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Abstract: There are multiporosity media in tight oil reservoirs after stimulated reservoir volume
(SRV) fracturing. Moreover, multiscale flowing states exist throughout the development process.
The fluid flowing characteristic is different from that of conventional reservoirs. In terms of those
attributes of tight oil reservoirs, considering the flowing feature of the dual-porosity property and the
fracture network system based on the discrete-fracture model (DFM), a mathematical flow model of
an SRV-fractured horizontal well with multiporosity and multipermeability media was established.
The numerical solution was solved by the finite element method and verified by a comparison
with the analytical solution and field data. The differences of flow regimes between triple-porosity,
dual-permeability (TPDP) and triple-porosity, triple-permeability (TPTP) models were identified.
Moreover, the productivity contribution degree of multimedium was analyzed. The results showed
that for the multiporosity flowing states, the well bottomhole pressure drop became slower, the linear
flow no longer arose, and the pressure wave arrived quickly at the closed reservoir boundary. The
contribution ratio of the matrix system, natural fracture system, and network fracture system during
SRV-fractured horizontal well production were 7.85%, 43.67%, and 48.48%, respectively in the first
year, 14.60%, 49.23%, and 36.17%, respectively in the fifth year, and 20.49%, 46.79%, and 32.72%,
respectively in the 10th year. This study provides a theoretical contribution to a better understanding
of multiscale flow mechanisms in unconventional reservoirs.

Keywords: tight oil reservoir; SRV-fractured horizontal well; multiporosity and multiscale; flow
regimes; productivity contribution degree of multimedium

1. Introduction

It has been commonly recognized that tight oil reservoirs have threshold pressure gradient and
medium deformation characteristics because of their great lithologic compaction, fine pore-throat, and
high flow resistance [1–7]. In recent years, stimulated reservoir volume (SRV) fracturing has become
the most efficient technology in tight reservoir formation treatment [8–15]. To enhance well production
as much as possible, it is necessary to create complex fracture networks with a multiporosity medium
by connecting hydraulic fractures with natural fractures away from the well bore, and then increasing
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the contact area with formations and reservoir stimulated volume [16–23]. Multiple porous media
systems include network fractures, natural fractures, and matrix pore systems. Moreover, there exist
different flowing states, i.e., multi-scale flow characteristics.

The research methods of the flow characteristics of SRV-fractured horizontal wells in a tight
oil reservoir have been mainly focused on analytical, semi-analytical, and numerical methods. The
analytical or semianalytical solution is mainly represented by the three linear flow model proposed by
Brown [24], the five-zone model raised by Stalgorova [25], and the compound flow model presented
by Su [26]. However, those models have relatively strict assumptions. Generally, the models need
to idealize the complex fracture network to regular fracture network forms composed of orthogonal
primary and secondary fractures and simplify the complex flow processes to specific flow regimes
such as elliptic or linear flow regimes [27–29]. In terms of numerical models, Yao [30] and Fan [31]
used the finite element method to carry out dynamic analysis of a horizontal well with a complex
fractured continuous medium system, but those models did not consider the development degree
of the natural fractures in tight oil reservoirs or the existence of the threshold pressure gradient in
the matrix system. Therefore, it is a challenge to use these models to accurately describe the complex
structures of actual network fractures and reveal the multiporosity and multiscale flow characteristics
of an SRV-fractured horizontal well in tight oil reservoirs.

The objective of this work was to study the multiporosity and multiscale flow characteristics of
SRV-fractured horizontal wells. Moreover, the innovation of this paper was to reveal the contribution
of multiple porous media to horizontal well productivity by establishing a multiscale flow model.
Enlightened by previous studies, a mathematical flow model was built to reflect the multiscale
attributes of tight oil reservoirs based on the dual-porosity model (DPM) and discrete-fracture model
(DFM), which were divided into three kinds of media systems. A reasonable solution of this numerical
model was obtained and verified by the finite element method. Additionally, the flow mechanisms
of an SRV-fractured horizontal well with the consideration of the multiporosity and multiscale effect
were revealed, which were different to that of a conventional multifractured horizontal well without
an SRV system. The findings of this research provide effective theoretical and methodological support
for the prediction of the production performance prediction of unconventional hydrocarbon resources.

