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Abstract: The use of photovoltaics is still considered to be challenging because of certain reliability
issues and high dependence on the global horizontal irradiance (GHI). GHI forecasting has a wide
application from grid safety to supply–demand balance and economic load dispatching. Given a data
set, a multi-layer perceptron neural network (MLPNN) is a strong tool for solving the forecasting
problems. Furthermore, noise detection and feature selection in a data set with numerous variables
including meteorological parameters and previous values of GHI are of crucial importance to obtain
the desired results. This paper employs density-based spatial clustering of applications with noise
(DBSCAN) and non-dominated sorting genetic algorithm II (NSGA II) algorithms for noise detection
and feature selection, respectively. Tuning the neural network is another important issue that includes
choosing the hidden layer size and activation functions between the layers of the network. Previous
studies have utilized a combination of different parameters based on trial and error, which seems
to be inefficient in terms of accurate selection of the desired features and also tuning of the neural
network. In this research, two different methods—namely, particle swarm optimization (PSO)
algorithm and genetic algorithm (GA)—are utilized in order to tune the MLPNN, and the results of
one-hour-ahead forecasting of the GHI are subsequently compared. The methodology is validated
using the hourly data for Elizabeth City located in North Carolina, USA, and the results demonstrated
a better performance of GA in comparison with PSO. The GA-tuned MLPNN reported a normalized
root mean square error (nRMSE) of 0.0458 and a normalized mean absolute error (nMAE) of 0.0238.

Keywords: global horizontal irradiance; density-based spatial clustering of applications with noise;
non-dominated sorted genetic algorithm II; genetic algorithm; multi-layer perceptron neural network

1. Introduction

Photovoltaic (PV) solar systems have become very popular due to the fact that they have seen
a surge in efficiency and a decrease in price. Energy demand is increasing rapidly due to rapid
population growth and industrialization. Conventional sources of energy such as fossil fuels cause
environmental problems such as CO2 emission and other environmental issues. This has been subject
to international agreements such as the Conference of Parties 21 (COP21) aiming to invest in renewable
energy technologies and reduce the emission of greenhouse gases [1].

However, connecting the energy produced by PV arrays to the power grid is challenging because
of high variation in solar irradiance levels. Solar irradiance data is an essential factor to design a solar
energy system [2], and a shortage of irradiance data has led to a downturn in the use of solar energy [3].
Another issue that should be highlighted is the need for accurate forecasting models to decrease the
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uncertainty in power generation levels, balance energy generation and consumption, and make solar
energy a more reliable source.

In order to tackle these issues, Chiteka and Enweremadu [4] used a feed-forward neural network
with a back-propagation training algorithm. Meteorological data of humidity, pressure, clearness index,
and average temperature as well as geographical data of latitude and longitude were used to forecast the
global horizontal irradiance (GHI) in Zimbabwe. Data were collected from different locations. A trial and
error approach was utilized to determine the inputs, hidden layer size, and transfer function. The results
indicated that temperature, humidity, and clearness index had a more significant effect on the forecasting
results and a root mean square error (RMSE) of 0.223 kWh/m2/day and a mean absolute error (MAE)
of 0.17 kWh/m2/day were the results of the proposed model.

Khosravi et al. [5] forecasted hourly solar radiation in Abu Musa Island, Iran by using two different
approaches. The first approach used local time, temperature, pressure, wind speed, and relative
humidity as input variables, and the second approach realized forecasting by time series prediction,
utilizing previous values of the solar radiance. After comparing different machine learning algorithms,
support vector regression (SVR) and multi-layer feed-forward neural network (MLFFNN) were found
to generate better results for the first approach and adaptive neuro-fuzzy interface system (ANFIS),
SVR, and MLFFNN for the second one in terms of the correlation coefficient (R). However, the study
does not discuss the possibility of the utilizing all meteorological and previous values of solar radiance
as input variables of the machine learning techniques.

