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Abstract: With the growing of using photovoltaic (PV) units in power distribution systems, the role
of high-performance power electronic converters is increasing. In this paper, modelling and control
of Modular Multilevel Converter (MMC) are addressed for grid integration of PV units. Designing a
proper controller for MMC is crucial during faulty conditions to make the converter stable and provide
proper dynamic performance. To achieve this goal, a dynamic model of MMC is presented which it
includes symmetrical components of voltage and current. Then, adaptive robust current controllers
are developed based on sliding mode and fuzzy controllers for MMC and then the robustness
and stability of the controllers are proved by the Lyapunov theory. To implement the proposed
controllers under unbalanced grid voltage fault, positive and negative sequences current controllers
are implemented to compensate the effect of grid voltage fault and load power variation. Finally,
numerical results are shown to evaluate the performance of MMC. In the end, the experimental
results are given to prove the controller performance. The outcome indicates that the proposed
current controllers are more effective under voltage disturbance conditions and could satisfy the
stability of MMC.

Keywords: control; modular multilevel converter; photovoltaic integration; fuzzy control; sliding
mode control

1. Introduction

Modular multilevel converters are coming solutions for providing high reliability, capability and
good harmonic performance solution for power electronic converters [1,2]. MMCs are generally used
in high-power applications such as grid-connected converters [3]. They consist of a high number of
capacitors and power electronic switches. Accordingly, the MMC absorbs a small amount of active
power to keep the capacitors’ DC voltage constant and compensate for power losses. However,
a mismatch in conduction and the switching losses of power electronic switches, make the voltage
of the capacitor unbalance. Balancing the voltages has been a major issue in the latest research [4–7].
Moreover, there have been investigations concerning the implementation of the advanced current
controller for MMC. In Reference [8], a model predictive control strategy is proposed to regulate the
AC side current, balance the capacitor voltages and control of circulating current concurrently using a
single modified cost function. Another study in Reference [9] has proposed a design which controls
the total energy and energy balancing between upper and lower arms. A method in Reference [10] for
computing the circulating current reference by Lagrange-based multi-objective optimization has been
introduced. This method is compared with the closed-loop methods and has proven better performance.
In Reference [11], an algorithm for mitigation of circulating current is presented, in which shows that it
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is composed of negative sequence with double line frequency and DC component. Also, the hysteresis
current control algorithms can be used to control MMC [12]. Recently in Reference [13], a novel control
strategy has been proposed for MMC based on differential flatness theory, in which instantaneous
active and reactive power values are considered as the flat outputs. To achieve this goal, a mathematical
model of the MMC taking into account dynamics of the ac-side current and the dc-side voltage of the
converter is derived in a d-q reference frame. Moreover, in Reference [14] presents a new function-based
modulation control method for modular multilevel converters (MMCs). The main contribution of
this study is the formulation of two new modulation functions for the required switching signals of
the MMC’s upper and lower sub-modules, correspondingly. Furthermore, the stability analysis and
control techniques for grid connected converter based on MMC is discussed in Reference [15]. In all
above-mentioned literature, there is not a comprehensive model of MMC which could be considered
for evaluation of MMC during unbalanced voltage conditions.

Moreover, dynamic operation and the control of Grid Connected-MMC (GC-MMC) under
unbalanced grid voltage faults have not been referred in detail. Therefore, it seems essential to address
the behaviour of this operation topology under different voltage disturbances in distribution power
systems. Unsymmetrical condition on the grid voltages and its negative component sequence appears
double supply frequency component in the DC-link voltage and consequently the third harmonic
component on the AC side. Then it is a basis for flowing large negative-sequence current through
the MMC; this may the grid connected-MMC lose its operation. Accordingly, the output voltages of
the MMC are controlled to minimize the negative-sequence current flowing into the converter and it
makes unbalance reduction on the grid voltages.