2. Physical Model and Assumed Conditions

SRV fracturing of a horizontal well in tight oil reservoirs with natural fractures has often induced
complex fracture network growth, as revealed by microseismic monitoring [32–35]. Moreover, the
complex fracture network divides the reservoir into multiple porous media systems. Furthermore, the
physical properties and fluid flow rules of each system are different. Based on the network fracture
propagation process and the final form in the tight oil reservoir, a physical model of an SRV fractured
horizontal well was built that considered the structure characteristics of multiple porous media, as
shown in Figure 1, where ∆yf is the interval between fracturing segments (m); and a and b are the band
width and band length of single fracture network, respectively (m).

Complex fracture networks composed of primary and secondary fractures formed by SRV
fracturing are integrated into both the natural fracture system and matrix system. A reservoir that has
been subjected to SRV fracturing treatment can be represented by a combination of a complex fracture
network system, a natural fracture system, and a matrix system. Assumptions of the physical model
were made as follows: (1) the study area was a three-dimensional, box-shaped closed, and isotropic
body with natural fractures; (2) the rock and fluid were slightly compressible bodies, and the nonlinear
flow in the matrix system, Darcy flow in the fracture system, and pseudosteady crossflow between
the matrix system and fracture system are also found in the multiple media; and (3) the simulated
production process was a single-phase fluid flow in porous and isothermal media without considering
the influence of gravity.



Energies 2018, 11, 2724 3 of 14
Energies 2018, 11, 2724 3 of 14 

 

 

Figure 1. Physical model diagram of the SRV-fractured horizontal well with multi-porosity media. 
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Figure 1. Physical model diagram of the SRV-fractured horizontal well with multi-porosity media.

3. Flow Mathematical Model Considering the Multiporosity

3.1. Nonlinear Flow in the Matrix System

The nonlinear flow equation in the matrix system can be given as [36,37]

vm = −Km

µ
(∇pm − χ) (1)

where vm is the flow velocity vector of fluid (10−3 m/s); Km is the permeability tensor of the matrix
(D); µ is the viscosity of fluids (mPa·s); 5 is the Hamiltonian; pm is the pore pressure in the matrix
system (MPa); χ is the threshold pressure gradient tensor (MPa/m) and can be defined as χ = χE,
where χ is the threshold pressure gradient of matrix (MPa/m), and E is the unit matrix.

Via a combination of the state equation and continuity equation, the surface source in the 3D
space is equivalent to the superposition of line sources in the 2D space, and the mathematical flow
model for the matrix system can be derived [38] as

∇2 pm − χCL∇ · pm −
φmµCm

Km

∂pm

∂t
− α(pm − pn) = 0 (2)

where α is the shape factor of matrix; pn is the pressure of natural fracture (MPa); CL is the compression
coefficient of fluid (MPa−1); and Cm is the comprehensive compression coefficient of matrix system
(MPa−1).

Since Cm = φmCL + (1 − φm)Cmf [39], φm << 1 and Cmf = φmCp, the comprehensive compressibility
of the matrix system is defined as

Cm ≈ φmCL + Cm f = φm(CL + Cp) (3)

where φm is the porosity of the matrix; Cmf represents the compression coefficient of the matrix rock
(MPa−1); and Cp is the compression coefficient of the pore (MPa−1).

The dimensionless pressure is defined as

pjD =
2πheKn(pi − pj)

µqj
(4)

where j represents m, n, or f ; pi is the initial formation pressure (MPa); pj is the pressure of each system
(MPa); Kn is the permeability of natural fracture (D); and qj is the volume flow of each system (s−1).
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The dimensionless permeability of the matrix is defined as

KmD = Km/Kn (5)

The dimensionless threshold pressure gradient is

χD = χLCL (6)

The crossflow coefficient between the matrix system and natural fracture system is defined as

λ = αL2KmD (7)

The elastic storativity ratio of the natural fracture system is

ωn =
φnCn

φmCm + φnCn
(8)

where φn is the porosity of the natural fracture; and Cn is the comprehensive compression coefficient
of the natural fracture system (MPa−1).

