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Abstract: With the rapid development of wind power generation and photovoltaic power generation,
the phenomenon of wind and solar abandoning becomes more and more serious in the operation of
power systems, and the microgrid is a new operating mode of power systems which provides a new
consumption mode for wind power generation. With the increasingly close connection among energy
resources and people’s increasing awareness of environmental protection, this paper establishes a
microgrid optimal scheduling model with a combined heat and power system, in consideration of
environmental costs. This model aims at the lowest comprehensive cost, at the same time taking into
account the emission reductions of SO2 and NOx, considering the cost of power generated by the
micro-generator, environmental cost, the related cost of battery, operation and maintenance cost of
wind power, and photovoltaic power generation. The related constraints of thermal balance and
power balance are also considered during microgrid system operation. The established model is
solved with an improved particle swarm algorithm. At last, taking a microgrid system as an example,
the validity and reliability of the proposed model are verified.

Keywords: environmental costs; microgrid dispatch; combined heating and power system; fuzzy
chance constraint; standard particle swarm optimization (SPSO)

1. Introduction

With the aggravation of environmental contamination and energy crisis, the bottleneck of
traditional power generation is becoming more and more obvious. As a consequence, clean new
energy generation forms are attracting more and more attention [1]. Wind power and photovoltaic
power generation are the early forms of new energy generation, and the installed capacity and
grid-connected scale have gradually increased. At the same time, its randomness and volatility pose
great challenge to the safe operation of the power grid [2–4]. As a new form of network structure,
microgrids can realize combined heat and power scheduling, give full play to the complementary
characteristics of wind power generation and photovoltaic power generation [5], and realize local
consumption of wind power and photovoltaic power generation, greatly reducing the amount of
abandoned wind and photovoltaic energy. The problem of environmental pollution [6,7] is solved, to a
certain extent.

With the deepening of relevant research, the advantages of microgrid economics, environmental
protection, scheduling flexibility and other advantages, have gradually attracted the public’s
attention [8–10], and field studies of microgrid systems are carried out in many areas. With the
rise of the microgrid, how to determine the combined heat and power scheduling in the multisource
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microgrid system with wind and light storage [11,12], to achieve the goal of reducing the total operating
costs and SO2 and NOx emissions, has become an urgent problem to be solved.

In recent years, the related research on microgrids has achieved certain results. In [13], Mao et al.
comprehensively considered the operating cost, pollutant discharge, and operational risk, and established
a multi-objective optimization model based on microgrids. It considered the impact of distributed power
output volatility on microgrid operation, which can effectively improve the operation and management
level of microgrids. In [14], Wu et al., based on the model of each power source in the microgrid,
established the scheduling model when grid-connected, and proposed the mixed integer programming
method applied to the optimal scheduling of the microgrid, which proves that this method has strong
advantages in both computation time and calculation accuracy, and can provide fast and accurate
scheduling information for short-term and ultra-short-term energy management of microgrids. In [15],
Fubara et al. comprehensively considered the power balance and heat balance in a microgrid, and
took the lowest operation cost as target, while considering the energy utilization rate, and two different
operational strategies were proposed, which were applied to three different models. Through calculation,
the operating costs under each power generation strategy were compared and verified. This contributed
to the improvement of the energy efficiency of the microgrid. However, in [14,15], the investment of
renewable energy, such as wind power and photovoltaics, is not taken into account, which can reduce
the emission of pollutants to a certain degree. In [16], Thompson et al. established a multi-objective
economic scheduling model with system operation cost, environmental benefit, and battery loss as
evaluation indicators. An improved multi-objective particle swarm optimization (MOPSO) algorithm
was proposed, which had better convergence and reduces the possibility of the algorithm falling into the
local optimum. In [17] Lin et al. established an optimal scheduling model for hybrid power generation,
in which renewable energy and batteries were considered. The enhanced bee colony optimization (EBCO)
method was applied to solve the scheduling model. This method had better advantages in search
efficiency and accuracy in high-dimensional space. The daily economic dispatch problem of the microgrid
system could be better solved. In [18], Azizipanah-Abarghooee et al. constructed a microgrid scheduling
model including micro-generators such as wind power, photovoltaic power generation, and combined
heat and power units. The methods of chance-constrained and jointly distributed random variables are
good proof that cogeneration scheduling has obvious economic benefits compared with single electrical
scheduling. However, in [17,18], they did not consider the uncertainty of wind power forecasts nor
the emission of pollutant. In [19], Lin et al. used the historical simulation method (HSM) to calculate
the value at risk (VAR). Based on this, risk assessment of microgrid (MG) was conducted, and then
according to the request of different confidence level, to develop a scheduling model of microgrid (MG).
Finally, the reasonable balance between the risk and cost of microgrids was realized. In [20], Trivedi et al.
proposed a whale optimization algorithm to solve the problem of combined economic emission dispatch
(CEED), so as to minimize the total cost and total emissions of its microgrid operation. Compared with the
gradient method (GM), ant colony optimization (ACO), and particle swarm optimizer (PSO) technique,
separately, the optimal scheduling values obtained by whale optimization algorithm had more advantages
in convergence speed and accuracy, which further proved the effectiveness and reliability of the algorithm.
In [21], Tang et al. proposed a combined short-term load forecasting model based on empirical mode
decomposition (EMD), extended Kalman filter (EKF), and extreme learning machine with kernel (KELM).
The short-term load forecasting was carried out for the economic dispatch of microgrid to reduce the
forecast error and ensure the system economic dispatch was optimal. The optimized particle swarm
optimization algorithm [22–24] is used to solve some of the models mentioned in the literature above,
which reduces the operating cost of the microgrid system.