In another study, a radial basis function (RBF) and multi-layer perceptron (MLP) were proposed
by Hejase et al. [6] for the prediction of the GHI in the United Arab Emirates. Different network
architectures and different input sets were tested in order to find the best combination of inputs and the
best network tuning. The best results were obtained using maximum temperature, mean daily wind
speed, sunshine hours, and main daily relative humidity as inputs, and the MLP model demonstrated
a better performance in comparison with the RBF model. The research reached a mean bias error
(MBE) value of −0.0003 kWh/m2 using the MLP model.

In another study conducted by Renno et al. [7], the power generated by a residential building’s
PV system was predicted. An artificial neural network model for prediction of the direct normal
irradiance (DNI) and global radiation (GR) was developed using meteorological data of longitude,
mean temperature, sunshine duration, total precipitation, daylight hours, and declination angle.
Various input combinations as well as different hidden layer sizes and numbers of hidden layers were
tested to find the best topology for the network. The study resulted in an RMSE value of 160.3 Wh/m2

for the GI and 17.7 W/m2 for the DNI.
Gutierrez-Corea et al. [8] investigated the effect of using meteorological data from neighboring

stations for forecasting short-term solar irradiance. The study used different network architectures and
input parameters to obtain the inputs and tune the network. The results indicated that using data from
neighboring meteorological stations up to 55 km as a reference radius increases forecasting accuracy in
terms of forecasting until 3 h ahead.

Mellit and Pavan [9] used artificial neural networks for forecasting of the GHI up to 24 h ahead,
where the mean daily solar irradiance and air temperatures were the considered inputs. Different
numbers of neurons in the hidden layer were tested with several distributions of data for training and
testing data sets. The data were collected from Trieste, Italy.

An artificial neural network (ANN) model was proposed by Amrouche and Pivert [10] for forecasting
of the daily GHI. The data set was provided by the US National Oceanic and Atmospheric Administration
(NOAA) for two locations, namely Le Bourget du Lac (45◦38′44′′ N, 05◦51′33′′ E) and Cadarache
(43◦42′28′′ N, 05◦46′31′′ E). The article addresses the problem of choosing a suitable MLP architecture and
activation function. The data base was divided to sunny and cloudy days and the results demonstrated
higher correlation coefficient for sunny days than cloudy days. The results of the mentioned articles have
proved the efficiency of ANNs in forecasting applications.
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None of the articles mentioned above present a robust method for tuning the ANN and selecting
the input parameters. Despite utilizing different machine learning algorithms in previous studies,
there is no clear strategy for developing an algorithm which does not need an operator in all steps of
the process. The aim of the present study was to develop an algorithm that takes the raw data and
generates the results. While in previous studies, different hidden layer sizes, transfer functions, and
numerous combinations of input parameters must be tested, in current research the whole process is
automatic and has no need of human interference. This research used an MLP as the main algorithm
and the parameters to be used as the inputs of the MLP were selected by the non-dominant sorted
genetic algorithm II (NSGA II). Meanwhile, the MLP was tuned by a genetic algorithm (GA).

The rest of the paper is organized as follows: Section 2 describes the methodology, including
the location from which data were collected and a brief explanation of the whole process. Section 3
describes the employed machine learning algorithms. The results are presented and discussed in
Section 4. Finally, Section 5 summarizes the conclusions of the present study.

2. Methodology

2.1. Case Study

In this research, hourly meteorological raw data from 19 November 2010 to 18 November 2014
provided by the National Renewable Energies Laboratory (NREL) [11] for Elizabeth City (36◦17′44′′ N,
76◦13′30′′ W), North Carolina, USA, were used. A GHI map of the United States is given in Figure 1.

Figure 1. GHI map of the United States [12].