The dimensionless production time is

tD =
Knt

µL2(φmCm + φnCn)
(9)

Then, the dimensionless flow equation can be obtained [38] as

∇2 pmD − χD∇ · pmD − (1−ωn)
∂pmD
∂tD

− λ(pmD − pnD) = 0 (10)

Accordingly, the initial and boundary condition for fluid flow in the matrix system are given by pmD(xD, yD, zD; tD = 0) = 0
∂pmD
∂xD

∣∣∣
x=xeD

= ∂pmD
∂yD

∣∣∣
yD=yeD

= ∂pmD
∂zD

∣∣∣
zD=zeD

= 0 (11)

3.2. Darcy Flow in the Natural Fracture System

Assuming that there exists fluid crossflow between the matrix system and natural fracture system
in the formation as well only the natural fracture system instead of the matrix system for fluid
exchange to the network fracture system [40], the dimensionless variables are defined as follows: the
dimensionless distances are MD = M/L, MeD = Me/L (M = x, y, z), aD = a/L, bD = b/L, where the length,
width, and height of the study area are xe, ye, and he, respectively (m); the horizontal well length is
L (m); the dimensionless production rate is qkD = qk/qt, where k represents n or f ; and qt is the total
volume flow (s−1).

Therefore, the dimensionless Darcy flow equation in the matrix system can be given [31] as

∇2 pnD −ωn
∂pnD
∂tD

+ λ(pmD − pnD) + 2πheDqnDδ(M−M′) = 0 (12)

where δ(M −M′) is the Dirac delta function.
The initial and boundary conditions for fluid flow are given by pnD(xD, yD, zD; tD = 0) = 0

∂pnD
∂xD

∣∣∣
x=xeD

= ∂pnD
∂yD

∣∣∣
yD=yeD

= ∂pnD
∂zD

∣∣∣
zD=zeD

= 0 (13)
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3.3. Darcy Flow in the Network Fracture System

The discrete-fracture model (DFM) is used to characterize the fracture network stimulated
system [41,42]. According to the fracture flow model of parallel plate openings (cubic law), the
permeability of the network fracture is defined as Kf = a2

f/12, where af is the fracture opening (mm).
The dimensionless permeability of the network fracture is defined as KfD = Kf/Kn; the elastic storativity
ratio of the network fracture system is defined as ωf = φfCf/(φmCm + φnCn), where φf is the porosity
of the network fracture; and Cf is the comprehensive compression coefficient of the network fracture
system (MPa−1).

Similarly, the dimensionless Darcy flow equation in the network fracture system can be
given [31] by

K f D∇2 p f D −ω f
∂p f D

∂tD
+ 2πheDq f Dδ(M−M′) = 0 (14)

The initial and boundary conditions for fluid flow in the natural fracture system are given by{
p f D(xD, yD, zD; tD = 0) = 0
pmD(xD, yD, zD; tD) = pnD(xD, yD, zD; tD) = p f D(xD, yD, zD; tD)

(15)

All of the above flow equations and the fixed solution conditions of the matrix, natural fracture,
and network fracture systems together constitute the multiporosity and multiscale flow mathematical
model for an SRV-fractured horizontal well in tight oil reservoir.

4. Numerical Solution with the Finite Element Method

4.1. Finite Element Method Meshing

The finite element integral equation is established by using Galerkin’s weighted residual method
and the continuous solving unit with an infinite degree of freedom is discretized into the finite element
unit. The horizontal well, network fracture, and reservoir unit are described by a line, triangle, and
tetrahedron, respectively. The dimensionless parameters of horizontal wells and hydraulic fractures
in a box-shaped closed reservoir are the length of horizontal well LD = 1; the reservoir domain
xeD = 6, yeD = 6, and heD = 0.1; the coordinate of five fracturing sections in the x-direction (−0.4, 0.2, 0,
0.2, 0.4). It is assumed that all fractures are vertical, the mesh generation of the whole model is based
on triangle forward algorithm, and local grid refinement (LGR) is performed at the horizontal well
and network fracture. The three-dimensional gridding division of an SRV-fractured horizontal well
can be obtained as shown in Figure 2.Energies 2018, 11, 2724 6 of 14 
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4.2. Finite Element Solution

