di→m2 (7)

A threshold ε is pre-determined according to statistical data and operational experience, with the
public nodes occupying approximately 20% of the whole nodes. Node i is defined as the public node
of the two generator groups when |γ| < ε. If |γ| > ε, then node i is defined as a normal node and node
i is classified as a closely connected generator group according to the positive-negative value of γ.

4.2. Optimal Splitting Surface Searching Algorithm

On basis of node classification, a normal node is assigned to a corresponding generator group.
The essence of searching the optimal splitting surface becomes distribution of the public nodes into
suitable generator groups. To determine the optimal splitting surface, the minimum active power
imbalance and the minimal power-flow disruption are applied as the objective functions in Equations
(8) and (9), respectively:

min ∆P = |PG − PL| (8)

min ∑
i∈V1,j∈V2

∣∣Pij
∣∣

(9)

where PG and PL denote the active power of the generators and the loads in the isolated system
respectively, and Pij is the active power transmitted between nodes i and j. The minimum active
power imbalance of the isolated system determines whether the isolated system can recover from
load-generation imbalance. Minimum power-flow disruption can reduce the disruption caused by
variation of the power-flow dispatch. In this paper, the minimum active power imbalance of the isolated
system is taken as the objective function. The set of public nodes is distributed into suitable generator
groups using the Breadth First Search (BFS) algorithm for optimal splitting location determination.

5. Controlled Islanding Implementing Strategy

The problems of when and where to separate the power system are solved by implementing the
proposed strategy. In this strategy, the splitting action is supposed to be executed once the splitting
location is determined by the optimal splitting surface searching algorithm. The implementation of the
proposed controlled islanding strategy is shown in Figure 5; the details of the steps are as follows:

Step 1: Start the prediction program after a disturbance is detected.
Step 2: Capture the PMU measurements required by the hybrid transient stability assessment model.

Note that the sampling time is different for the ELM- and for the TF-based models in this
hybrid assessment model.

Step 3: Initiate the splitting criterion-deciding procedure using the hybrid transient stability
assessment model. In this model, the amending procedure using the TF model is activated if
the output of the ELM model shows uncertainty.
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Step 4: Judge whether to start the optimal islanding surface searching algorithm according to the
splitting criterion, i.e., the system stability status. If the power system tends to lose stability,
then go to step 5; otherwise, go to step 1.

Step 5: The optimal splitting surface searching program starts. Series procedures, including
system undirected graph construction, nodes classification, and optimal solution calculating,
are conducted.

Step 6: The optimal splitting surface is determined, and the splitting action is immediately executed.
The program ends, and the next round begins.
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It can be inferred from Figure 5 that the hybrid transient stability assessment model and the
optimal splitting surface searching algorithm are essential parts of the proposed strategy. In the
hybrid model, the ELM method output assessment result is taken in most cases and the TF method
amendment is taken in certain cases to realize optimization of the combination of computing speed and
accuracy. Moreover, the splitting surface with a minimized active power imbalance can be determined
rapidly via reduction of the possible solution space. Sequentially, fast and reliable detection of transient
instability and determination of the optimal splitting surface is realized, thereby achieving the purpose
of the proposed strategy.

6. Case Study

The New England 39-bus test system is used as the testbed for validation of the proposed
controlled islanding strategy. To construct the transient stability assessment model, 10,000 samples
are generated using the Monte Carlo method; 9000 of these samples are applied for training and
trajectory clustering, and the rest are applied for testing. The transient stability status will be
determined to be unstable as soon as the rotor angle of any generator exceeds 180◦ compared with the
reference generator.

Initial features for feature selection are summarized in Table 1. These initial features are processed
via Fisher discrimination to determine the significant features. Figure 6 shows the importance value for
each feature, and the top 100 features of the total are chosen as the inputs for the ELM classifier training.
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Figure 6 shows that most significant features are dynamic information, e.g., voltage magnitude
and phase angle variation, generator rotor angle variation, and fault information. These significant
features are used as the ELM training and model inputs. Examinations on the ELM-based transient
stability assessment model show that accuracy can reach 97.46% with 1350 hidden nodes at maximum.