Measured hourly meteorological parameters include average roof temperature (ART), average roof
wind chill temperature (ARWCT), average roof dew point temperature (ARDPT), average roof relative
humidity (ARRH), average average wind speed (AAWS), average peak wind speed (APWS), average
station pressure (ASP), average zenith angel (AZA), average azimuth angel (AAA), average airmass
(AA), ACR data logger temperature (ACRT) and global horizontal irradiance (GHI). More information
about the measuring instrument and station is given in [13]. Nine different delays of the GHI were
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defined as the probable inputs, and a new data table was created using parameters mentioned earlier
and the defined delays of the GHI. Since the biggest defined delay was the measured value of 2 years
ago, the target of the forecasting was GHI between 19 November 2012 and 18 November 2014. A figure
of the measured values of the GHI from 19 November 2010 to 18 November 2014 was generated and is
shown in Figure 2.

Figure 2. Measured values of global horizontal irradiance (GHI) in Elizabeth City, North Carolina, USA
from 19 November 2010 to 18 November 2014.

2.2. Proposed Algorithm

An MLPNN was utilized in order to obtain the forecasting results. The whole process is a hybrid
algorithm which consists of density-based spatial clustering of applications with noise (DBSCAN) for
removing noise and NSGA II for selecting the input parameters. Tuning of the MLPNN was conducted
by GA. In both NSGA II and GA, the cost function is a multi-layer perceptron. The delays of the GHI
for obtaining the future values follow Equation (1) :

x(k + h) = f [x(k), x(k− 1), x(k− 2), ..., x(k− n)], (1)

where k is the kth measured value and h is the forecasting horizon for the previous values of the x by
function f , and n represents the maximum number of delays. The steps of the process for generating
the forecasted value for the desired forecasting horizon are demonstrated in Figure 3 and described in
Sections 3 and 4.

Figure 3. Description of the proposed algorithm. ANN: artificial neural network; DBSCAN:
density-based spatial clustering of applications with noise; GA: genetic algorithm; NSGA II:
non-dominant sorted genetic algorithm II.
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3. Data Pre-Processing

Collected raw data must be pre-processed and prepared to be used as the input of the MLPNN.
The first step is anomaly detection. Some of the raw data might be of no use due to extraordinary
climate changes or failure of the measuring equipment, and these data need to be eliminated.
The employed anomaly detection technique for this study was DBSCAN. Following the detection and
elimination of the anomalies (outliers), feature selection is considered to be the next step. Having used
all the measured parameters as the inputs of the network, one may still not be successful in terms of
accurate forecasting, and some of the parameters might not be useful. Furthermore, in the presence of
computational restrictions, the suitable parameters must be selected to guarantee the accuracy of the
forecasting. Therefore, the nature of the problem is a multi-objective optimization in which the primary
objectives are higher accuracy and fewer input parameters. To help resolve this issue, one approach is
the use of meta-heuristic algorithms such as particle swarm optimization (PSO), genetic algorithm
(GA), ant colony optimization (ACO), etc. For each number of the parameters, the aforementioned
algorithms randomly select the parameters by associating 0 or 1 to each one of them, then the process
is repeated to the point of a stopping criterion. Another faster and more accurate approach is the use
of multi-objective optimization algorithms. Considering that we are facing a multiple-criteria decision
making problem, this study employed an NSGA II algorithm, which is recognized as one of the most
widespread multi-objective optimization algorithms.

3.1. DBSCAN

Clustering is the practice of classifying similar objects together based on their similarities.
The similarity might be limited to distance. Lloyd’s algorithm, mostly known as k-means, is a
good example of this approach, where k is the number of clusters. Lloyd’s algorithm assumes that
the best clusters are found by minimizing intra-cluster variance and maximizing the inter-cluster
variance [14]. However, using distance-based algorithms does not necessarily guarantee the success of
the clustering, particularly for high-dimensional data, where density-based clustering methods lead to
better results. DBSCAN was introduced by Ester et al. [15], and is one the most effective density-based
clustering algorithms. It is able to discover any number of clusters with different sizes and arbitrary
shapes. DBSCAN assigns the points to the same cluster if they are density-reachable from one another.
This algorithm has three inputs: set of points, neighborhood value (N), and minimum number of
points in neighborhood (density).

