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Abstract: In this paper, identification of an appropriate hybrid energy storage system (HESS)
architecture, introduction of a comprehensive and accurate HESS model, as well as HESS design
optimization using a nested, dual-level optimization formulation and suitable optimization
algorithms for both levels of searches have been presented. At the bottom level, design optimization
focuses on the minimization of power loss in batteries, converter, and ultracapacitors (UCs), as well
as the impact of battery depth of discharge (DOD) to its operation life, using a dynamic programming
(DP)-based optimal energy management strategy (EMS). At the top level, HESS optimization of
component size and battery DOD is carried out to achieve the minimum life-cycle cost (LCC) of
the HESS for given power profiles and performance requirements as an outer loop. The complex
and challenging optimization problem is solved using an advanced Multi-Start Space Reduction
(MSSR) search method developed for computation-intensive, black-box global optimization problems.
An example of load-haul-dump (LHD) vehicles is employed to verify the proposed HESS design
optimization method and MSSR leads to superior optimization results and dramatically reduces
computation time. This research forms the foundation for the design optimization of HESS,
hybridization of vehicles with dynamic on-off power loads, and applications of the advanced global
optimization method.

Keywords: nested optimization; hybrid energy storage system; surrogate-based optimization method;
electrified vehicles

1. Introduction

With their highly efficient electric drives and electric energy storage systems (ESSs), electrified
vehicles (EVs) provide promising transportation and construction solutions with high energy efficiency,
extra-low emissions, reduced maintenance cost, as well as the possibility to use renewable energy to
replace fossil fuels [1–3]. One of the shared features of pure electric vehicles (PEVs), plug-in hybrid
electric vehicles (PHEVs) and extended range electric vehicles (EREVs) is their large battery ESS that
contributes to a large proportion of the overall cost of the EVs and frequently has a much shorter life
than the vehicle itself. The initial investment and later replacement costs of the battery ESS present a
major obstacle to the wide adoption and commercialization of EVs. Considerable research has been
devoted to the effective thermal management of battery ESS and these efforts have largely eliminated
the negative temperature impact to battery life. On the other hand, there is still less understanding
and effective techniques to address the strong negative influence of battery use patterns, including
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the current, depth and frequency of charge/discharge, to the degradation of battery performance and
shortening of battery life. For heavy-duty transportation and construction applications with large
and dynamic on-off power loads, how to effectively extend the life and reduce the life-cycle cost
(LCC) of the large battery ESS becomes a critical issue. Typical examples of these applications include
construction and mining vehicles, and load-haul-dump (LHD) vehicles.

The electric ESS technologies, including battery ESS and ultracapacitor (UC) ESS, for EVs have
been extensively studied [4,5]. At present, Li-ion batteries are the most widely used vehicular ESS due
to their high energy density, compact size, and reliability [6]. During operations, the battery ESS in EVs
experiences frequent charge and discharge to deal with the dramatic and frequent power variations.
These variant power flow in and out of the ESS are either due to the direct power demands from
a PEV or caused by the need from a hybrid electric vehicle (HEV) to allow its internal combustion
engine (ICE) to work at relatively constant speed and torque outputs for higher fuel efficiency. These
dynamically changing loads impose negative impacts on battery life, thereby increasing the LCC of
the ESS and the EVs [7,8]. To better serve the rapidly growing PEV and PHEV markets, lower battery
ESS LCC and extended operation life are demanded. Although the energy capacity and operation life
of the battery ESS can be increased either increasing the size of lower-cost batteries with lower power
density, or utilizing high performance and power density batteries at a higher cost, both solutions
lead to increased ESS cost. On the other hand, UC has very high power density and cycle life with
limited energy density. The combination of batteries and UCs to form a hybrid ESS (HESS) can
potentially utilize the advantages of both batteries and UCs, not only have better combined power and
energy capacities, but also have extended the battery life and enhanced the overall performance of the
ESS [9,10]. HESS architectures can be classified into three major types: passive parallel, semi-active,
and fully active. Each topology has its own strengths and limitations. Identification of the appropriate
architecture becomes the first and foremost step in HESS design. In addition to the batteries and UCs,
the HESS also relies on a large DC/DC converter to regulate the DC voltage internally and an energy
management strategy (EMS) controller to ensure the effective and efficient operations of the HESS and
its components. Optimized EMS is also an important part of HESS design.

In the performance and cost model of HESS, battery capacity loss is a critical factor, and battery
performance degradation modeling is the key for quantitatively evaluating the life and LCC under
given ESS operation [7,11–13]. Few papers, though, have studied the impact of depth of discharge
(DOD) to the battery operation life and capacity loss. Furthermore, another key functional component
of the HESS is its DC/DC converter. In the past, the converter efficiency was simply modeled as a
constant loss factor, or using an input power indexed look-up table [14,15]. Due to the large voltage
variation of the UCs, as well as the significant and variant power loss of the DC/DC converter, a more
accurate converter power loss model is needed for the HESS’ EMS.

A number of previous studies have focused on the optimization of HESS component size and
development of appropriate EMS [16,17]. It is essential to consider the operation control of the HESS
during its design optimization since the EMS and HESS component size are closely coupled, making the
HESS design a complex task [18–20]. To perform design optimization of complex HESS, multi-objective
optimization has been used in recent research. Xu et al. [21] introduced a two-loop optimization for fuel
cell EVs to obtain the optimal fuel economy and system durability. Song et al. [12] proposed to minimize
both of the HESS cost and the battery capacity loss. Herrera et al. [22] presented an adaptive EMS and
an optimal HESS component sizing method for a HESS-based tramway. Shen et al. [19] intended to
minimize the overall ESS size while maximizing the battery cycle life applied in a midsize EV. Other
authors tend to formulate a nested optimization with the EMS in an inner loop and component size in
an outer loop. Hung et al. [23], for example, created a simple but innovative integrated optimization
approach for obtaining the best solution of HESS, and also developed a nested structure in [24] to
minimize the consumed power for the in-wheel motors of EVs. Furthermore, Murgovski et al. [25]
designed a novel methodology to optimize the battery size and EMS based on convex optimization for
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PHEVs. More research efforts on using convex optimization for design optimization of EVs can be
found in [14,26–28].