In summary, in the operation of the microgrid, the best economic benefits can be obtained
through reasonable scheduling. At present, the study of microgrid optimization scheduling, general,
respectively, for the individual electric dispatch and electric heating joint scheduling [25–27], the former
model is relatively simple, but in the study of combined thermoelectric scheduling, more attention is
paid to economy, and the scheduling process taking environmental factors into account is rarely seen.
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With the enhancement of people’s awareness of environmental protection, the environmental factors
in the operation of microgrids cannot be ignored.

This paper establishes a microgrid optimization scheduling model that takes into account the
combined electric and thermal system under environmental costs, aiming at the lowest total cost
and taking into account the emission reduction of SO2 and NOx. The power generation cost of
micro-generators, environmental costs, the related cost of battery, operation and maintenance cost
of wind power and photovoltaic power generation, are all considered in the total cost. The related
constraints of thermal balance and power balance are also considered during microgrid system
operation. This paper aims to reduce the operating cost of the system, and the emissions of SO2

and NOx. The impact of electricity price adjustment on microgrid scheduling cost is also analyzed.
For wind power, photovoltaics, and other uncertain variables in the objective function, the clear
equivalence forms are used to deal with this, so that the results are more accurate and realistic.

This paper is organized as follows: Sections 2 and 3 establish the microgrid scheduling model,
and give the respective target function and constraint conditions. Section 4 presents clear equivalence
forms to deal with the uncertain variables in the model. Section 5 proposes an improved social particle
swarm optimization algorithm to solve the microgrid scheduling model. Section 6 analyzes the results
obtained by the microgrid model. Finally, Section 7 summarizes the conclusions.

2. Microgrid Objective Function Establishment

This article aims to minimize the comprehensive cost, at the same time taking into account the
emission reductions of SO2 and NOx, based on the microgrid system with wind and solar storage,
considering the cost of power generated by the micro-generator, environmental costs, operation and
maintenance costs of wind power and photovoltaic power generation, and battery operating costs.
In this paper, the microgrid structure is referred to [28] and improved on this basis, as shown in
Figure 1, which consists of two thermal power generators (GEN), two combined heating and power
units (CHP) containing heat storage devices, one wind turbine (WT), one unit of photovoltaic power
generation equipment (PV), and one storage battery (SB) system. The combined heating and power unit
includes two main parts: the microturbine (MT) and the bromine-cooling machine (BCM). The units in
the network are uniformly controlled by the microgrid central controller (MGCC).
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A scheduling model for a multisource microgrid power system was established. The objective
function is as follows:

e = min[e1 + e2 + e3 + e4 + e5 + e6], (1)

where e is the total operating cost of the microgrid system, e1 is the cost of generating electricity for the
micro-generator set; e2 is the environmental cost; e3 is the operation and maintenance cost of wind
power generation; e4 is the operation and maintenance cost of photovoltaic power generation; e5 is
the cost for exchanging energy between the microgrid system and the public power grid; e6 is the
operating cost of the battery.

2.1. Micro-Generator Set Generation Cost e1

The micro-generator set includes two types of thermal power generators and combined heating
and power units; both are coal-fired units. The cost of generating electricity for the micro-generator set
includes the operating cost of thermal power generator and combined heating and power unit.

e1 = E1(Pit) + E2(Pejt), (2)

where E1 is the operating cost of the thermal power generator; E2 is the operating cost of combined
heating and power unit. Pit is the power output of the i-th thermal power generator during the t
period, and Pejt is the power output of the j-th combined heat and power unit during the t period.

A certain amount of fossil energy is consumed during the operation of thermal power generators,
which will generate a certain cost of energy consumption. In the actual operation of thermal power
generators, when the turbine intake valve suddenly opens, it will have a “valve point effect”, causing
the generator’s consumption to increase, and the generator will have a certain start-up cost during the
start-up process. Therefore, the calculation formula for the operating cost of a thermal power generator
is as follows:

E1 =
T

∑
t=1

N

∑
i=1

{[
H(Pit) + V(Pit) + (1− Si(t−1))Bit

]
Sit

}
, (3)

H(Pit) = aiPit
2 + biPit + ci, (4)

V(Pit) = |ei sin[ fi(Pit − Pimin)]|, (5)

Bit = γi + ϕi(1− e−T
o f f /θi
it ), (6)

where H(Pit) is the energy cost of thermal power generator i in t period; ai, bi, ci are the power
generation cost coefficients of the thermal power generator i; V(Pit) is the energy consumption cost
of the valve point effect of thermal power generator i during t period; ei, fi are the valve point effect
coefficients of thermal power generator i; and Pimin is the lower limit of the output of thermal power
generator i. Sit is the operating status of thermal power generator i during t period. Sit = 1 indicates
unit operation, Sit = 0 indicates that the unit is out of service; Bit is the start-up cost of thermal power
generator i during t period; γi, ϕi and θi are start-up cost factors for thermal power generator i; Tit

off

is the downtime of thermal power generator i in t period. T is a scheduling period of the microgrid.
In this paper, the scheduling period is divided into 24 periods, and N is the number of thermal power
generators in the microgrid.