DBSCAN starts by labeling the points as core, border, or noise points. The point with minimum
points in its neighborhood is called a core point. The non-core point with at least one core point in
its neighborhood is a border point, and all other points are noise points (outliers) and lie alone in
low-density regions. The next step is assigning core and border points to clusters until all points are
assigned to a cluster. It is important to note that DBSCAN is sensitive to neighborhood parameters.
Choosing a small neighborhood value results in many points labeled as noise, and choosing a high
value merges the dense clusters. Examples for core, border, and noise points are shown in Figure 4.

In the present research, the codes of the DBSCAN were developed in Matlab so as to detect and
remove the data with noise from the data set. A previous study for anomaly detection based on
DBSCAN can be found in [16], and more details and codes of the algorithm are given in [15].

3.2. NSGA II

The NSGA II algorithm was introduced by Deb et al. in 2002 [17] as an improved version of the
NSGA [18]. It was utilized to solve various multi-objective optimization problems, including input
selection [19]. NSGA II is a population-based algorithm and initializes with a random population.
Then, population is sorted based on the value of the cost function in non-dominant order in each front,
where individuals in the first front (F1) are non-dominant by other individuals, and the second front
(F2) contains dominated individuals in the population in each iteration.
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Figure 4. Example for core, border, and noise points (MinPts = 4).

The GA operators of selection, crossover, and mutation are the next steps of the algorithm.
The selection is a binary tournament selection, and is based on the crowding distance and cost value.
Higher crowding distance demonstrates higher population diversity. Offspring is created by crossover
and mutation operators, and the best N individuals of the offspring population are selected and sorted
in non-dominant order. NSGA II depends on parameters like population size, number of iterations,
crossover probability, and mutation probability. Some indications to set these parameters are given in [20].

The algorithm for the non-dominated sort is given in Algorithm 1, where p, P, and Q are the
individuals, parent vector, and the offspring vector, respectively. Sp contains the individuals dominated
by p, np is the number of individuals that dominate p, and i is the number of the ith front.

The procedure for calculating the crowding distance is shown in Algorithm 2. As seen in
Algorithm 2, the boundaries have infinite distance and m is the number of the mth objective function of
the ith individual in I. The selection is based on the calculated crowding distance, and after applying
crossover and mutation operators, the final step is recombination and selection. To ensure the elitism,
the next generation is the combination of the best individuals from the parent vector and offspring
vector. The process subsequently repeats to generate the individuals of the next generations, and stops
when the stopping criteria is satisfied.
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Algorithm 1 Non-dominated sort

for each ρ ε P do
Sρ = φ
nρ = 0
for each q ε P do

if ρ < q then
Sp = Sp ∪ {q}

else(q < ρ)
np = np + 1

end if
if nρ = 0 then

ρrank = 1
F1 = F1 ∪ {ρ}

end if
end for

end for
i = 1
while F1 6= φ do

Q = φ
for each ρ ε Fi do

for each q ε Sρ do
nq = nq − 1
if nq = 0 then

qrank =i+1
Q = Q ε {q}

end if
end for

end for
i = i + 1
Fi = Q

end while

Algorithm 2 Crowding distance
H

l = |I|
for each i, set I[i]distance = 0 do

for each objective m do
I = Sort{I, m}
I[1]distance = I[l]distance = ∞
for i = 2 to (l-1) do

I[i]distance = I[i]distance + (I[i + 1].m− I[i− 1].m)/( f max
m − f min

m )
end for

end for
end for

4. MLPNN

As mentioned above, this work employed multi-layer perceptron neural network (MLPNN)
to forecast the GHI. An MLP consists of an input layer, at least one hidden layer, and an output
layer. Each layer contains processing units (neurons) that perform operations on their input data
and send it to the following layers. The number of neurons in input layer is equal to the number of
the input variables. In this work, the output layer has one neuron because of the only one desired
output (i.e., forecasted GHI). The major challenge lies in choosing the proper number of the neurons
in the hidden layer. Furthermore, it must be considered that each input is first multiplied by the
corresponding weight parameter and the resulting product is added to a bias to produce a weighted
sum [21]. The resulted weighted sum of each neuron passes through a neuron activation function (i.e.,
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transfer function) to produce the final output of the neuron. The most common activation functions
are provided in Table 1, and the structure of an artificial neuron is shown in Figure 5.