Assuming that the study area node number is Np, the node pressure of matrix system and natural
fracture system can be written by Pm = [Pm,1, Pm,2,..., Pm,Np]T and Pn = [Pn,1, Pn,2,..., Pn,Np]T. The
equivalent integral transformation for control Equations (10), (12), and (14) is carried out by using the
equilibrium condition and variation principle, and the characteristic matrix equation of the system
element can be obtained. The element characteristic matrix of the network fracture system can be
expressed [38] as

a f DK f D
s

Ωe, f

∇NT
e, f∇Ne, f dΩe, f Pe, f + a f Dω f

s

Ωe, f

NT
e, f Ne, f dΩe, f

∂Pe, f
∂tD

= a f D2πhD
s

Ωe, f

q f DNT
e, f δ(MD −M′D)dΩe, f

(16)

where afD is the dimensionless opening of the 2D fracture surface; Pe,f is the pressure matrix of the
node in the network fracture system; Ωe,f is the flow area of the network fracture located at the node;
and Ne,f = [N1, N2, N3] represents the shape function of two-dimensional triangular elements.

Finally, based on the element characteristic matrix of the matrix system and natural fracture
system, the equilibrium equation of the reservoir system can be derived [38] as

AmPm + Bm
∂Pm

∂tD
+ C(Pm − Pn) = 0 (17)

AnPn + Bn
∂Pn

∂tD
−C(Pm − Pn) = Qn (18)

where the expression of the coefficient matrix is

Am =
y

Ωe,mn

(∇NT
e,mn∇Ne,mn + χDNT

e,mn∇Ne,mn)dΩe,mn + a f DK f D

x

Ωe, f

∇NT
e, f∇Ne, f dΩe, f

An =
y

Ωe,mn

∇NT
e,mn∇Ne,mndΩe,mn + a f DK f D

x

Ωe, f

∇NT
e, f∇Ne, f dΩe, f

Bm = (1−ωn)
y

Ωe,mn

NT
e,mnNe,mndΩe,mn+a f Dω f

x

Ωe, f

NT
e, f Ne, f dΩe, f

Bn = ωn

y

Ωe,mn

NT
e,mnNe,mndΩe,mn + a f Dω f

x

Ωe, f

NT
e, f Ne, f dΩe, f

C = λ
y

Ωe,mn

Ne,mnNT
e,ndΩe,mn

Qn = 2πhD

y

Ωe,n

qnDNT
e,mnδ(MD −M′D)dΩe,mn + a f D2πhD

x

Ωe, f

q f DNT
e, f δ(MD −M′D)dΩe, f

Assuming that the fluid flows from the natural fracture system to the network fracture system in
the initial time, by using the implicit backward difference method concerning time for the equilibrium
Equation (18) of the natural fracture system, the governing equation of the finite element method
corresponding to the (k + 1)th time of the fracture system can be obtained [38] by{

An +
Bn

tk+1
D − tk

D

+ C

}
Pk+1

n = Qk+1
n +

Bn

tk+1
D − tk

D

Pk
n + CPk

m (19)
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According to the Equation (17), the pressure of the matrix system at (k + 1)th time step can be
calculated as {

Am +
Bm

tk+1
D − tk

D

+ C

}
Pk+1

m =
Bm

tk+1
D − tk

D

Pk
m + CPk

n (20)

When the coefficient matrix Am = 0, the model represents the triple-porosity, dual-permeability
(TPDP) media. When Am 6= 0, the abovementioned represents the triple-porosity, triple-permeability
(TPTP) model. Using the abovementioned dominating Equations (12) and (13), the transient pressure
and production performance of an SRV-fractured horizontal well under the conditions of constant
productivity rate and stable bottomhole pressure can be calculated respectively.