Misjudged cases of the ELM-based transient stability assessment model are small in quantity,
but are inevitable. The distribution of the output value for correct and incorrect assessment of the
ELM-based model is further studied, as shown in Figure 7.
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This finding indicates that the output value for the most misjudged case is within a specific
interval ranging from 0 to 1.0, which is defined as the unreliable interval. In this paper, the unreliable
interval is set as (0, 0.8).

In the hybrid transient stability assessment model, the TF method is applied to amend the ELM
assessment results in the unreliable interval. When number of hidden nodes of the ELM algorithm is
set as 500, the accuracy is improved from 94.1% (ELM only model) to 100% (hybrid model). The results
show that 355 sets of 1000 test samples with problematic outputs are processed using the TF-based
model. The TF method rectifies the ELM-based model assessment results 63 times, 45 of which are
corrected from the stable condition to the unstable condition. The expected computing time for each
test sample increases from 0.041 s (ELM only model) to 0.136 s (hybrid model). Compared with the
ELM-only method, the computing time is a slightly longer, but the accuracy is highly improved.
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6.1. Case 1: Assessment by ELM Model is Reliable

In this case, a three-phase short circuit fault is set to occur at 0 s in the middle of lines 23–24 and is
cleared at 0.4 s. The generators form two coherent groups: {33, 34, 35, 36} and {30, 31, 32, 37, 38, 39},
in which generators 33–36 are the critical crew. Identification of the instability using the ELM-based
transient stability assessment model requires 0.036 s. On the basis of the node classification mentioned
above, the evaluation value for the electrical distance between load nodes and two generator groups
are listed in Table 3.

Table 3. Difference of the minimum edge weights cumulative summation.

Nodes γ Nodes γ Nodes γ

1 0.0392 11 0.0332 21 −0.0749
2 0.0276 12 0.0318 22 −0.0772
3 0.0221 13 0.0318 23 −0.0859
4 0.0369 14 0.0295 24 −0.0790
5 0.0379 15 -0.0699 25 0.0300
6 0.0372 16 -0.0721 26 0.0442
7 0.0372 17 −0.0663 27 0.0442
8 0.0379 18 −0.0587 28 0.0545
9 0.0547 19 −0.0764 29 0.0551

10 0.0327 20 −0.0803

The threshold ε is set as 0.035. Therefore, nodes 2, 3, 10, 11, 12, 13, 14, and 25 are defined as public
nodes. Normal nodes 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 belong to the generator group {33, 34, 35,
36}. The calculated optimal splitting surface solution is shown in Figure 8 with the red dashed line
(Scheme 1).
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It can be inferred from Table 3 that node 27 has a shorter electrical distance from the generator
group {30, 31, 32, 37, 38, 39} than from {33, 34, 35, 36}. In the algorithm defining the reactance as
the edge weight, node 27 is classified into the generator group {33, 34, 35, 36}, and the final splitting
solution is shown in Figure 8 with the green solid line (Scheme 2). To show the strength of the proposed
algorithm, the algorithm defining reactance as the edge weight is contrasted from the aspect of active
power imbalance and power-flow disruption in Table 4.
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Table 4. Comparison of the islanding surface searching algorithms.

Islanding Strategy Active Power Imbalance (p.u.) Power-Flow Disruption (p.u.)

14–15, 3–18, 17–27 0.329/0.130 0.805
14–15, 17–18, 26–27 0.901/1.360 4.913

The table indicates that algorithm considering only reactance in electrical distance may lead to
loss of feasible solutions and, thus, affect the final optimal solution. In this condition, power flow
disruption is higher than the result found using the proposed algorithm.

Figures 9 and 10 show the trajectories of the critical generator group {33, 34, 35, 36} using the two
islanding strategies. Variation of the generator rotor angle shows that the islanding solution presented
in this paper retains system stability better.