Combined heat and power unit as a heating unit cannot stop, therefore, the operating cost is the
fuel cost. Equation (7) reference [29].

E2 =
T

∑
t=1

M

∑
j=1

{
ajr[Pejt + cv(Pr

hit + Pc
hit,1 − Pc

hit,2)]
2 + bjr[Pejt + cv(Pr

hit + Pc
hit,1 − Pc

hit,2)] + cjr

}
(7)

where Pr
hit is the total thermal power of the heat storage of the combined heat and power unit j during

t period; Pc
hit,1 and Pc

hit,2 are the storage and release power of the heat storage device in the t period;
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ajr, bjr, cjr are the fuel cost coefficients of the combined heat and power unit j respectively; cv is the
amount of change in electrical output when each unit heat output is increased for combined heat and
power unit. M is the number of combined heat and power units in the microgrid.

2.2. Environmental Cost e2

With the enhancement of the public’s environmental awareness, the requirements for the
environmental protection of the power grid are increasing. The main contaminants considered in
this paper are SO2 and NOx, and the environmental costs mainly include the operating costs of the
desulfurization and denitrification devices and SO2 and NOx emission fees.

e2 = C1 + C2, (8)

where C1 represents the operating cost of the desulfurization and denitrification device; and C2

represents SO2 and NOx emission fees.
Among them, the calculation formulas for C1 and C2 are as follows:

C1 =
T

∑
t=1

{
N

∑
i=1

Pit +
M

∑
j=1

[Pejt + cv(Pr
hit + Pc

hit,1 − Pc
hit,2)] + Ptchange

}
(dSηSCS + dNηNCN), (9)

C2 =
T
∑

t=1
(

N
∑

i=1
Pit +

M
∑

j=1
[Pejt + cv(Pr

hit + Pc
hit,1 − Pc

hit,2)] + Ptchange)

(dS(1− ηS)/LS + dN(1− ηN)/LN)CNS

, (10)

D =

(
T

∑
t=1

N

∑
i=1

Pit +
T

∑
t=1

M

∑
j=1

Pejt

)
(dS + dN), (11)

where dS and dN respectively generate the SO2 and NOx quality for the each unit power generation
of the coal-fired unit; ηS and ηN are the efficiency of the desulfurization and denitrification devices
respectively; CS and CN are the cost of removing SO2 and NOx per unit; LS and LN are the pollution
equivalent values of SO2 and NOx respectively; and CNS is the standard for the fee of SO2 and NOx for
each amount of pollution. D is the total amount of pollutant emission of the generator set. Ptchange is
the exchange power of the microgrid system with the public power grid during t period.

2.3. Operation and Maintenance Costs of Wind Power and Photovoltaic Power Generation e3, e4

Wind power generation and photovoltaic power generation are both new energy power generation
forms, which do not generate environmental pollution during operation. They are clean energy and
have strong competitiveness and broad prospects in future development. In this paper, the operation
and maintenance costs of wind power and photovoltaic power generation are expressed as linear
relations with their respective output power. The calculation formula is as follows:

e3 =
K

∑
k=1

T

∑
t=1

CwkPwkt, (12)

where Cwk is the operational maintenance cost coefficient for wind turbine k; Pwkt is the power generated
by wind farm k during t period; and K is the number of wind turbines in the microgrid.

e4 =
Q

∑
l=1

T

∑
t=1

Cvl Pvlt, (13)
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where Cvl is the operating and maintenance cost coefficient of the photovoltaic power station l; Pvlt is
the power generated by photovoltaic power station l during t period. Q is the number of photovoltaic
power stations in the microgrid.

2.4. The Cost of Exchanging Energy between the Microgrid System and the Public Power Grid e5

The microgrid system is capable of power transmission with the public power grid, to ensure
the microgrid system can operate safety. When the power provided by the power supply inside the
microgrid system cannot meet the load demand, there is a need to buy electricity from the public
grid. When the power generated by the internal power supply exceeds the load demand, excess
power can be sold to the public power grid, therefore, it also plays the role of system rotary reserve.
Equations (15) and (16) are from reference [10]. The cost for exchanging energy between the microgrid
system and the public power grid is as follows:

e5 = Cbuy + Csell,1, (14)

where Cbuy is the cost of the microgrid system to purchase electricity from the public grid; and Csell,1 is
the revenue from the sale of electric energy from the microgrid system to the public grid.

Among them, the calculation formulas of Cbuy and Csell,1 are as follows:

Cbuy =
T

∑
t=1

PtchangeCtgrid(Ptchange > 0), (15)

Csell,1 =
T

∑
t=1

PtchangeStgrid(Ptchange < 0), (16)

where Ptchange is the exchange power of the microgrid system with the public grid during t period;
Ptchange > 0 indicates that the microgrid system purchases electricity from the public grid, and Ptchange < 0
indicates that the microgrid system sells electricity to the public grid; Ctgrid is the price of electricity
for the public grid sells electricity to the microgrid during t period; and Stgrid is the price of electricity
when the microgrid sells electricity to the public grid during t period.