Table 1. The most common activation functions.

Description Equation

Linear φ(z) = z
Logistic sigmoid φ(z) = 1

1+e−z

Hyperbolic tangent sigmoid φ(z) = ez+e−z

ez+e−z

Figure 5. Structure of an artificial neuron.

The process of the adaptation of the weights is known as the training stage. There are several
training algorithms, each applied to different neural network models, and the main difference among
them is how the weights are adjusted. The present study utilized supervised learning with the
back-propagation training algorithm, which iteratively reduces the difference between the obtained
and desired output using a minimum error as reference. In this method, the weights are adjusted
between the layers by means of the back-propagation of the error found in each iteration.

The tuning discussed in this work, which is realized by the GA and PSO algorithm, consists of
choosing the proper hidden layer size and the proper activation function.

4.1. PSO

PSO was developed by James Kennedy and Russell Eberhart in 1995 [22] and was inspired by the
flocking and schooling patterns of birds. It is recognized as a powerful population-based algorithm for
optimization. The algorithm is initialized by random particles, and the initial population creates the
swarm as presented in Equation (2):

X = x1, x2, ..., xN . (2)

Unlike algorithms such as GA, PSO does not use selection, and all particles can share information
about the search space. Each particle moves in an D-dimensional space and contains a position and a
velocity. The position of each particle is described in Equation (3):

xi = [xi1xi2xi3...xiD]. (3)

Velocity controls the exploration, and cannot exceed the maximum allowed speed (vmax(j)).
Maximum velocity controls the exploration. Low values result in local exploration, whereas higher
values of the maximum velocity cause global exploration. Velocity is adjusted using Equation (4):

vij =

{
vij(t + 1), if vij(t + 1) < vmax(j),

vmax(j) otherwise.
(4)
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Equations (5) and (6) are used to determine the minimum and maximum velocity to the solution:

vmax,j = δ(xmax,j − xmin,j), (5)

vmin,j = δ(xmin,j − xmax,j). (6)

xmax,j and xmin,j are the minimum and maximum positions of the particle in the jth dimension, and δ

is a constant between 0 and 1.
The particles keep a record of the position of its best performance. Meanwhile, the best value

obtained by all particles is stored as the global best. All particles can share information about the
search space, and each particle calculates its velocity based on its best performance and the global
best. By using this velocity, the particles update their position at each iteration, which is calculated by
Equation (7):

Vi(t + 1) = w×Vit + c1(pi − xit)R1 + c2(g− xit)R2, (7)

where w is the inertial weight, p1 is the personal best, and g is the global best. t and t + 1 indicate two
successive iterations of the algorithm, and vi is the vector of velocity components of the ith particle.
c1 and c2 are constant values. Some approaches to set w, c1, and c2 are discussed in [23].

The trajectory of particles towards the optimal solution is defined as Equation (8):

xi(t + 1) = xi(t) + vi(t + 1). (8)

4.2. GA

GA is a meta-heuristic algorithm inspired by evolution of chromosomes and natural selection.
It was introduced by John Holland in 1960 [24], and has been found to demonstrate good performance
in solving non-linear optimization problems. GA is originally a binary coded algorithm, and it can
be used for solving continuous space problems by applying some modifications to its operators [25].
The GA used in this research is a continuous GA. It starts with an initial population, and after assigning
a fitness value for each chromosome, new chromosomes (offspring) are created from the previous
chromosomes (parents), which have better fitness values. Selection of the parents can be done by many
techniques, such as roulette-wheel selection, tournament selection, and elitist selection. In the next
step, genetic operations of mutation and crossover are applied to the selected chromosomes to generate
the offspring. Crossover is the process of dividing two randomly selected chromosomes with the
best fitness value and exchanging them to produce new offspring. Various crossover approaches for
continuous GA are given in [26,27]. Mutation is randomly changing a part of a selected chromosome
based on the defined mutation rate, which causes a random change in exploring the solution space.
Without mutation, GA converges rapidly and this causes a tendency to converge to a local optimum.