Energies 2018, 11, 143 12 of 15 

 

Figures 9 and 10 show the trajectories of the critical generator group {33, 34, 35, 36} using the 
two islanding strategies. Variation of the generator rotor angle shows that the islanding solution 
presented in this paper retains system stability better. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time/s

-50

0

50

100

150

200

250

300

G
en

er
at

or
 R

ot
or

 A
ng

le
/°

Generator Group 33-36

 
Figure 9. Variation of the generator rotor angles (strategy 1). 

-50

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time/s

G
en

er
at

or
 R

ot
or

 A
ng

le
/°

Generator Group 33-36

 
Figure 10. Variation of the generator rotor angles (strategy 2). 

6.2. Case 2: ELM Output Located in the Unreliable Interval 

In this case, a three-phase short circuit fault occurs at 0.1 s at the middle of line 6–7 and continues 
for 0.4 s until it is cleared. This fault leads to desynchronization between the generator group {31, 32} 
and the remaining generators. It takes approximately 0.3 s of computing time to ensure an accurate 
assessment using the TF method because the ELM output is located in the unreliable interval [0, 0.8]. 

The optimal splitting solution is shown in Figure 11, marked with the red dashed line (Scheme 
1). The solution is contrasted with the results (Scheme 2 in Figure 11) determined by the algorithm 
presented in the literature [30], whose objective function is the minimum power-flow disruption; a 
comparison of the results is shown in Table 5. 

Table 5. Comparison of islanding surface searching algorithms. 

Islanding Strategy Power-Flow Disruption (p.u.) Time (ms) 
3–4, 9–39, 14–15 1.2733 ≈11 
3–4, 8–9, 14–15 1.2678 ≈40 

It is apparent that the algorithm that determines the minimum cut ensures the minimum power-
flow disruption. Compared with this algorithm, the proposed algorithm in this paper can also avoid 
high power-flow disruption by taking active power on transmission lines into consideration in the 
concept of the electrical distance. Using the proposed algorithm, the solution space is reduced based 
on the electrical distance, resulting in a reduced computing time while providing a consistent (nearly 
identical) result. 

Figure 9. Variation of the generator rotor angles (strategy 1).

Energies 2018, 11, 143 12 of 15 

 

Figures 9 and 10 show the trajectories of the critical generator group {33, 34, 35, 36} using the 
two islanding strategies. Variation of the generator rotor angle shows that the islanding solution 
presented in this paper retains system stability better. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time/s

-50

0

50

100

150

200

250

300

G
en

er
at

or
 R

ot
or

 A
ng

le
/°

Generator Group 33-36

 
Figure 9. Variation of the generator rotor angles (strategy 1). 

-50

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time/s

G
en

er
at

or
 R

ot
or

 A
ng

le
/°

Generator Group 33-36

 
Figure 10. Variation of the generator rotor angles (strategy 2). 

6.2. Case 2: ELM Output Located in the Unreliable Interval 

In this case, a three-phase short circuit fault occurs at 0.1 s at the middle of line 6–7 and continues 
for 0.4 s until it is cleared. This fault leads to desynchronization between the generator group {31, 32} 
and the remaining generators. It takes approximately 0.3 s of computing time to ensure an accurate 
assessment using the TF method because the ELM output is located in the unreliable interval [0, 0.8]. 

The optimal splitting solution is shown in Figure 11, marked with the red dashed line (Scheme 
1). The solution is contrasted with the results (Scheme 2 in Figure 11) determined by the algorithm 
presented in the literature [30], whose objective function is the minimum power-flow disruption; a 
comparison of the results is shown in Table 5. 

Table 5. Comparison of islanding surface searching algorithms. 

Islanding Strategy Power-Flow Disruption (p.u.) Time (ms) 
3–4, 9–39, 14–15 1.2733 ≈11 
3–4, 8–9, 14–15 1.2678 ≈40 

It is apparent that the algorithm that determines the minimum cut ensures the minimum power-
flow disruption. Compared with this algorithm, the proposed algorithm in this paper can also avoid 
high power-flow disruption by taking active power on transmission lines into consideration in the 
concept of the electrical distance. Using the proposed algorithm, the solution space is reduced based 
on the electrical distance, resulting in a reduced computing time while providing a consistent (nearly 
identical) result. 

Figure 10. Variation of the generator rotor angles (strategy 2).