The design optimization of the hybrid electric propulsion system and its HESS uses system
modeling and simulations as objective and constraint functions, producing complex, non-unimodal
and computation-intensive optimization problems that require a global optimization (GO) search
program to solve. The needs to optimize the EMS that controls the operation of the HESS and
to optimize the sizes of HESS components, batteries, UCs and DC/DC converter, for a given HESS
architecture, add additional complexity to the design optimization problem. The nested component size
and HESS control optimization lead to a very computation-intensive problem. Traditionally, classical
GO methods, such as genetic algorithm (GA) [29], have been used in dealing with various global
optimization problems. These methods are generally effective as long as the objective and constraint
functions are not too complex, and the hundreds and thousands of objective/constraint evaluations
lead to longer, but manageable computation time. However, the intensive computation and long
computation time of this HESS design optimization problem made traditional GO search algorithms
impractical to use. Surrogate-based global optimization (SBGO) method has been introduced to address
this particular issue by introducing surrogate modeling or metamodeling in the search, to dramatically
reduce the number of evaluations of the computationally expensive objective/constraint functions,
and to concentrate on the most promising region of the global optimum [30,31]. As an advanced SBGO
approach, the Multi-Start Space Reduction (MSSR) search algorithm [32], developed in the authors’
recent work, is designed for solving computation-intensive, black-box global optimization problems.

To solve the HESS component size and EMS optimization problems, a nested HESS design
optimization formulation based on the HESS performance/power-loss model and its optimal operation,
and a dedicated global optimization search method that combines Dynamic Programming (DP) and
MSSR SBGO has been introduced. The HESS performance and power-loss model includes the battery
performance degradation model and DC/DC converter power loss model. The DP is used to find
the optimal EMS of the HESS, and the MSSR GO search method is used to optimize the sizes of
the HESS components. The HESS design optimization for an LHD is used to illustrate the newly
proposed method. In addition, compared to the optimal solution selected from Pareto front in our
prior work [8], the solution obtained in this paper has more advantages, including fewer life-cycle
cost and replacement cost as well as longer working hours, which indicates that the proposed method
can achieve a better solution. The remainder of this paper is organized as follows: in Section 2, the
adequate architecture of the HESS for the LHD application is identified and the performance and
power-loss model of the HESS is introduced. In Section 3, a nested, dual-level optimization problem,
consisting the lower-level DP-based EMS control optimization and the higher-level component size
optimization using an LCC model, is presented. The principles and major steps of GA and MSSR
algorithms are compared in Section 4. The electrified LHD and its HESS design optimization example
using the proposed new method is discussed in Section 5. Conclusions and a summary are presented
in Section 6.

2. HESS Architecture and Performance/Power-Loss Model

2.1. Topology

According to the existing studies, the topology of HESS can be categorized into three major types,
including passive parallel, semi-active, and fully active topologies. The passive parallel topology
combining both the battery and UC together without any electronic converters is the simplest method
with easy implementation and low cost while the UC essentially acting as a low-pass filter [33]. The
fully active topology can entirely decouple the battery and UC with DC bus and voltages using one
electronic converter for each of these components, supporting flexible operations. However, fully
active topology has considerably increased complexity and system cost, as well as decreased system
efficiency, due to the use of two full-sized DC/DC electronic converters [34].
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Semi-active HESS topology, as shown in Figure 1, is the most widely used configuration at present
with only one bidirectional DC/DC converter (Bi-DC/DC) between the UC and the DC bus, whose
function is to allow a wider range of UC voltage and to offer high power instantly when needed
in charging or discharging. The batteries are connected directly to the DC bus for maintaining its
voltage because the battery voltage only changes slightly during operation comparing to the UC. This
topology has the ability to use the UCs more effectively compared to passive parallel topology and
has relatively low cost and high efficiency compared to fully active topology, and the UCs are used in
complementary to reduce the peak power and to extend the operation life of the batteries [8,35]. In
practice, electric accessories (ACC) also need to be powered by the HESS, and these accessories usually
have stable energy consumption. A low-voltage unidirectional DC/DC converter (L-DC/DC) is then
added to draw energy from the DC bus, as illustrated in the dotted box in Figure 1.
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2.2. HESS Performance and Power-Loss Model

2.2.1. Battery Performance Degradation Model

The capacity degradation of batteries is defined as a percentage that equals the capacity loss
divided by the nominal capacity after a period of operation. Normally, the batteries need to be replaced
when the value exceeds 20%. Over the past few years, researchers focus on studying the performance
degradation of the batteries as they often need to perform frequent charge and discharge operations.
There have been considerable efforts to build models from different aspects, such as parasitic side
reactions, solid-electrolyte interphase formation, resistance increase, etc., which lead to a capacity
loss in battery [36,37]. Wang et al. [38] presented a semi-empirical life model based on the equation
described by Bloom et al. [39], including three parameters (Ah-throughput, temperature, and discharge
rate) shown in Equation (1) based on a large cycle test matrix:

Qloss = B · exp [
−31, 700 + 370.3 · C_Rate

R · Ten
](Ah)

0.55, (1)

where Qloss is the percentage of capacity loss, B is the pre-exponential factor, R is the gas constant, Ten

is the absolute temperature in K, Ah is the Ah-throughput, which is dependent on the cycle number,
DOD, and full cell capacity and can be expressed as Ah = (cycle number)× (DOD)× (full cell capacity),
and C_Rate is the discharge rate.