Finally, the generated new population (chromosomes) passes through evaluation and calculation
of the fitness value. These steps repeat in each iteration until a termination criterion is satisfied.
A flowchart of the continuous GA is shown in Figure 6.
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Figure 6. Flowchart of the continuous GA.

5. Results and Discussion

5.1. Outlier Detection

The measured data for each variable were checked to detect the noise (outliers) using the DBSCAN
algorithm. Once the outliers were detected, they were subsequently removed from the dataset. Since
the noise has a negative effect on forecasting accuracy, this process is of vital importance so as to detect
and remove the noise in order to obtain more precise forecasting results. Forecasting performance
before and after noise reduction is presented in Table 2. It must be noted that the reported values in
Table 2 and all other tables related to the results are for the test data set. In addition, before tuning
the network, the number of neurons in the hidden layer and transfer functions were set to 20 and
hyperbolic tangent sigmoid, respectively.

Table 2. Results with raw data and data after outlier detection.

Dataset RMSETs(Wh/m2) nRMSETs MAETs (Wh/m2) nMAETs RTs

Raw data 59.0697 0.0568 32.5303 0.0313 0.9741
Data without noise 55.0039 0.0529 27.7468 0.0267 0.9765

5.2. Feature Selection

All measured meteorological data together with defined previous values of the GHI were fed to
the NSGA II algorithm as the inputs. The cost function of the algorithm is an ANN and the fitness
of the algorithm is the combination of the mean squared error (MSE) of the testing and training data
sets of the ANN. Five different fitnesses (cost function) with different weights for testing and training
data sets were tested. Furthermore, to avoid the effect of the probable unsuccessful runs, an upper
bound was defined for the MSE values of the cost function. RMSE, normalized RMSE (nRMSE), and R
related to each test in presented in Table 3. The reported results were related to the solution with the
best RMSE in each case, and in order to gain robust results, the fitness was set to be the mean of five
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runs. Maximum number of iterations, population size, crossover probability, and mutation probability
were set to 50, 50, 0.7, and 0.4, respectively. As can be seen, the cost function with relative weight of
the 0.5 for the test data set and 0.5 for the train data set was found to generate better results.

Table 3. RMSE, nRMSE, and R related to the tested cost functions.

Cost Function RMSETs(Wh/m2) nRMSETs RTs

0.2(MSETr) + 0.8(MSETs) 54.8296 0.0527 0.9775
0.4(MSETr) + 0.6(MSETs) 52.6834 0.0506 0.9782
0.5(MSETr) + 0.5(MSETs) 50.3865 0.0484 0.9807
0.6(MSETr) + 0.4(MSETs) 53.2956 0.0512 0.9782
0.8(MSETr) + 0.2(MSETs) 54.5259 0.0524 0.9779

The Pareto front of the NSGA II related to the chosen cost function is shown in Figure 7.
As discussed in Section 3, despite algorithms like PSO, GA, ACO, etc. that generate only one solution,
all seven members of the Pareto front of the NSGA II were the solutions of the problem.

Figure 7. Pareto front of NSGA II.

To select the proper solution to work, the computational power, cost, and desired quality of the
forecasting must be taken into account. If forecasting accuracy is of top priority, the solution with better
nRMSE and nMAE must be employed. Otherwise, other generated solutions might be considered.
Selected inputs related to the generated solutions are presented in Table 4.

Table 4. Selected inputs related to the solutions generated by NSGA II.