In this paper, a dynamic nonlinear model of a modular multilevel converter is developed. In the
proposed model, symmetrical elements of voltage and current considering positive and negative
sequences are involved. Then, because of the existing unbalance voltage conditions and uncertainties
in the model, a robust adaptive current controller is developed for GC-MMC which includes a sliding
mode and fuzzy controllers. In addition, the robustness and stability of the controllers have been
proved by Lyapunov theory and completely guaranteed. Finally, to justify the potentiality of the
recommended control strategy, a simulation study is fulfilled and the obtained results for normal and
unbalanced fault conditions are presented.

This paper is categorized as follows: Section 2 presents the modelling of GC-MMC. Then the
proposed control scheme is given in Section 3. Finally, in Section 4, simulation results are presented
with extra detail.

2. Modelling of GC-MMC

To investigate the dynamic behaviour characteristics of GC-MMC, an accurate model is needed.
The classic formation of an MMC is presented in Figure 1. Each sub module (SM) is a simple half-bridge
formed by two power electronic switches, two anti-parallel diodes and a capacitor C. To develop
an advanced control strategy for GC-MMC, nonlinear state space equations which are based on the
average model of power electronic converters are extracted. According to Figure 1, the differential
equations of an N-cells MMC using basic KCL and KVL laws are as follows [16]:

diu
dt = 1

L

[
Vdc
2 −

N
∑

i=1

(
di.VCi−u

)
− Riu −Va

]
dil
dt = 1

L

[
Vdc
2 −

2N
∑

i=N+1

(
di.VCi−l

)
− Ril + Va

]
dVCi_u

dt = 1
C (iu.di) i = 1, . . . , N

dVCi_l
dt = 1

C (il .(1− di)) i = N + 1, . . . , 2N

(1)
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where iu, il, VCi_u, VCi_l are upper/lower values for arm currents and capacitor voltages receptively.
Moreover, di Vdc and Va are gating signal of the upper gate of the i-th cell, DC-link voltage and phase a
voltage separately.Energies 2018, 11, x FOR PEER REVIEW  3 of 13 
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3. Fuzzy-Sliding Mode Control (FSMC) of GC-MMC

A block chart of the proposed control strategy for PV system is illustrated in Figure 2. The upper
and lower arms of the MMC principally perform as controlled voltage sources and they are modulated
using Pulse-Width Modulation (PWM) technique. The PWM method employed in this study is
basically a carrier based Level-Shifted PWM strategy [14]. In Figure 1, the Maximum Power Point
Tracker (MPPT) module which provides the voltage or current reference is utilized, where Vdc-ref is the
reference dc-link voltage and Vdc is the actual dc-link voltage. The PV array’s voltage is remained close
to a reference dc-link voltage. Then, the power control is implemented. To achieve this goal, current
control strategy based on fuzzy sliding mode control is established. The details of suggested current
controller are explained as follow.Energies 2018, 11, x FOR PEER REVIEW  4 of 13 
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Equation (1) is a nonlinear system with the presence of parameters uncertainties and external
voltage disturbances. Generally, the state space equation of the nonlinear system including uncertainties
is written as follows [16]:

dX(t)
dt

= f (X(t), ∆g(t), d(t), u(t), t) (2)

where X(t) is the state vector; u(t) is the control input of system (1); ∆g expresses uncertainty part of
the system (1) on R and L values; d(t) is the disturbance of the system (1) where it is considered as grid
voltage variation here.

Moreover, the uncertain and disturbance parts of the nonlinear model are assumed to be bounded
that is,

‖∆g(t)‖∞ ≤ δ

‖d(t)‖∞ ≤ ε
(3)

where δ and ε are two positive and known constraints, which mean the margins for the uncertain and
disturbance parts.