Based on this model, Masih-Tehrani et al. [11] built a battery life model to calculate the initial
cost and 10-year replacement cost. Song et al. [12] performed a battery degradation experiment on the
LiFePO4 cell (3.3 V and 60 Ah) to calibrate the parameters indicated in Equation (2) and to verify the
model accuracy:

Qloss = 0.0032 · e−(
15,162−1,516·C_Rate

R·Ten )(Ah)
0.824, (2)

To further explore the relationship between the battery capacity and cycle number at different
DOD and C-rate, battery performance degradation model in Equation (2) is employed and the results
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in Figure 2 are obtained based on the MATLAB/Simulink model by setting the temperature as 303.15 K.
It can be noted in Figure 2a that with the increase of the DOD from 50% to 80%, the cycles would be
decreased from 5000 to 3000 with a C-rate of C/2 (30A). The similar tendency is that battery operating
at a lower C-rate will achieve longer cycles demonstrated in Figure 2b from 0.3C to 2C (80% DOD).
Through simulation results, it can be clearly seen that DOD and C-rate have a great influence on the
battery capacity degradation. Therefore, it is essential to consider the impact of DOD within the battery
degradation model when quantitatively evaluating the capacity loss during the HESS optimization.
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2.2.2. Battery Equivalent Circuit Model

Equivalent circuit models have been widely studied since they have relatively few parameters
derived from empirical experience and experimental data and can be able to describe the dynamic
characteristics of the battery with decent accuracy. These models normally use electrical components
(resistances and capacitors) to depict the process of charging and discharging. As the simplest yet most
effective equivalent circuit model, the Rint model [40], shown in Figure 3a, is adopted to represent the
battery behavior.
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The current can be calculated as follows:

IBT_cell =
UOCV_cell − (U2

OCV_cell − 4 · RBT_cell · PBT_cell)
1/2

2 · RBT_cell
, (3)

where UOCV_cell, PBT_cell, and RBT_cell are the open circuit voltage, the power, and the internal resistance
of the battery cell, respectively.

The state of charge (SoC) at the discrete step k (SoCBT_cell(k)) is defined as the current capacity
(Q(k)) divided by the nominal capacity of the battery cell (QBT_cell):

SoCBT_cell(k) = Q(k)/QBT_cell · 100%, (4)

With a timestep of ∆t, the SoC at the next step is as follows:

SoCBT_cell(k + 1) = SoCBT_cell(k)− (IBT_cell(k) · ∆t/QBT_cell) · 100%, (5)

In terms of the battery pack, assume that the pack is formed via NBT series and MBT parallel
battery cells [12]:

QBT = MBT ·QBT_cell, (6)

RBT = NBT · RBT_cell/MBT, (7)

VBT = NBT ·VBT_cell, (8)

where VBT_cell represents the voltage of the battery cell, and QBT, RBT, and VBT are the nominal capacity,
the internal resistance, and the voltage of the battery pack, respectively.

2.2.3. UC Equivalent Circuit Model

With an increasing use of UCs in different applications, their modeling is indispensable for system
design, condition monitoring, and performance evaluation. In the literature, numerous UC models
have been reported, which can be mainly divided into empirical models and equivalent circuit models.
As with the previous battery modeling method, the UC model is shown in Figure 3b.

Suppose that the pack is composed of the UC modules via NUC series and MUC parallel [12]:

CUC = MUC · CUC_module/NUC, (9)

RUC = NUC · RUC_module/MUC, (10)

VUC = VUC_module · NUC, (11)

where CUC_module, RUC_module, and VUC_module denote the nominal capacity, the internal resistance, and
the voltage of the UC module, while CUC, RUC, and VUC denote the same meanings of the UC pack.

The relationship between SoCUC, VUC, and stored energy (EUC) of the UC pack can be deduced in
Equations (12) and (13):

SoCUC = VUC/VUC_max, (12)

EUC = 0.5 · CUC ·V2
UC_max · (1− SoC2

UC_min), (13)

where VUC_max and VUC_min are the UC pack voltage in a fully charged condition and the lower limit
of the UC pack SoC. Due to the simplified UC model used in this paper, the variation of CUC with
VUC has not been considered. It can be inferred from Equation (13) that UC pack can release 75% of
its stored energy when the SoCUC drops from 100% to 50%. Therefore, the SoCUC_min is generally set
more than 50% from the efficiency perspective. Given the fact that UCs have long cycle times (more
than 500,000 cycles), their capacity loss will not be considered in the model.
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2.2.4. DC/DC Converter Power Loss Model

As the connection between the UC and the DC bus, the DC/DC converter can not only regulate
the voltage but control the power supply of the UC. In order to increase the accuracy of the simulation
process, a voltage doubler boost converter introduced in [41] is simulated in MATLAB/Simulink to
develop a power loss model. This converter circuit diagram is displayed in Figure 4.
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The five main losses in converter including switch turn on loss, switch turn off loss, switch
conduction loss, diode conduction loss, and diode recovery loss. The switch losses can be calculated by
collecting the fall and rise time of the switch from data sheet. We assume switch voltage and current
have a linear behavior shown in Figure 5.
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Therefore, the losses can be calculated as follows:

Pswitching loss = Ptr + Ptf = (
1
6
·Vm · Im · (tr + tf) · f ) · ns, (14)

Pswitch cond = RdsON · I2
T(rms) · ns, (15)

Pdiode loss = (VF · IF(AV) + RF · I2
F(rms)) · nd, (16)

where tr and tf are the rise and fall time available on the data sheet, Vm and Im are the maximum
voltage and current across the switch, f is the frequency of the switch, ns and nd represent the number
of switches and diodes, RdsON is the transistor resistance, IT(rms) and IF(rms) are the RMS current of
each switch and diode, which are computed over the overall sampling time period by assuming these
currents equal to zero outside the conduction period, VF is the diode forward voltage, IF(AV) is the
diode average current, and RF is the diode resistance.