Solution Selected Inputs

11 Features (GHI-1), (GHI-3), ARWCT, ARDPT, ARRH, AAWS, APWS, AZA, AAA, AA, ACRT
8 Features (GHI-1), ARWCT, ARRH, APWS, AZA, AAA, AA, ACRT
7 Features (GHI-1), ARWCT, ARRH, APWS, AZA, AAA, ACRT
5 Features (GHI-1), ARRH, AZA, AAA, ACRT
3 Features (GHI-1), AZA, AAA
2 Features (GHI-1), AAA
1 Feature (GHI-1)
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As seen in Table 4, the first previous value of the GHI (GHI-1) was selected in all solutions, and
it demonstrates the importance of this variable in the forecasting process. Table 5 demonstrates the
forecasting results for each member of the Pareto front (solution) generated by NSGA II.

Table 5. Forecasting error for the each member of the Pareto front generated by NSGA II.

Dataset RMSETs(Wh/m2) nRMSETs MAETs(Wh/m2) nMAETs RTs

11 Features 50.3865 0.0484 25.6141 0.0246 0.9807
8 Features 51.3536 0.0494 25.4114 0.0244 0.977
7 Features 51.3694 0.0494 27.5749 0.0265 0.9769
5 Features 54.5632 0.0525 26.9651 0.0259 0.9735
3 Features 55.4623 0.0533 26.2973 0.0253 0.9735
2 Features 56.277 0.0541 29.2882 0.0281 0.972
1 Feature 94.7365 0.0911 57.5043 0.0553 0.9215

5.3. MLPNN Tuning

The algorithm used in this paper is a continuous GA, which was designed to solve continuous
space problems. Therefore, some adaptations were necessary to employ this algorithm for tuning
purposes. The algorithm is supposed to choose the size of the hidden layer (an upper bound of 20 was
defined for the current work) as well as two transfer functions for the network. As observed, the current
problem is not of continuous type, so in order to tackle this, numbers 1 to 20 were associated with
hidden layer size and numbers 1 to 3 were associated with the purelin (linear), logsig (logistic sigmoid),
and tansig (hyperbolic tangent sigmoid) transfer functions, respectively. The individuals generated by
GA and the positions of the particles of the PSO algorithm in each iteration were rounded, and the
product which was a number between 1 and 20 for the hidden layer size was used to determine the
number of neurons, and numbers between 1 and 3 for determining the transfer functions. The fitness
of each iteration was calculated by an MLPNN. As in feature selection, fitness was set to be the mean
of five runs and an upper bound of MSE was defined to reduce the effect of the unsuccessful runs in
the results. We utilized the ability of GA to generate solutions and the ability of the PSO algorithm
to explore the solution space. GA was found to have a better performance in comparison with PSO.
The values for the parameters of the PSO and GA are given in Table 6.

Table 6. Values for the parameters of particle swarm optimization (PSO) and GA.

PSO Parameters GA Parameters

C1 = 1.4962 pCrossover = 0.7
C2 = 1.4962 pMutation= 0.2
w = 0.7298 nMutation = 10
MaxIt = 50 MaxIt = 50
nPop = 50 nPop = 50

The variation of the fitness in each iteration of GA and PSO is shown in Figure 8.
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Figure 8. Fitness in each iteration of GA and PSO.

The network tuning results obtained by GA and PSO algorithms are presented in Table 7.

Table 7. Network tuning results obtained by GA and PSO algorithms.

Tuning Algorithm Hidden Layer Size Transfer Function 1 Transfer Function 2

PSO 12 tansig purelin
GA 15 tansig tansig

5.4. Forecasting Results

As the final steps, the tuned MLPNN was fed by selected features. The final results for each
network tuned by GA and PSO algorithms are given in Table 8. As seen in table, proper tuning of the
MLPNN resulted in a reduction of error in terms of all indicators of the RMSE, nRMSE, MAE, nMAE,
and R. In all steps of using the MLPNN, 70% of the data were used for training and 30% of the data
were used as validation and testing data.