2.5. Storage Battery Operating Cost e6

When the power generation of the internal power supply of the microgrid system is higher than
the load demand, it can be sold to the public power grid, or excess electric energy can be stored in
the storage battery as a system backup power supply. The storage battery will generate a certain cost
during operation. In this paper, the operating cost of the storage battery is expressed as a positive
correlation function between charge and discharge power and sold electric energy, as follows:

e6 =
T

∑
t=1

Pcha,ctCcha +
T

∑
t=1

Pdis,ctCdis +
T

∑
t=1

PsellCsell,2, (17)

where Ccha and Cdis are the operating cost of the storage battery unit charging and discharging power
respectively; Pcha,ct, Pdis,ct are the charging and discharging power of the storage battery during t
period. Psell sells electricity to the public power grid for the storage battery during t period, and Ccell,2
is the electricity price when the storage battery is sold to the public power grid during t period.

3. Operational Constraints of Micro-Sources within the Microgrid

The microgrid has a complete power system structure and can interact with the public power
grid at the same time, which further ensures the reliable operation of the microgrid system. In order to
ensure the security of the microgrid system, it is necessary to satisfy relevant constraints, and the main
constraints considered in this paper are as follows:
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3.1. Thermal Power Generator Output Constraint

The output constraint for the thermal power generator is as follows:

Pimin ≤ Pit ≤ Pimax, (18)

where Pimin and Pimax are the lower and upper limits of the electric output of the thermal power
generator i.

3.2. Thermal Power Generator Ramp Rate Constraint

The ramp rate constraint for the thermal power generator is as follows:

− rdi ≤ Pit − Pi(t−1) ≤ rui, (19)

where rui and rdi are the ramp-up rate constraint values and the ramp-down rate constraint values of
the thermal power generator i.

3.3. Thermal Power Generator Output Constraint When Starting and Stopping

When the unit is out of service or from operation to downtime, the output of the unit should meet
the minimum output:

Si(t−1) = 0, Si = 1
Si = 1, Si(t+1) = 0

}
Pit = Pimin. (20)

3.4. Combined Heat and Power Unit Electric Output Constraint

The electric output constraint for the combined heat and power unit is as follows:

Pejmin ≤ Pejt ≤ Pejmax, (21)

where Pejmin and Pejmax are the lower and upper limits of the electric output of the combined heat and
power unit j.

3.5. Combined Heat and Power Unit Thermal Output Constraint

The thermal output constraint for the combined heat and power unit is as follows:

0 ≤ Pr
hit,1 ≤ Pr

hitmax, (22)

where Pr
hit,1 is the thermal output of the combined heat and power unit j during t period; Pr

hitmax is
the thermal output upper limit of the combined heat and power unit.

3.6. Combined Heat and Power Unit Ramp Rate Constraint

The ramp rate constraint for the combined heat and power unit is as follows:

− rr
dj ≤ Pejt − Pej(t−1) ≤ rr

uj (23)

where rr
uj and rr

dj are the ramp-up rate constraint values and the ramp-down rate constraint values of
the combined heat and power unit.
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3.7. Storage Battery Charging Capacity Constraint

In order to ensure the service life of the battery and the battery can be used safely, the occurrence
of overcharge and overdischarge of the battery shall be prevented, that is, it shall meet the constraints
of certain upper and lower limits of capacity:

Cmin ≤ Ct ≤ Cmax, (24)

where Cmax and Cmin are the upper and lower limits of the battery state of charge; and Ct is the state of
charge of the battery t.

The formula for Ct is as follows:

Ct = Ct−1 + Pcha,ct − Pdis,ct, (25)

where Pcha,ct is the charging amount of the battery during the t period, and Pdis,ct is the discharging
amount of the battery during the t period.

3.8. Storage Battery Charge and Discharge Power Constraint

Taking into account the battery charging and discharging power directly affect the battery’s
service life and operating safety, therefore, the battery charging and discharging power need to meet
the constraints of the certain limit, that is{

Pdis,min ≤ Pdis,ct ≤ Pdis,max
Pcha,min ≤ Pcha,ct ≤ Pcha,max

, (26)

where Pcha,max and Pdis,max are the upper limit of the charging and discharging power of the battery,
and Pcha,min and Pdis,min are the lower limits of the charging and discharging power of the battery,
respectively.

3.9. Charge and Discharge Constraint of the Battery at the Same Time

At the same time, the battery cannot charge and discharge at the same time, that is:

Xt·Yt = 0, (27)

where Xt and Yt are the battery’s charging and discharging states respectively, where Xt∈{0, 1}, Yt∈{0, 1}.

3.10. Storage Battery Beginning and Ending Power Constraint

In order to meet the scheduling requirements of the next dispatch day and the safety operation of
the battery, it is necessary to ensure that the battery’s electricity is equal to the initial battery’s electricity
at the end of scheduling period, that is

Ct0 = CT , (28)

where Ct0 and CT are the initial value and the final value of the storage battery power during the
scheduling period, respectively.

3.11. Heat Storage Device Capacity Constraint

The capacity constraint for the heat storage device is as follows:

Cr
min ≤ Cr

t ≤ Cr
max, (29)

where Cr
min and Cr

max are the minimum and maximum heat storage of the heat storage device; and
Cr

t is the heat storage of the heat storage device during t period.
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Cr
t is calculated as follows:

Cr
t = Cr

t−1 + Pc
hit,1 − Pc

hit,2, (30)

where Pc
hit,1 and Pc

hit,2 are the store and release power of the heat storage device during t period.