In addition, a high frequency transformer shown in Figure 4 is used between the switches and
capacitors for isolation and voltage translation requirements. The main transformer losses consist of
copper losses, eddy current losses and hysteresis loss in the core of the transformer. In this work, it
is assumed that the total transformer loss is 1% of the net output power. Moreover, power losses in
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inductor and capacitors are ignored and ideal components are considered. When the voltage across
the diode is negative and diode is in reverse-bias mode, it is assumed that the diode is open circuit and
no power loss during this mode is considered.

3. Nested Optimization of HESS

3.1. Problem Formulation

The performance of the HESS is affected by three aspects: driving cycle, component size, and
EMS. Accordingly, a nested, dual-level optimization framework can be formulated in Figure 6 based
on given driving cycles to minimize the life-cycle cost of HESS.
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DP-based optimal EMS is nested within component size to obtain the minimum energy
consumption (EC), i.e., every evaluation of a component size requires the optimization of the EMS.
HESS component size (NBT, MBT, NUC, and MUC) and battery DOD (DODBT) are acted as optimization
variables dependent on the DC bus voltage as well as the maximal output current of HESS, and the
performance requirements are employed as constraints.

Initially, the ranges of optimization variables need to be defined as the design space. Then, global
optimization methods will be used to find the optimal solution within the design space and the key
steps of the nested optimization are as follows:

(1) Select a set of parameters as the input from the design space based on the search method of the
optimization algorithm.

(2) DP-based optimal EMS is used to evaluate the corresponding EC, Qloss, and DOD-related factors.
(3) The results obtained by DP are utilized to achieve the objective function via the LCC model.
(4) If the current solution meets the constraints, compare and update the best solution and then

terminate until the stopping criteria are satisfied. Otherwise, repeat the steps (1) to (3) until the
global stopping conditions are met.
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3.2. DP-Based EMS

The DP is widely applied to solve the problem of EMS for HESS-based vehicles [42–44]. In this
paper, the DP implemented by Song et al. [44] is employed aiming at minimizing the EC of the given
power profiles, with an objective function and constraints listed as follows:

minEC =
T

∑
k=1

[∆EBT(k) + ∆EUC(k)], (17)

s.t.



Pdem(k) = Pcycle(k), k ∈ [1, T]
SoCUC ∈ [SoCUC_L, SoCUC_H]

SoCUC_0 = SoCUC_end
IBT ∈ [0, IBT_max]

PUC ∈ [PUC_min, PUC_max]

, (18)

where ∆EBT and ∆EUC are the energy consumption of the battery pack of UC pack, respectively, Pdem
is the power demand, Pcycle is the total power of the driving cycle, SoCUC_L and SoCUC_H are the lower
and upper limits of the SoCUC, SoCUC_0 is the initial SoCUC value, SoCUC_end is the end SoCUC value,
PUC_min and PUC_max are the minimal and maximal power of the UC pack, and IBT_max is the maximal
discharge current of the battery pack.

The power of the battery and UC needs to satisfy the power demand shown in Equation (19),
where PBT and PUC represent the actual output power of the battery and UC packs after considering
the efficiency of the DC/DC converter:

Pdem(k) = PBT(k) + PUC(k), (19)

UC voltage VUC and voltage change ∆VUC are regarded as the state and decision variables of DP,
respectively. ∆VUC(k, k− 1) in Equation (20) represents the voltage change of UC from k − 1 step to k
step. Besides, the energy consumption of UC and battery can be calculated via Equations (21) and (22):

VUC(k) = VUC(k− 1) + ∆VUC(k, k− 1), (20)

∆EUC(k) = 0.5 · CUC · (V2
UC(k)−V2

UC(k− 1)), (21)

∆EBT(k) = |PBT(k)| · ∆t(k), (22)

3.3. LCC Model

The LCC model is established including the capital cost, operating cost, and replacement cost.
These costs can be calculated based on the following equations:

Costcap =
(

BTcap + UCcap + DCcap) · CRF, (23)

CRF =
i · (1 + i)RT

(1 + i)RT − 1
, (24)

BTcap = CkWh_BT · NBT ·MBT · EBT_cell, (25)

UCcap = CkWh_UC · NUC ·MUC · EUC_cell, (26)

DCcap = CkW_DC · (Pacc + PUC_max), (27)

In terms of the operating cost and replacement cost, Equations (28)–(31) are listed as follows:

Costope = (∆EBT + ∆EUC) · CkWh_e/T · Top ·U, (28)
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Qloss_y = Qloss/T · Top ·U · 360 · RT, (29)

n_BT = ceil(Qloss_y/0.2− 1), (30)

Costrep =
n_BT

∑
n=1

(1 + i)−n·0.2 · BTcap · CRF, (31)

All the variables mentioned in Equations (23)–(31) have listed in Table 1 to improve the readability.
In addition, we assume that vehicles can operate 360 days a year and batteries need to be replaced
when the loss exceeds 20%. ceil( ) is the function obtaining the higher integer of its argument to
calculate the n_BT.

Table 1. Variables in the LCC model.