5. Multiscale Flow Characteristics of SRV-Fractured Horizontal Well

In recent years, SRV fracturing technology has been widely used in the tight oil reservoirs of
the Longdong oilfield, Ordos Basin, China. The Chang-7 oil reservoir in the mining area, which has
an average depth of 1705 m, is a typical lithologically controlled oil reservoir characterized by tight
pores, low pressure, and well-developed natural fractures. Therefore, complex fracture networks
with multiple pores are easily developed in the formation after fracturing. According to the actual
geological parameters and microseismic monitoring data of a ZP1 horizontal well with SRV fracturing
of tight oil reservoirs in the Longdong oilfield, the basic parameters were determined (Table 1). The
dimensionless variables used for the analysis and discussion of the results can be calculated, as shown
in Table 2. The above parameters were substituted into the dominating Equations (12) and (13) to verify
the finite element solution of the proposed model. Furthermore, the flow regimes and production
performance of an SRV-fractured horizontal well with multiporosity media were analyzed.

Table 1. Geological and engineering parameters of the ZP1 well in the Longdong oilfield.

Geological and Engineering Parameters, Symbol (Unit) Value

Reservoir size, xe × ye × he (m) 2400 × 2400 × 40
Permeability, Km, Kn, Kf (mD) 0.16, 160, 3.33 × 108

Porosity, φm, φn, φf 0.091, 0.27, 0.32
Compression coefficient of fluid and pore, CL, Cp (MPa−1) 0.0014, 0.0042

Comprehensive compression coefficient of fracture system, Cn, Cf (MPa−1) 0.00061, 0.00061
Viscosity of fluids, µ (mPa·s) 1

Threshold pressure gradient, χ (MPa/m) 0.0025
Initial formation pressure, pi (MPa) 20

Horizontal well length, L (m) 400
Number of fracturing segments, N 5

Segments spacing, ∆yf (m) 80
Network fracture size, aD × bD (m) 40 × 80

Fracture opening, af (mm) 2

Table 2. Dimensionless variables used for the analysis and discussion of the results.

Dimensionless Parameters, Symbol Value

Reservoir size, xeD × yeD × heD 6 × 6 × 0.1
Network fracture size, aD × bD 0.1 × 0.2

Fracture opening, afD 0.5 × 10−6

Matrix permeability, KmD 0.001
Network fracture permeability, KfD 2.08 × 106

Threshold pressure gradient, χD 0.001
Elastic storativity ratio of the natural fracture system, ωn 0.78

Elastic storativity ratio of network fracture system, ωf 0.92
Crossflow coefficient, λ 60
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5.1. Accuracy Verification of the Numerical Solution

To verify the accuracy of the numerical solution of our model, on the one hand, it was considered
that the reservoir was a dual-porosity and single-permeability medium without threshold pressure.
Moreover, only primary fractures exist in the reservoir after fracturing. The numerical solution of the
finite element model was compared with the analytical solution of the Zerzar et al. 2004 model [43] for
a conventional multistage fractured horizontal well, and the comparative curve of the pressure and
pressure derivative behaviors were obtained, as shown in Figure 3. On the other hand, according to the
actual geological parameters and fracturing parameters of a ZP1 well with 33 months of production
history in the Longdong oilfield, the oil production rate and cumulative oil production of the ZP1 well
with SRV fracturing could be calculated using the numerical model proposed in this paper, and the
comparison curves are shown in Figure 4.
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Figure 3. Pressure and pressure derivative behaviors in a multi-stage fractured horizontal well
intercepted by the numerical solution and Zerzar [43] analytical solution.
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Figure 4. Comparison curve of the ZP1 well production data and theoretical calculation data. (a) Oil
production rate. (b) Cumulative oil production.

Figure 3 shows that the pressure and pressure derivative behaviors of a multistage fractured
horizontal well calculated by the two models were basically consistent. Figure 4 shows that the
theoretical model had good degree of fit with the actual well production data. Therefore, the model
established in this paper could not only be simplified as the Zerzar analytical solution model, but
could also be used to accurately predict the production performance of an SRV-fractured well in tight
oil reservoirs.
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5.2. Flow Regimes Division during Well Production

Considering the effect of natural fractures inherent in tight formation and network fracture
systems produced by SRV fracturing on the productivity of the horizontal well and using the TPDP
and TPTP models to simulate the production performance of a horizontal well under the conditions
of constant productivity rate, the pressure, and pressure derivative behaviors (type-curves of well
testing) [44] for an SRV-fractured horizontal well in a tight oil reservoir could be obtained, as shown in
Figure 5.
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Figure 5. Type-curves of well testing for an SRV-fractured horizontal well with the TPDP and
TPTP models.