3.12. Heat Storage Device Beginning and Ending Heat Storage Constraint

The beginning and ending heat storage constraint for the heat storage device is as follows:

Cr
t0 = Cr

T , (31)

where Cr
t0 and Cr

T are the initial and final value of heat storage in the heat storage device scheduling
period, respectively.

3.13. Heat Storage Device Storage and Exhaust Heat Constraint

The storage and exhaust heat constraint for the heat storage device is as follows:

Pc
hit,1Pc

hit,2 = 0 (32)

3.14. The Exchange Power of the Microgrid System with the Public Grid Constraint

The exchange power constraint for the microgrid system with the public grid is as follows:

Ptchange,min ≤ Ptchange ≤ Ptchange,max, (33)

where Ptchange,max and Ptchange,min are the upper and lower limits of the exchange power between the
microgrid and the public power grid.

4. Processing of Uncertain Variables in Objective Function

4.1. System Credibility Opportunity Constraint

Wind power and photovoltaic power generation are fluctuating power supplies, have a certain
degree of randomness, and the load and battery are also uncertain. Therefore, the wind power output,
photovoltaic power output, battery output and load are represented by fuzzy parameters. That is,
the power balance constraint is established at the confidence level α, which is

Cr

{
P̃lt −

N

∑
i=1

Pit −
M

∑
j=1

Pejt −
K

∑
k=1

P̃wkt −
Q

∑
l=1

P̃vlt − Ptchange − P̃cit = 0

}
≥ α, (34)

where Plt is the demand for the load in the system during the period t. P̃lt is the fuzzy parameter
of load demand; P̃wkt, P̃vlt is the fuzzy parameter of the volatility power output of wind power and
photovoltaic power generation; and Pcit is the power output of battery during t period, with Pcit > 0
indicating battery discharge, and Pcit < 0 indicating battery storage. P̃cit is the fuzzy parameter of the
battery fluctuation output, Cr{·} is the credibility of the event in {·}, and α is the confidence level.
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4.2. The Clear Equivalence Class of Fuzzy Chance Constraints

The fuzzy parameter G̃F of fluctuating power output and load in each scheduling can be
represented by trapezoidal functions:

µ(GF) =


GF4−GF
GF4−GF3

, GF3 < GF ≤ GF4

1, GF2 < GF ≤ GF3
GF−GF1
GF2−GF1

, GF1 < GF ≤ GF2

0, others

, (35)

where µ(GF) is a membership function; GFs (s = 1, 2, 3, 4) is a membership parameter; and GFs can be
determined based on the predicted value Gfc.

GF1–GF4 can be determined based on the predicted value Gfc:

GFs = ωsG f c, s = 1, 2, 3, 4; (36)

where ωs (s = 1, 2, 3, 4) is a proportional coefficient, 0 < ωs < 1. The proportional coefficient is generally
determined by the historical data of the fluctuating power output and load.

Trapezoidal fuzzy parameters can be represented by quadruplets:

G̃F = (GF1, GF2, GF3, GF4) = G f c(ω1, ω2, ω3, ω4), (37)

Trapezoidal fuzzy parameters are shown in Figure 2.
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The constraint function g(x, ξ) has the following form:

g(x, ξ) = h1(x)ξ1 + h2(x)ξ2 + . . . + ht(x)ξt + h0(x), (38)

where ξk is a trapezoidal fuzzy parameter (rs1, rs2, rs3, rs4), s = 1, 2, . . . , t, t∈R; and rs1–rs4 is a
membership parameter.

The fuzzy parameter causes the constraint condition to not give a certain feasible set, so the
confidence level is introduced, and it is hoped that the constraint condition is established with a certain
confidence level α, expressed as

Cr{g(x, ξ) ≤ 0} ≥ α, (39)

where α is the confidence level; and Cr{·} is the credibility of the event in {·}.
Define two functions:

h+β (x) =

{
hβ(x), hβ(x) ≥ 0
0, hβ(x) < 0

, (40)

h−β (x) =

{
0, hβ(x) ≥ 0
−hβ(x), hβ(x) < 0

, (41)
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where β = 1, 2, . . . , t. Specially, if h(x) = 1, then h+(x) = 1, h−(x) = 0; if h(x) =−1, then h+(x) = 0, h−(x) = 1.
When the confidence level of the opportunity constraint is α = 0.5, the clear equivalence form of

the opportunity constraint (Equation (38)) is

(2− 2α)
t

∑
s=1

[rs3h+β (x)− rs2h−β (x)]+

(2α− 1)
t

∑
s=1

[rs4h+β (x)− rs1h−β (x)]+h0(x) = 0
, (42)

According to the above method, the fuzzy opportunity constraint is processed to obtain the clear
equivalence form of the power balance constraint:

(2− 2α)

(
Plt3 −

K
∑

k=1
Pwkt2 −

Q
∑

l=1
Pvlt2 − Pcit2

)
+ (2α− 1)

(
Plt4 −

K
∑

k=1
Pwkt1 −

Q
∑

l=1
Pvlt1 − Pcit1

)
−

N
∑

i=1
Pit −

M
∑

j=1
Pejt − Ptchange = 0

. (43)

5. Improved Social Particle Swarm Optimization

5.1. Social Particle Swarm Optimization

The social particle swarm optimization algorithm sets have different audience thresholds for each
individual and, accordingly, determine whether the individual follows other individuals or maintains
the current state, or is free to move. In order to maintain the diversity of individuals in the population,
avoid premature convergence of the algorithm and fall into a local optimum.