The complexity of non-linear Equation (1) and demand for fast response during power tracking
leads to an adaptive fuzzy sliding mode control structure which is proposed for designing current
controllers of the GC-MMC. Sliding mode control (SMC) is one of the control methods used for current
regulation in power electronic converters. However, the basic problem of employing SMC is chattering.
Many different methods have been suggested to deal with this problem in SMC [17]. Recently a
combination of fuzzy control and SMC has been employed for this purpose and the results are found
to be effective [18,19].

When the fuzzy sliding control strategy is being designed to regulate converter’s output currents,
the current tracking error is, firstly, defined for positive and negative sequence components as follows:

edp = (idp−re f − idp)

eqp = (iqp−re f − iqp)

edn = (idn−re f − idn)

eqn = (iqn−re f − iqn)

(4)

where idp_ref, iqp_ref, idn_ref and iqp_ref are reference currents of symmetrical dq components, respectively.
Secondly, a modified sorting method is used for stabilizing of SM capacitor voltage. Commonly,

after modulation, the number of SMs should be activated or deactivated. Being so, the sorting
algorithm is implemented to balance the capacitor voltages. On that account, the voltage error between
SM capacitor voltages and their references takes a step forward, which results in minimum voltage
error. It is considered as another error tracking signal. The voltage errors are calculated by:

ej =
∣∣∣Vc,j(t + Ts)−Vc,re f

∣∣∣ (5)

where Vc,ref is the reference SM capacitor voltage.
The estimated capacitor voltage Vc,j for each SM is obtained by the formula below:

Vc,j(t + Ts) = Vc,j(t) +
ik,j

C
Ts (6)

where ik,j is arm current and Ts is the control time period.
Regarding the above equations, the error vector could be formed as follow.
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e =


edp
eqp

edn
eqn

ej

 (7)

Then the time-varying sliding surface for first order system is proposed [14]:

s(X(t), t) = λe (8)

where λ is a strict positive parameter and it is tuned based on the system bandwidth.
For grid-connected converters applications, the faults in grid voltage and uncertainties on output

filter parameters are unknown and the control signal is designed by satisfying ds/dt = 0 as follow:

ueq = − f (X(t), t) +
.

Xre f (t) (9)

where the Xref is a vector which it is included the reference values for state variables.
In the traditional SMC, the control signal based on Lyapunov stability theory is defined as follows:

u = ueq + kw·sgn(s) (10)

where kw is the switching gain.
The chattering phenomenon is the inherent challenge of SMC which is made by sign function

on the overall control signal u. Hence, the fuzzy-sliding mode control is proposed to eliminate the
chattering problem in current control loops of GC-MMC. By implementing this method, the robustness
of the controller is satisfied. Also, the performance of the system is improved since the chattering has
been eliminated. Consequently, the control signal of fuzzy-sliding mode controller could be written
as follows:

u = ueq + k f s.u f s (11)

u = − f (X(t), t) +
.

Xre f (t) + k f s.u f s (12)

In fact, in the proposed current controller, there is a fuzzy controller for each symmetrical
component of dq sequences that has two inputs (s,

.
s) including one output (u). There are also seven

linguistic variables, NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero),
PS (Positive Small), PM (Positive Medium), PB (Positive Big), which are used as inputs and outputs
respectively. Furthermore, to procure appropriate dynamic response, achieve a high level of accuracy
and guarantee the stability of the whole system, a set of decision rules for the fuzzy controller is
designed that is presented in Table 1. These rules contain the input/output relationships which
they are mapped by membership functions to describe the control strategy. Both input and output
membership functions are scaled into the range of −1 and 1 with an equal span as shown in Figure 3.
In order to guarantee the robustness and stability of the controller, an adaptive procedure based on
Lyapunov theory is implemented which is completely given in Reference [19,20].
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Table 1. Rule base of the fuzzy controller.

ufs s

.
s

PB PM PS ZE NS NM NB
PB NB NB NB ZE ZE ZE ZE
PM NB NB NB ZE ZE ZE PS
PS NB NB NM ZE ZE PS PM
ZE NB NM NS ZE PS PM PB
NS NM NS ZE ZE PM PB PB
NM NS ZE ZE ZE PB PB PB
NB ZE ZE ZE ZE PB PB PB

4. Simulation Results and Analysis

The complete modelling of MMC is carried out in MATLAB/Simulink software to look into the
performance of robust non-linear control strategy. The nominal parameters of the power converter
and controller are presented in Table 2.