For the TPDP model, the matrix system exhibited only the fluid crossflow phenomenon with
the natural fracture system, but was not involved in the fluid flow process to the network fracture
system. Under the assumption that the stimulated area was composed of triple-porosity media and
the unstimulated area was composed of dual-porosity media, based on the pressure derivative curve,
the TPDP model flow regimes during SRV-fractured horizontal well production in a tight oil reservoir
could be divided into seven flow periods, as shown in Figure 6, where k is the slope of the pressure
derivative curve; and both m and n are constants.

The TPDP model flow regimes can be divided into the following periods. Stage A: The initial
pseudosteady flow around primary fractures; this stage mainly reflects the linear flow inside the
primary fractures and the radial flow around the primary fractures, and the combination of the two
causes the pressure derivative behavior to show a straight line with unit slope. Stage B: Linear flow
inside the network fracture system; this stage reflects the linear flow from the secondary fractures to
the primary fracture, and the pressure derivative behavior shows an oblique line with a near unit slope.
Stage C: Pseudosteady crossflow between the matrix and natural fracture systems; as the pressure
drop of the natural fracture system is greater than that of the matrix system, this stage mainly reflects
the pseudosteady flow process from the matrix system into the natural fracture system, which leads
to a concave part of the pressure derivative behavior. Stage D: Formation linear flow; this stage
represents the linear flow around the network fracture, and the pressure derivative curve shows a
straight line with a 1/2 slope. Stage E: Pseudosteady flow in the stimulated area; when the pressure
wave propagates to the boundary of the stimulated area, the effective distance of fluid flow in the
unstimulated area increases continuously, resulting in the formation of a moving sealed boundary
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with time changing around the stimulated areas. The pressure derivative behavior shows an oblique
line with a near unit slope. Stage F: Pseudo radial flow near the SRV-fractured horizontal well; the flow
characteristics at this stage are expressed as a pseudo radial flow centered on the horizontal well with
the network fracture system, and the pressure derivative behavior is shown as a horizontal straight
line. Stage G: Pseudosteady flow in the whole reservoir; the influence of the closed outer boundary
is observed during the later stage of well production, i.e., when the pressure wave propagates to the
reservoir boundary, the bottomhole pressure drops rapidly and pressure derivative behavior is shown
as a straight line with unit slope.Energies 2018, 11, 2724 10 of 14 
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Figure 6. Flow regimes division during SRV-fractured horizontal well production in tight oil reservoir.

For the TPTP model, the fluid in the matrix system is involved in the flow to the network fracture
system. Therefore, comparing with the TPDP model flow regimes, the bottomhole pressure drop of
the horizontal well with the TPTP model becomes slower in the B’, C’, E’, and F’ stages. The linear
flow in the formation (D) no longer arises and is covered by the pseudosteady crossflow (C’), which
quickly changes the pseudosteady flow (E’). Then, the pressure wave propagates quickly to the closed
reservoir boundary, and the bottomhole pressure drop increases rapidly during the pseudosteady flow
in the whole reservoir (G’), which is consistent with the pressure and pressure derivative behaviors of
the TPDP model gradually. According to the development experience of tight oil reservoirs, the TPTP
model is more reasonable for tight oil reservoir simulation.