There are two types of particles in the social particle swarm algorithm: free particles and following
particles. The free particle is a particle with a threshold value of 0. It is not affected by the behavior of
other particles, and randomly determines the position of the next generation of particles. Particles with
non-zero thresholds are followed by particles which are affected by the attraction point during the
search process. Whether or not they follow the attraction point depends on how many other follower
particles are present. The SPSO algorithm follows the particle update formula as:

vij(t + 1) = ωvij(t) + c1r1
(

pbestij(t)− xij(t)
)
+ c2r2

(
attractij(t)− xij(t)

)
, (44)

xij(t + 1) = xij(t) + vij(t + 1), (45)

where ω is the inertia weight, indicating the impact of the historical velocity information of the particle
on the current velocity; c1 and c2 are learning factors; and r1 and r2 are random numbers of [0,1].

Among them, the third term in the above formula is changed from the gbestij in the standard
PSO to the attraction point attractij, which may also be different for different particles. When the
algorithm is initialized, the following particle selects the individual with the best fitness value of
the population as the initial attraction point, and the algorithm is consistent with the standard PSO
algorithm. As the search progresses, each free particle may become a new attraction point. If the fitness
value of a certain free particle k is better than the fitness value of all other particles, then k becomes the
attraction point. At this time, individuals with a threshold value of 1 in the following particle will be
attracted first, and then individuals with a higher threshold value will also move toward the attraction
point. Individuals whose number of attracted populations do not reach the threshold will maintain the
original searching mode.



Energies 2018, 11, 2493 12 of 23

5.2. Improvement of Weight ω

It is proposed that the inertia weight of each particle decreases not only with the increase of the
number of iterations, but also decreases as the distance from the global best point increases. That is,
the inertia weight ω dynamically changes according to the position of the particle:

ω(t) = ωstart −
(
lxg − lmin

)
(ωstart −ωend)t

(lmax − lmin)tmax
, (46)

where lxg is the distance from the particle x to the optimal particle, and lmax and lmin are the preset
parameters of maximum distance and minimum distance, respectively. According to the above formula,
when lxg > lmax, ω = ωstart; when lxg < lmin, ω = ωend; when lmin < lxg < lmax, ω increases monotonically
with lxg. Simulation results show that the algorithm has a significant improvement in convergence
speed and convergence accuracy under this strategy. The flowchart for improved standard particle
swarm optimization (SPSO) is shown in Figure 3.Energies 2018, 11, x 12 of 23 
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6. Example Analysis

6.1. System Example Summarize

The microgrid system consists of two thermal power generators, two combined heating and
power units with thermal storage units, one wind turbine unit, one photovoltaic power generation
unit, and one battery system. The relevant data of wind power and photovoltaic power generation
in the microgrid are shown in Table 1, which references [10], and the relevant parameters of the
thermal power generator are shown in Table 2. Coefficients of combined heating and power units
are shown in Tables 3 and 4, and related data of batteries are shown in Table 1, Table 5, and Table 6.
Pollutant emissions of each unit are shown in Tables 7 and 8. Related parameters of heat storage
device are shown in Table 9. The exchange prices of microgrid and public power grid at each time
period are shown in Table 10, which references [30]. This article selects a typical dispatch day as
a research object and divides one day into 24 scheduling periods of one hour each. The forecast
curve of load, wind power, and photovoltaic power generation is shown in Figure 4. The upper and
lower limits of the exchange power between the microgrid and the public power grid are 2 MW and
−2 MW, respectively (the microgrid absorbs power from the public power grid positively, otherwise
it is negative). The number of charge and discharge times Tn of the battery is 8 times, and the rated
capacity Cn is 5 MW·h.

Table 1. Distributed power parameters of microgrid.

Generator
Type

Minimum
Power/MW

Maximum
Power/MW

Operation and Maintenance
Costs/($/MW·h)

(PV) 0 0.104 17.467
(WT) 0.002 0.246 14.556
(SB) 0 2.000 29.112

Table 2. Conventional thermal power generator parameters.

Thermal
Power

Generator
Pimax/MW Pimax/MW Rui/(MW/h) Rdi/(MW/h)

Power Generation Cost Coefficient

a1 ($/MW2) a2 ($/MW) a3 ($)

Unit 1 2 1 0.500 0.500 1.746 × 10−4 2.929 20.713
Unit 2 2 0.800 1 1 7.424 × 10−3 8.798 44.047

Table 3. Combined heat and power unit parameters.

Unit Type Pejmax/MW Pejmin/MW Rr
ui/(MW/h) Rr

di/(MW/h) Pr
hitmax/MW

CHP 3 1 1 1 3

Table 4. Combined heat and power unit parameters.

Unit Type
Cogeneration Unit Fuel Cost Coefficient

ajr ($/MW2) bjr ($/MW) cjr ($) cv

CHP 7.86 × 10−3 23.354 128.035 0.150

Table 5. Data of storage battery.

The Unit Type Cn/MW·h Cmax/MW·h Cmin/MW·h Ct0/MW·h CT/MW·h
(SB) 5 4.750 1.750 2 2
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Table 6. Data of storage battery.