Variable Definition Unit

Costcap Capital costs of battery, UC, and DC/DC converters €/year
BTcap Capital cost of battery €
UCcap Capital cost of UC €
DCcap Capital costs of battery, UC, and DC/DC converters €

CRF [45] capital recovery factor 1/year
i interest rate %

RT reference time years
CkWh_BT referential cost of battery €/kWh
CkWh_UC referential cost of UC €/kWh
CkW_DC referential cost of DC/DC converters €/kW
Costope operating cost of electricity €/day
CkWh_e referential cost of electricity €/kWh

T number of sample points for the driving cycle /
Top Vehicles operating time hours/day
U mean utilization of vehicles %

Qloss_y battery capacity loss within the reference time %
n_BT number of battery replacements during the reference time /

Costrep replacement cost of the battery €/year

4. Global Optimization Algorithms

In order to solve this complex and challenging optimization problem, global optimization
algorithms such as GA and MSSR are introduced respectively to attain the best solution.

4.1. GA

The basic principles of GA were first formulated by Holland [29]. As a classical optimization
method, GA is inspired by the mechanism of natural selection, a biological process in which stronger
individuals are likely to be the winners in a competing environment [46]. It operates on a population
of individuals (potential solutions), each of which is an encoded string (chromosome), containing the
decision variables (genes) [47].

The structure of GA is composed by an iterative procedure with the following five main steps
and the flowchart is shown in Figure A1 in the Appendix A:

(1) Produce an initial population.
(2) Evaluate the fitness function of each individual of the population.
(3) Select individuals from the current population to be parents.
(4) Generate the next population via crossover and mutation.
(5) Iterate steps (2) to (4) until the stopping criteria are fulfilled.
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4.2. MSSR

As a more efficient SBGO approach, MSSR uses a kriging-based surrogate model (SM), a
multi-start scheme, and alternating sampling over the global space (GS), the reduced medium space
(MS), and the local space (LS) to carry out the global optimization search. The flowchart of MSSR is
illustrated in Figure A2 in the Appendix A.

The complete MSSR global optimization can be divided into two parts, the initial process (steps
(1) to (3)) and the search loop (steps (4) to (10)), which are listed as follows [32]:

(1) Design of experiment: using optimized Latin hypercube sampling to generate sample points in
the entire design space.

(2) Evaluate the expensive function with these sample points and store the results in the sample set.
(3) Rank all expensive samples based on their function values (add a large penalty factor of 106 to

the value if the point does not meet the constraints).
(4) Build the kriging-based SM.
(5) Determine which space should be explored based on the present number of iterations. The global

search, medium-sized search, and local search will be implemented in the process.
(6) Define the size of the search space according to the expensive sample set.
(7) Utilize the multi-start local optimization method to optimize the kriging-based SM in the

defined space.
(8) Store the local optimal solutions obtained from the database “potential sample points” and

select better samples. If there is no better sample, two new samples from the unknown area will
be selected.

(9) Evaluate the expensive function with the selected sample points and update the order of the
expensive samples in step (3).

(10) Terminate the loop if the current best sample value satisfies the stopping criteria. Otherwise,
update the SM and repeat the steps (4) to (9) until the stopping criteria are satisfied.

5. Dynamic On-Off Power Loads Example: LHD

As a dynamic on-off power loads application, LHD will be used in this paper as an example to
verify the proposed HESS design optimization method. LHDs are one of the most commonly used
equipment in the mining industry and are employed to load the ore at the draw points or in the
stopes and to haul it to the ore passes or the mining trucks. Due to the dramatic and frequent power
variations, a HESS-based LHD is presented to improve the efficiency and extend the battery life.

5.1. LHD Data Description

Figure 7 illustrates a driving cycle of LHDs, which can be divided into six phases: towards
draw points, bucket loading, leaving draw points, hauling, bucket emptying, and reversing. The
power demand shown in Figure 8 was collected from the underground mine field tests of a 14-ton
diesel-electric LHD, where the duration is 370 s, the sampling frequency is 1 s, and the peak power is
287.1 kW. Figure 8 includes three complete driving cycles, the maximum power of each bucket loading
phase is 287.1, 269.6 and 279.5 kW, respectively. It can be seen that the power demand is high during
the bucket loading phase, while relatively low in other phases.

The key parameters of the battery cell and UC module are listed in Table 2, which are provided
by the manufacturers (China Aviation Lithium Battery, Luoyang, China and Maxwell, San Diego, CA,
USA). For the DC/DC power loss model, a 3D efficiency map illustrated in Figure 9 can be generated
by changing the input voltage varied from 250 V to 750 V and load power between 50 kW and 250 kW.
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The objective function, i.e., the life-cycle cost of HESS, can be calculated by Equation (32). LHD’s
working hours (Whrs) is set as the constraint of the optimization not only because it is an important
design index for the powertrain system but because it has the relationship with the variables and needs
to be computed every time by DP algorithm, listed in Equation (33).

Whrs equals the total capacity (Ah) of the battery pack divided by the demand capacity (Ah) that
can be calculated from the output power of battery and accessories as well as DODBT. Optimization
variables including HESS size and battery DOD are shown in Equation (34):

minLCC = Costcap/360 + Costope + Costrep/360, (32)
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Whrs = QBT_cell ·MBT/
(
∑ (((PBT + Pacc/E f fDC)/VBT · 1000) · t/3600)/DODBT

)
· T/3600, (33)

(NBT, MBT, NUC, MUC, DODBT)|NBT ∈ {170, 172, 174, · · · , 200},
MBT ∈ {6, 7, 8, 9, 10}, NUC ∈ {11, 12, 13, 14, 15},
MUC ∈ {1, 2}, DODBT ∈ [50%, 80%]

, (34)

where LCC is in €/day, PBT is the battery power obtained by DP, Pacc is the nominal power of the
accessories, Eff DC is the efficiency of the low-voltage unidirectional DC/DC converter, which is set
as 90% in this paper, t is the discrete time and normally equals to 1 s, and T is the number of sample
points for the driving cycle.