6.2. Case 2: ELM Output Located in the Unreliable Interval

In this case, a three-phase short circuit fault occurs at 0.1 s at the middle of line 6–7 and continues
for 0.4 s until it is cleared. This fault leads to desynchronization between the generator group {31, 32}
and the remaining generators. It takes approximately 0.3 s of computing time to ensure an accurate
assessment using the TF method because the ELM output is located in the unreliable interval [0, 0.8].

The optimal splitting solution is shown in Figure 11, marked with the red dashed line (Scheme 1).
The solution is contrasted with the results (Scheme 2 in Figure 11) determined by the algorithm
presented in the literature [30], whose objective function is the minimum power-flow disruption;
a comparison of the results is shown in Table 5.
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The validation results illustrate that the ELM-based transient stability assessment model is 
computationally efficient. The TF method is able to amend the problematic results of the ELM-based 
assessment model; however, this amendment requires a slightly longer computing time. The 
algorithm proposed for optimal splitting location determination reduces the solution space using the 
modified electrical distance concept while not losing any feasible solutions. 

7. Conclusions 

In this paper, a controlled islanding strategy consisting of prompt transient stability assessment 
and optimal splitting surface determination was described. 

(1). A hybrid transient stability assessment model based on the ELM and TF methods was 
constructed to determine the start-up criterion. In this model, the ELM method is used for prompt 
stability assessment, and the TF method is employed to enhance the reliability of the assessment 
results. 

(2). A rapid algorithm comprised of network reduction and optimal solution searching was proposed to 
determine the splitting surface. In this algorithm, feasible solution loss in the network reduction 
process is avoided by modifying the evaluation index of the electrical distance. 

Using the proposed method, both the start-up criterion and the optimal splitting surface can be 
determined online with high reliability. The results showed that the proposed controlled islanding 
strategy is effective in preventing transient instability. As the scenarios considered in this work were 
designed optimally, the sample generation problem and data acquisition risks in a realistic scenario 
were ignored. Further research can be dedicated to these problems to achieve reliable performance 
of the proposed controlled islanding strategy in a practical implementation. 
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Table 5. Comparison of islanding surface searching algorithms.

Islanding Strategy Power-Flow Disruption (p.u.) Time (ms)

3–4, 9–39, 14–15 1.2733 ≈11
3–4, 8–9, 14–15 1.2678 ≈40

It is apparent that the algorithm that determines the minimum cut ensures the minimum
power-flow disruption. Compared with this algorithm, the proposed algorithm in this paper can also
avoid high power-flow disruption by taking active power on transmission lines into consideration
in the concept of the electrical distance. Using the proposed algorithm, the solution space is reduced
based on the electrical distance, resulting in a reduced computing time while providing a consistent
(nearly identical) result.

The validation results illustrate that the ELM-based transient stability assessment model is
computationally efficient. The TF method is able to amend the problematic results of the ELM-based
assessment model; however, this amendment requires a slightly longer computing time. The algorithm
proposed for optimal splitting location determination reduces the solution space using the modified
electrical distance concept while not losing any feasible solutions.

7. Conclusions

In this paper, a controlled islanding strategy consisting of prompt transient stability assessment
and optimal splitting surface determination was described.

(1). A hybrid transient stability assessment model based on the ELM and TF methods was constructed
to determine the start-up criterion. In this model, the ELM method is used for prompt stability
assessment, and the TF method is employed to enhance the reliability of the assessment results.

(2). A rapid algorithm comprised of network reduction and optimal solution searching was proposed
to determine the splitting surface. In this algorithm, feasible solution loss in the network reduction
process is avoided by modifying the evaluation index of the electrical distance.

Using the proposed method, both the start-up criterion and the optimal splitting surface can be
determined online with high reliability. The results showed that the proposed controlled islanding
strategy is effective in preventing transient instability. As the scenarios considered in this work were
designed optimally, the sample generation problem and data acquisition risks in a realistic scenario
were ignored. Further research can be dedicated to these problems to achieve reliable performance of
the proposed controlled islanding strategy in a practical implementation.
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