The Unit Type Tn/times Ccha/($/MW·h) Cdis/($/MW·h) Csell/($/MW·h)

(SB) 8 0.015 0.015 0.022

Table 7. Correlation coefficient of environmental cost calculation.

Correlation Coefficient of Environmental Cost Calculation

dS/kg dN/kg ηS/% ηN/% CS
($/kg·MW·h)

CN
($/kg·MW·h) LS/kg LN/kg CNS/$

0.206 9.890 0.850 0.850 0.435 2.183 0.950 0.950 0.175

Table 8. Pollutant discharge coefficient of microgrid.

Contaminant Type
Pollutant Emission Coefficient/(kg/(MW·h))

Coal-Fired Unit PV WT SB Ptchange

SO2 0.206 0 0 0 0.206
NOx 9.890 0 0 0 9.890

Table 9. Related parameters of heat storage device.

Unit Type Cr
max/MW·h Cr

min/MW·h Cr
t0/MW·h Cr

T/MW·h
Heat storage device 4.750 1.750 2 2

Table 10. Electricity exchange price of microgrid and the public grid.

Time Period 0:00–7:00 7:00–10:00 10:00–15:00 15:00–18:00 18:00–21:00 21:00–00:00

Ctgrid ($/MW·h) 32.023 61.135 94.614 61.135 94.614 61.135
Stgrid ($/MW·h) 36.390 77.147 119.360 77.147 119.360 77.147
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6.2. Example Result

This paper has established a comprehensive consideration of the cost of power generation for
micro-generator sets, environmental costs, operation and maintenance costs of wind power and
photovoltaic power generation, and operating costs of batteries. A microgrid optimization scheduling
model was built that included the combined heat and power system in consideration of environmental
costs. Through the improved particle swarm algorithm, the minimum operating cost for the scheduled
intraday microgrid system is 12,285 dollars. At this time, the scheduling curves of the power output
of each micro-source are shown in Figure 5, and the thermal output of the combined heat and power
units is shown in Figure 6.Energies 2018, 11, x 15 of 23 
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Figure 5 shows the dispatch value of power generation output of each micro-generator when the
total cost is the lowest. Both wind power and photovoltaic power generation are completely consumed
in this dispatching process, that is, the maximum power follows the control. As can be seen from
Figure 5, the thermal power generator and the combined heating and power unit serve as controllable
units to track the change trend of the load to some extent.

As can be seen from Figure 6, the sum of the heat output of the combined heat and power unit and
the heat storage device is equal to the value of the heat load, which satisfies the heat balance constraint
during the operation. The heat storage device breaks the thermoelectric coupling characteristics of the
combined heat and power unit, and realizes a reasonable dispatch of the unit’s heat output.

The battery storage capacity and charge or discharge power of the battery during this economic
dispatch are shown in Figure 7.
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As can be seen from Figure 7, for the storage battery, charging and discharging cannot be
performed at the same time, and the charging and discharging amount of the storage battery are
equal in a scheduling period. Compared with Figure 4, we can see that in the low-load period,
the battery is charging. In the peak load period, the battery is discharging, which not only increased
the peak capacity of the microgrid system, but also provides a new way for the consumption of new
energy generation.

From Figure 8, it can be seen that the heat storage device cannot store and release heat at the same
time, and the thermal storage capacity is the same as the thermal release capacity. After a scheduling
period, the thermal storage remains unchanged, which ensures the normal operation of the next
scheduling cycle.
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6.3. Different Model Results

In order to verify the superiority of this paper’s scheduling model in consideration of environmental
costs, it is compared with the conventional micro-network scheduling model that does not consider
environmental costs, and is defined as follows.

Model 1: This article takes into account the environmental costs of the microgrid thermal-electric
joint scheduling model.

Model 2: Traditional microgrid thermal-electric joint scheduling model without environmental costs.
The comparison of wind power’s consumption under different scheduling models is shown in

Figure 9, and the comparison of photovoltaic power consumption is shown in Figure 10.
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Figure 9. Comparison of wind power accommodation under different models.
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Figure 10. Comparison of photovoltaic accommodation under different models.

From Figures 9 and 10, it can be seen that for the consumption of wind power and photovoltaic
power generation, model 1 is generally higher than model 2, that is, it can effectively increase the
consumption of wind power generation after taking into account environmental costs, and promote
the development of wind power generation.

The scheduling results for different models are shown in Table 11.

Table 11. Scheduling results comparison of two models.

Model Total Costs/$ Wind Power
Consumption/%

Photovoltaic
Consumption/%

SO2
Emissions/ton

NOx
Emissions/ton

Model 1 12285 100 100 0.005 0.255
Model 2 8690 54.470 70.090 0.038 1.810

From Table 11, it can be seen that in terms of comprehensive cost, model 1 is increased by 3595 dollars
compared with model 2. However, in terms of wind power generation’s consumption, model 1 achieved
complete absorption of wind power generation and photovoltaic power generation, and the wind power’s
consumption increased by 45.53% compared with model 2, and the photovoltaic power generation’s
consumption increased by 29.91% compared with model 2. Regarding the emission of pollutants, model
1 reduced SO2 and NO2 emissions by 0.033 tons and 1.555 tons, respectively, compared with model 2,
which can significantly promote the development of electricity and environmental protection.