As for the design space, DODBT from 50% to 80% is added as a new continuous variable compared
to our work in [8]. NBT belongs to an even number from 170 to 200 due to the working range of the DC
bus (400 V–720 V) as well as for easy arrangement. MBT ranges from 6 to 10 because of considering
the constraint and the influence of DODBT. The numbers of NUC and MUC are dependent on the
installation space and converter voltage and power.

All the parameters for the DP and LCC model are defined in Table 3. The interval of the UC
voltage is 2 V. According to the operating characteristics of the LHDs, assume that they work 24 h per
day and 360 days per year.

Table 3. Parameters for the DP algorithm and LCC model.

Name Coefficient Value Unit

DP algorithm

T 370 s
SoCUC_L 50 %
SoCUC_H 100 %

SoCUC_0(SoCUC_end) 100 %
PUC_min −250 kW
PUC_max 250 kW
IBT_max 0.5C A

LCC model

i 2.5 [45] %
RT 10 [48] Years

CkWh_BT 500 [22] €/kWh
CkWh_UC 4000 [22] €/kWh
CkW_DC 150 [22] €/kW
CkWh_e 0.05 [45] €/kWh

U 60 [48] %
Ten 303.15 K
Pacc 5 kW

5.2. Optimization Results

To apply GA to solve this problem, the fitness function shown in Equation (32) is used to evaluate
the status of each solution and the ranges of variables are also listed in Equation (34). However,
as GA is not directly applicable to constrained optimization problems, the constraint illustrated in
Equation (33) is handled by using penalty function. Besides, due to the fact that the first four variables
are discrete and the other one is continuous, which belongs to a mixed integer problem, the first four
variables need to be converted to integers before the DP algorithm.

According to the structure of the nested optimization framework shown in Figure 6, DP-based
EMS and LCC model require to be evaluated for obtaining the fitness function of each individual.
Using the GA MATLAB codes developed by our research team, only a few parameters including
variable range (Equation (34)), population size, number of generations, crossover rate, and mutation
rate need to be modified, which are exhibited in Table 4.

Given that numerous battery LHD products, such as Atlas Copco’s Scooptram ST7 Battery and
RDH Mining Equipment’s MUCKMASTER 300EB and 600EB, have an average operating time of
4 h, the constraint is set as Whrs ≥ 4. After more than 126.23 h of computation, the best result is
230.81 €/day and the corresponding variables are NBT = 198, MBT = 10, NUC = 12, MUC = 2, and
DODBT = 0.5534. Figure 10 displays the optimization process history of the problem. GA has been
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found to be able to converge to the optimum within 30 generations after several generations of function
evaluations. Due to the fact that the optimization problem has changed to the unconstrained one, the
solutions shown in Figure 10 are all feasible solutions. All the calculations in this paper are performed
on a computer with Intel Xeon E5-2620 v3 CPU (2.40 GHz) and 32 GB RAM.

Table 4. Parameters for the GA.

Coefficient Value

Population size 10
Number of generations 30

Crossover rate 1.0
Mutation rate 0.01
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The nested optimization problem proposed in this paper is computationally expensive because
it takes around 30 min to calculate the DP every time. Therefore, how to reduce the number of the
expensive evaluation is crucial for a desirable optimization tool.

Using the same objective function, constraint, variables, and method of converting discrete
variables to integers, the iterative results obtained by MSSR are presented in Figure 11 with 25 sample
points and 50 iterations. The solutions can be divided into feasible and infeasible solutions according
to whether the solution satisfies the constraint Whrs. The computation time is 49.13 h and the best result
is 194.07 €/day achieved from the 45th evaluation. The variables of the best solution are NBT = 170,
MBT = 7, NUC = 14, MUC = 1, and DODBT = 0.7793.
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It can be seen from Figure 11 that after 25 sample points of training the number of infeasible
solutions is decreasing; the optimal area can be found quickly with the increase of the number of
function evaluations (NFE) and then a lot of searches nearby are conducted to compare the current
results until satisfying the stopping criteria.

To comprehensively compare the performances between GA and MSSR, all the results are
demonstrated in Table 5. The LCC acquired by MSSR is 15.9% lower than that of GA; the computation
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time of MSSR only accounts for 38.9% of GA since the NFE of GA is almost three times that of MSSR,
which means MSSR requires less NFE and appears to be the efficient and promising algorithm to solve
the computation-intensive global optimization problem. The main reason is that although GA has
found the feasible solutions, according to the its search feature, GA may require more iterations and
NFE to converge to an optimal solution, which means that 126 h of calculation is still not enough to
achieve competitive results, while MSSR employs surrogate models to reduce NFE and has converged
to an optimal solution within 50 h. Besides, there are major differences between the best solutions
obtained by two algorithms. In terms of the HESS component size, the number of batteries in MSSR
is reduced by 40% and the number of UC is decreased by 42% when compared to GA. For battery
usage strategy, the value of DODBT in MSSR near the upper limit while the one of GA close to the
lower limit. To be more specific, GA employs more batteries with a narrower range of use whilst MSSR
applies fewer batteries with a wider range.

Table 5. The results of GA and MSSR.

Algorithm LCC
(€/day)

Computation Time
(h) NFE NBT MBT NUC MUC DODBT

GA 230.81 126.23 300 198 10 12 2 0.5534
MSSR 194.07 49.13 101 170 7 14 1 0.7793

In addition, to further consider the operating time of 5 h and 6 h that are common for conventional
diesel LHDs, MSSR is applied for the optimal design by changing Whrs ≥ 5 and Whrs ≥ 6, respectively.
Iterative results of MSSR are illustrated in Figure 12 and the results of two situations are presented in
Table 6.
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Table 6. MSSR results for 5 h and 6 h.