Table 8. Results after tuning the ANN.

Dataset RMSETs(Wh/m2) nRMSETs MAETs(Wh/m2) nMAETs RTs

Tuned by PSO 47.9414 0.04613 26.289 0.0252 0.9786
Tuned by GA 47.6955 0.0458 24.7772 0.0238 0.9884

The outputs of GA–MLPNN and PSO–MLPNN for a study region of 24 h is shown in Figure 9.
The same study regions of the 4 days and 1 week are presented in Figures 10 and 11, respectively,
and as can be seen, outputs of the both networks were very close to the measured values of the GHI.
However, the neural network tuned by GA demonstrated better results.
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Figure 9. Forecasting results for the region of 24 h.

Figure 10. Forecasting results for a 4-day period.
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Figure 11. Forecasting results for a 1-week period.

6. Conclusions

Switching to renewable energy is unavoidable due to various problems caused by generating energy
with fossil fuels and nuclear power plants. Among renewable sources, solar energy makes it possible
to generate energy with different methods. PV solar energy is one of the methods which is currently of
great importance due to its clean and environmentally friendly characteristics as well as decreasing PV
cell prices. However, there is still much ongoing research aiming to overcome the challenges caused by
PV systems. The current study is dedicated to developing a methodology to make the forecasting of the
GHI more reliable. By using the developed methodology, there is no need to adapt new data sets to the
currently existing algorithms or to tune the neural network by a trial and error approach. Since the the
developed methodology employs an input selection algorithm, it generates results with any given data
set containing different variables. Once the inputs are selected and the neural network is trained and
tuned, the algorithm is ready to use without any computational complexities.

In this paper, a combination of different machine learning techniques were used to forecast the
GHI. Anomalies were detected and removed by DBSCAN, and features were selected by NSGA II.
A multi-layer perceptron neural network was employed to forecast the hourly GHI, and the tuning of
the network was realized by GA, which demonstrated good performance in generating solutions in
the explored solution space. This study proves the better performance of the GA over PSO algorithm
in terms of the tuning of neural networks.

The uniqueness of this approach lies in employing NSGA II for selecting the inputs of the MLPNN
and adapting GA for tuning of the neural network. In previous studies that employed artificial neural
networks, there are no specific approaches for addressing these issues.

The validity of the developed model was tested using the data set for Elizabeth City, North Carolina,
USA, and the error rates constantly reduced in each stage of applying the methodology. Using this specific
data set, the study achieved an nRMSE value of 0.0458, an nMAE value of 0.0238, and a correlation
coefficient of 0.9884.
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Abbreviations

ACO Ant Colony Optimization
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
DBSCAN Density-Based Spatial Clustering for Applications with Noise
DNI Direct Normal Irradiance
GA Genetic Algorithm
GHI Global Horizontal Irradiance
MAE Mean Absolute Error
MBE Mean Bias Error
MLPNN Multi-Layer Perceptron Neural Network
MSE Mean Squared Error
NSGA II Non-Dominated Sorting Genetic Algorithm II
PSO Particle Swarm Optimization
PV Photovoltaic
R Correlation Coefficient
RBF Radial Basis Function
RMSE Root Mean Square Error
SVR Support Vector Regression

Appendix A

The indicators of root mean squared error (RMSE), normalized root mean squared error (nRMSE),
mean absolute error (MAE), normalized mean absolute error (nRMSE) and correlation coefficient (R)
were used for evaluations of the model. The following equations describe these indicators:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)2 (A1)

nRMSE =
RMSE

xmax − xmin
(A2)

MAE =
1
n

n

∑
i=1
|xi − yi| (A3)

nMAE =
MAE

xmax − xmin
(A4)

R =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2 ∑n
i=1(yi − ȳ)2

(A5)

where, xi and x̄i are the measured value and mean of the measured value for the GHI and yi and ȳi are
the forecasted value and mean of the forecasted value for the GHI respectively.
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