Taking into account that the environmental costs in the scheduling process can significantly
increase the amount of wind power generation and photovoltaic power generation, and reduce SO2

and NOx emissions, for new energy generation and environmental protection, this development has
great significance.

6.4. Different Algorithm Results

In order to verify the superiority of the improved particle swarm optimization algorithm in terms
of iterative speed and accuracy, the results obtained by the two algorithms are compared. The curve is
shown in the following figure. Figures 11 and 12 show the change curve of the scheduling cost and the
amount of pollutant emissions with the number of iterations, obtained by the standard particle swarm
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optimization algorithm. Figures 13 and 14 show the change curve of the scheduling cost and the
amount of pollutant emissions with the number of iterations, obtained by the improved social particle
swarm optimization algorithm. Table 12 shows the value of the scheduling cost and the amount of the
pollutant emission finally obtained by the two algorithms.
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Table 12. Comparison of two algorithm scheduling results.

Comparison of Results SPSO Improved SPSO

Scheduling cost e/k$ 12.838 12.285
Pollutant emissions D/ton 0.370 0.260

It can be seen from the above figure that with the increase of the number of iterations, the scheduling
cost and the amount of pollutant emissions obtained by the improved particle swarm optimization
algorithm finally converge to the lowest value, which verifies the effectiveness of the algorithm. It can
be seen from Figures 11 and 12 that when the standard particle swarm optimization algorithm is used,
the cost of the scheduling and the amount of pollutant emissions converge to the lowest value after
500 iterations. Figures 13 and 14 show that the convergence speed is significantly improved after using
the improved particle swarm algorithm, and the lowest value is obtained after 300 iterations. In Table 12,
the scheduling cost and the amount of pollutant emissions obtained by the improved particle swarm
optimization algorithm are, respectively, 12,285 dollars and 0.26 tons. Compared with the results obtained
by the standard particle swarm optimization algorithm, the superiority of the improved particle swarm
optimization algorithm in convergence speed and accuracy is well verified.

6.5. The Effect of Adjustment of Time-of-Use Electricity Price on Scheduling Results

For the calculation of e5 in the objective function, the time-of-use price is taken into account, and
now adjusting the time-of-use price, to analyze the impact of price changes on microgrid scheduling.
The electricity price is uniformly increased by 10% and reduced by 10%, respectively. The power
generation output scheduling curve obtained is shown in the Figure 15.
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Figure 15. Power output curve under different electricity price.

From this, it can be seen that mode 1 is the power generation output curve obtained after
increasing by 10%, and it can be seen that the peak valley difference is the smallest. Mode 2 is the
power generation output curve under the original electricity price. Mode 3 is the curve obtained after
10% reduction, with the maximum peak valley difference. This is because after mode 1 increases the
electricity price, restraining the demand of the load and shortening the peak valley difference becomes
inevitable. After the electricity price is decreased in mode 3, the electricity consumption of users
during peak hours will be increased, further increasing the peak valley difference.

For further increase or decrease of electricity price, the corresponding scheduling cost is shown in
Table 13.

Table 13. Scheduling cost under different electricity price.

Comparison
of Results

Electricity Price
Raised by 10%

Electricity Price
Raised by 20% The Original Price Electricity Price

Fell by 10%
Electricity Price

Fell by 20%

Scheduling
cost e/$ 12,490 12,239 12,285 12,310 12,530

It can be seen from the table that after the electricity price increases by 10%, the scheduling cost is
slightly reduced, but it is not obvious. After the electricity price 10% reduction, the scheduling cost
increased slightly. When the electricity price is increased or decreased by 20%, the scheduling cost
increases obviously. This is because when electricity prices are raised, load demand is suppressed,
and peak valley difference reduced, thereby reducing the number of power generator start and
stop times, saving the start-up cost and total cost of scheduling. When the electricity price is
decreased, the demand of load during peak hours will be increased, increasing peak valley difference.
The number of power generator start and stop times will be increased, so the scheduling costs will
also increase. The results from the table show that the price of electricity cannot increase arbitrarily,
and the scheduling cost will have a significant increasing due to the unreasonable electricity prices.
Under the calculation parameters of this paper, for the adjustment of electricity price, it is reasonable
to increase within 10 percentage points, if necessary.
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7. Conclusions

This paper aims to minimize the total cost, while taking into account the emission reductions of
SO2 and NOx, considering the power generation costs, the environmental costs of micro-generator sets,
the operation and maintenance costs of wind power and photovoltaic power generation, the related
cost of battery, and the operation and maintenance cost of wind power and photovoltaic power
generation. The related constraints of thermal balance and power balance also considered during
microgrid system operation. A microgrid optimization scheduling model was established that included
a combined heat and power system in consideration of environmental costs. Taking a microgrid system
as an example, the improved particle swarm optimization algorithm is used to verify the validity and
reliability of the model, and it also proves the effectiveness and superiority of the improved algorithm.
The impact of electricity price’s adjustment on microgrid scheduling cost also analyzed. The results
show that, in this paper, the environmental cost scheduling model is compared with the traditional
non-environmental cost scheduling model. Although the total cost has increased by 3595 dollars,
the wind power consumption has increased by 45.53%, and the photovoltaic generation consumption
has increased by 29.91%. SO2 and NOx emissions are respectively reduced by 0.033 tons and 1.555
tons, which has great significance for energy conservation and emission reduction.
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