Constraint LCC
(€/day)

Computation Time
(h) NFE NBT MBT NUC MUC DODBT

Whrs ≥ 5 214.79 45.41 94 200 9 12 2 0.6474
Whrs ≥ 6 214.89 23.04 48 200 9 13 2 0.7623
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For Whrs ≥ 5, the best solution is achieved from the 33rd evaluation. For Whrs ≥ 6, the best
solution is acquired from the 28th evaluation. However, the LCC of Whrs ≥ 6 is almost the same as
that of Whrs ≥ 5. To further explore the differences of three situations, Table 7 lists the results.

Table 7. The results in three situations.

Constraint LCC
(€/day)

Costcap
(€/day)

Costope
(€/day)

Costrep
(€/day)

Whrs
(h)

Whrs ≥ 4 194.0652 50.4694 32.5236 111.0722 4.0649
Whrs ≥ 5 214.7879 70.3076 32.1997 112.2806 5.1594
Whrs ≥ 6 214.8893 70.4418 32.1669 112.2806 6.0812

Under the premise of satisfying the constraints, it is obvious that the LCC in Whrs > 4 is less than
that of the other two situations mainly due to the Costcap caused by the differences in the number of
battery and UC. With fewer batteries and wider DODBT, the battery loss, understandably, would be
higher and thus increase the Costrep. It can also be seen from the trend of Costope that more batteries
and UCs lead to higher efficiency and therefore lower Costope. With the same amount of batteries and
nearly the same number of UCs, the number of replacements and the Costrep of Whrs ≥ 5 and Whrs ≥ 6
are the same, resulting in the similar LCC.

In order to analyze the results shown in Table 7 and to illustrate the operation of the battery and
UC, Figure 13 exhibits the UC voltage and battery power in three situations. UCs largely provide the
power during the bucket loading phase by operating in a wide voltage range and be charged in other
phases to ensure the battery power not too high and, hence, to extend the battery life. The battery
power of each situation is limited to 117.81, 178.2 and 178.2 kW, respectively, calculated by the upper
limit of the battery current (0.5 C). Consequently, the optimal operation of HESS derived from MSSR is
that battery operates smoothly within the limit while UC functioning complementarily to the battery.
Furthermore, the charge and discharge of UC should be determined accurately based on the DC/DC
efficiency map for the purpose of reducing the energy consumption since this part of the energy loss is
mainly generated by passing through the DC/DC converter.
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5.3. HESS vs. Battery-Only Options

To quantitatively compare the performances of both HESS optimal obtained by MSSR and
battery-only options, Table 8 comprehensively shows the performances in three situations.

In addition, the battery current and capacity loss of the corresponding solutions are illustrated
in Figure 14 to demonstrate the operation of the battery and its changes in capacity loss. It can be
observed from the perspective of the LCC that the value of the optimal HESS solution is reduced
by 14.76%, 20.44%, and 20.41%, respectively, compared to the battery-only counterparts. Although
the Costcap will be lower in battery-only options (without UC), the battery peak current is increased
by 63.59%, 45.82%, and 45.82%, respectively (see battery current in Figure 14), which will definitely
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enhance the Qloss (18.06%, 13.75%, and 13.86%), presenting completely in the capacity loss in Figure 14,
and thus raising the Costrep (24.82%, 33.17%, and 33.17%). In terms of the efficiency, solutions of HESS
can also achieve better results since their flexible operation and capability to diminish the EC (11.36%,
12.22%, and 12.31%) by effectively regulating the UC power. Less EC leads to lower Costope (11.37%,
12.21%, and 12.30%) for the reason that the cost is calculated directly by the energy consumption as
exemplified in Equation (28), and as a result, the Whrs of the HESS solutions are improved by 11.31%,
12.21%, and 12.34% compared to battery-only options.

Table 8. The performances for both HESS and battery-only options.

Constraint Option LCC
(€/day)

Costcap
(€/day)

Costope
(€/day)

Costrep
(€/day)

EC
(104 KJ)

Qloss
(10−4 %)

Whrs
(h)

Whrs ≥ 4 HESS 194.07 50.47 32.52 111.07 1.6714 1.4371 4.07
Battery-only 227.66 43.24 36.69 147.73 1.8855 1.7538 3.61

Whrs ≥ 5 HESS 214.79 70.31 32.20 112.28 1.6547 1.1889 5.16
Battery-only 269.97 65.28 36.68 168.01 1.8850 1.3784 4.53

Whrs ≥ 6 HESS 214.89 70.44 32.17 112.28 1.6530 1.1874 6.08
Battery-only 269.97 65.28 36.68 168.01 1.8850 1.3784 5.33

Accordingly, HESS solutions exhibit better performances both in cost and efficiency when
compared to battery-only options. After wholly considering the results in the three situations, it
can be found that in HESS solutions the average reduction of the LCC is 18.54% and the average
decrease of the Ec is 11.97%, which shows that HESS is a more economical and efficient option.
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5.4. Comparison with Previous Work

The optimal solution selected from [8] is NBT = 200, MBT = 6, NUC = 15, and MUC = 1. The
DODBT and the DC/DC converter efficiency were assumed as 100% and 95% at that time. Now,
we still set the DODBT as 100%, use the DC/DC converter 3D efficiency map, and try to set other
conditions as same as the ones in this paper. Due to the solution in [8] was designed to meet six hours
of working time, therefore, the HESS solution for Whrs ≥ 6 will be employed to make a comparison.