5.3. Productivity Contribution Degree of Multiporosity Systems

To further quantitatively analyze the contribution degree of multiporosity systems to well
productivity, the TPTP model was used to simulate the production process of the SRV-fractured
horizontal well (800 m in length and fracturing with 10 segments) under the following three cases:
(1) there was only the matrix system in the reservoir; (2) there were only the matrix and natural
fracture systems in reservoirs; (3) there were the matrix, natural fracture, and network fracture systems
in the reservoirs. The productivity (including the daily production and cumulative production)
contribution curves for the three systems (including the matrix, natural fracture, and network fracture
systems) during SRV-fractured horizontal well production in tight oil reservoirs can be calculated
respectively, as shown in Figure 7. Moreover, the daily production contribution ratio (DPCR) and
cumulative production contribution ratio (CPCR) of the three systems to SRV-fractured horizontal well
productivity can be obtained statistically, as shown in Table 3.
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Figure 7. Productivity contribution curves of three systems during SRV-fractured horizontal well
production in a tight oil reservoir. (a) Oil production rate. (b) Cumulative oil production.

Table 3. DPCR and CPCR of three systems to SRV-fractured horizontal well productivity in different
development stages of tight oil reservoir

DPCR 1 (%) Matrix System Natural Fracture System Network Fracture System
CPCR 2 (%)

1st year 11.73 56.36 31.91
7.85 43.67 48.48

5th year 39.08 45.49 15.43
14.60 49.23 36.17

10th year 59.12 26.80 14.08
20.49 46.79 32.72

1 DPCR is the daily production contribution ratio; 2 CPCR is the cumulative production contribution ratio.

The simulation results indicated that the proportion of productivity contribution for triple-porosity
media systems during SRV-fractured horizontal well production varied at different stages of reservoir
development. In the early stage of tight oil reservoir development, the productivity of the SRV-fractured
horizontal well was mainly contributed to by natural fracture and network fracture systems with high
conductivity. The daily production rate was large, but declined rapidly. After that stage, due to the
fracture failure, the DPCR of the natural fracture and network fracture systems gradually decreased,
and the latter was more serious; on the contrary, the DPCR of matrix system increased rapidly. In the
late stage of reservoir development, the daily production of the horizontal well was maintained at a
lower level, and the DPCR of the matrix system was more than half. The CPCR of the matrix system,
natural fracture system, and network fracture system during SRV-fractured horizontal well production
were 7.85%, 43.67%, and 48.48%, respectively in the 1st year; 14.60%, 49.23%, and 36.17%, respectively
in the 5th year; and 20.49%, 46.79%, and 32.72%, respectively in the 10th year.

6. Conclusions

During the development of a tight oil reservoir after SRV fracturing, the flow characteristics
are different from those of conventional reservoirs. This paper investigated the multiporosity and
multiscale flow characteristics of an SRV-fractured horizontal well in a tight oil reservoir. Based
on the dual-media theory and discrete-fracture network models, a mathematical flow model of an
SRV-fractured horizontal well with multiporosity and multipermeability media was built, solved, and
verified. It has been found that there exist different flow regimes and productivity characteristics
in SRV-fractured horizontal wells. The TPDP model flow regimes during SRV-fractured horizontal
well production in tight oil reservoirs could be divided into seven flow periods, which include
the initial pseudosteady flow around the primary fractures, linear flow inside the network fracture
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system, pseudosteady crossflow, formation linear flow, pseudosteady flow in the stimulated area,
pseudoradial flow near horizontal well, and pseudosteady flow in the whole reservoir. For the
multiporosity and multiscale flowing states, the well bottomhole pressure drop became slower, the
linear flow in the formation no longer arose, and the pressure wave arrived quickly at the closed
reservoir boundary. The initial production rate of the SRV-fractured horizontal well was large but
declined rapidly. The contribution ratio of the matrix system, natural fracture system, and network
fracture system during SRV-fractured horizontal well production were 7.85%, 43.67%, and 48.48%,
respectively in the 1st year; 14.60%, 49.23%, and 36.17%, respectively in the 5th year; and 20.49%,
46.79%, and 32.72%, respectively in the 10th year. The proposed research may provide valuable
insight into understanding the multiporosity and multiscale flow mechanisms and unconventional
hydrocarbon recovery maximization. For the actual oilfield, the change of the dynamic energy of the
formation system can be predicted by the change of well productivity, which could guide managers in
carrying out the development of regime adjustment and improvements in the management system in
a timely manner.
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