It can be clearly seen from Table 9 that compared to the solution in [8], solution Whrs ≥ 6 obtained
from MSSR has more advantages, including fewer LCC and replacement cost as well as longer working
hours. The difference in DODBT can have a great impact on the results listed in the Table 9. In terms of
the HESS optimization variables, solution Whrs ≥ 6 has more batteries and UCs with narrower battery
operating range, which can not only ensure the working hours but reduce the burden on batteries. On
the other hand, although the capital cost of solution Whrs ≥ 6 is higher, its replacement cost is fewer
because of the longer battery life. Consequently, the comparison results indicate that the better solution
can be attained by adding the DODBT as the new optimization variables and using the advanced MSSR
based global optimization search method based on the HESS performance and power-loss model.

Table 9. The comparison results.

Solution LCC
(€/day)

Capital Cost
(€/day)

Replacement Cost
(€/day)

DODBT
(%)

Whrs
(h)

[8] 232.28 50.85 148.98 100 5.27
Whrs ≥ 6 214.89 70.44 112.28 76.23 6.08

6. Conclusions

HESS presents as an ideal solution for the heavy-duty EVs with dynamic on-off loads to extend
the life of the batteries and to reduce the LCC of the EVs. The design optimization of the HESS involves
architecture selection, component size optimization, and EMS optimization, forming a very complex
and challenging problem.

In this work, a nested, dual-level optimization problem has been formulated for the optimal
design of HESS to minimize the LCC of electrified construction and mining vehicles with dynamic
on-off loads. In the design optimization of the HESS, the DP-based optimal EMS aiming to achieve the
minimum energy consumption in the HESS operation control optimization has been generated through
the inner loop, lower level optimization; and the HESS component size optimization to achieve the
minimum LCC using the performance and power-loss model of the HESS has been accomplished
through the outer loop, higher level optimization. The formulated optimization problem has been
solved using an advanced MSSR based global optimization search algorithm. Application of the
method to the design optimization of the HESS of an LHD is used to demonstrate the capability and
advantages of the new optimization problem formulation and solution method. The performance and
costs of electrified LHD with optimized HESS and with pure battery ESS are compared quantitatively,
showing the advantages of the HESS for the heavy-duty construction and mining vehicles.
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Nomenclature

Acronyms IM Maximum current across the switch
ACC Electric accessories MBT Battery parallel number
DOD Depth of discharge MUC UC parallel number
DP Dynamic programming n_BT Number of battery replacements during the reference time
EMS Energy management strategy NBT Battery series number
EREV Extended range electric vehicle NUC UC series number
ESS Energy storage system Pacc Nominal power of the accessories
EV Electrified vehicle PBT Actual output power of the battery pack
GA Genetic algorithm PBT_cell Power of the battery cell
GO Global optimization Pcycle Total power of the driving cycle
GS Global space Pdem Power demand
HESS Hybrid energy storage system PUC Actual output power of the UC pack
HEV Hybrid electric vehicle PUC_max Maximal power of the UC pack
ICE Internal combustion engine PUC_min Minimal power of the UC pack
LCC Life-cycle cost Q(k) Battery cell capacity at the discrete step k
LHD Load haul dump QBT Nominal capacity of the battery pack
LS Local space QBT_cell Nominal capacity of the battery cell
MS Medium space Qloss Percentage of capacity loss
MSSR Multi-Start Space Reduction Qloss_y Battery capacity loss within the reference time
NFE Number of function evaluations R Gas constant
PEV Pure electric vehicle RT Reference time
PHEV Plug-in hybrid electric vehicle RBT Internal resistance of the battery pack
SBGO Surrogate-based global optimization RBT_cell Internal resistance of the battery cell
SM Surrogate model RdsON Transistor resistance
SOC State of charge RF Diode resistance
UC Ultracapacitor RUC Internal resistance of the UC pack

RUC_module Internal resistance of the UC module
Variables SoCBT_cell(k) Battery cell SOC at the discrete step k
Ah Ah-throughput SoCUC 0 Initial value of the UC SOC
B Pre-exponential factor SoCUC end End value of the UC SOC
BTcap Capital cost of battery SoCUC H Upper limit of the UC SOC
CkWh_BT Referential cost of battery SoCUC L Lower limit of the UC SOC
CkWh_DC Referential cost of DC/DC converters SoCUC SOC of the UC pack
CkWh_e Referential cost of electricity SoCUC min Lower limit of the UC pack SOC
CkWh_UC Referential cost of UC t Discrete time
CUC Capacity of the UC pack tf Fall time
CUC_module Capacity of the UC module tf Rise time
Costcap Capital cost T Number of sample points
Costope Operating cost of electricity Ten Absolute temperature
Costrep Replacement cost Top Operating time
CRF Capital recovery factor U Mean utilization of vehicles
C_Rate Discharge rate UOCV_cell Open circuit voltage of the battery cell
DCcap Capital cost of DC/DC converter UCcap Capital cost of UC
DODBT Battery DOD VBT Voltage of the battery pack
∆EBT Energy consumption of the battery pack VBT_cell Voltage of the battery cell
∆EC Energy consumption of the UC pack VF Diode forward voltage
EUC Stored energy of the UC pack Vm Maximum voltage across the switch
Eff DC Efficiency of the low-voltage DC/DC converter ∆VUC UC voltage change
f Frequency of the switch ∆VUC(k,k − 1) Voltage change of UC from k − 1 step to k step
i Interest rate VUC Voltage of the UC pack
IBT_cell Battery cell current VUC_max UC pack voltage in a fully charged condition
IBT_max Maximal discharge current of the battery pack VUC_min Lower limit of the UC pack voltage
IF(AV) Diode average current VUC_mobile Voltage of the UC module
IT(rms) Transistor RMS current Whrs LHD’s working hours
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