Table 2. Parameters of Power converters and Controllers.

Nominal Parameters

SM capacitor initial voltage 5892 V
Rated line-line voltage 10 kV

Number of Cells per arm 6
Arm inductance 1.59 mH
Arm resistance 0.04 mΩ
Cell capacitance 100 µF
Rated frequency 60 Hz

Carrier frequency 600 Hz
Real power reference 0.05 MW

Reactive power reference 0.2 MVAr
kfs 20
δ 10% of rated values
ε 25% of rated value

The reference values for the real power and reactive power are determined and implemented.
The voltages of six capacitors of phase A are illustrated in Figure 4. As shown, they are around the
nominal value of each SM capacitor initial voltage. The three-phase line to line voltages are given in
Figure 5. Six levels of voltage are clearly seen as expected. It is obvious that the voltage levels vary
within acceptable boundaries caused by charging and discharging of the capacitors.
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In Figure 6, the upper cell voltage of phase A is displayed. Because of 10 times switching of
cell voltage in a cycle, the switching frequency of approximately 600 Hz is clearly observed for the
power electronic switch. The dc current flowing which circulates through the arms and the dc side
of the converter is illustrated in Figure 7. The DC current supports the power balance in the dc
side’s capacitors.
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Figure 7. The variations of circulating current.

Figure 8 illustrates how the GC-MMC replies to the requested active power at 2.5 s and 3.2 s
of the reactive power. In this case, active power changes to 0.1 MW and reactive power goes up to
0.3 MVAr. It shows a corresponding variation in the exchanged active and reactive powers. There is
also an enhancement in the response of steady-state and transient conditions when implementing the
proposed controller.
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Moreover, to prove the robustness of the proposed controller, the inconsistency of output filter
parameters is considered for R and L. Accordingly, the 1.1 R and 0.9 L are implemented in simulation
models based on the nominal value in Table 1. In this case, the simulation is run alike the prior
conditions. In Figure 9, the reactive power tracking of the proposed controller is presented due to
the mismatches. It proves the robustness of the proposed controller during the changing of filter
parameters. Also, it shows that fuzzy-sliding mode controller is not sensitive to plant uncertainties.
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Figure 9. Reactive power tracking of the proposed controller in presence of parameters mismatch.

Further evaluation of the proposed controller is carried out during grid voltage disturbance.
In phase, A, voltage sag is considered to drop 20%. Regarding the unbalanced voltage fault, there
are oscillations in active and reactive powers which are illustrated in Figure 10. These oscillations are
related to the proposed current control strategy and it makes the oscillating on active and reactive
powers. Finally, as it has been demonstrated, the capacitor voltages vary within acceptable limits and
are not influenced by grid voltage faults.

In order to compare the fuzzy-sliding mode control with PI controller, some simulation tests were
performed on MMC during unbalance voltage conditions. The design of PI is primarily based on a trial
and error procedure. But during designing of fuzzy-sliding mode control, the triangular membership
was considered because of its simplicity of implementation and because less computational intensity
is required. The number of linguistic variables and the base width of linguistic variables have some
effect on the response time and magnitude of ripple in the output voltage. However, they do not
seriously affect the response as the change of gains in a PI controller does. In the design of the
PI-controller, the gain selection is crucial. A set of gains can be ideal for one type of disturbance but
not for another type of disturbance. The gains were selected to provide a performance compromise
for supply voltage disturbance and load disturbance. Digital implementation at the sampling rate of
20 kHz was considered for all these controllers.
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Figure 10. Dynamic response (generated active and reactive powers and capacitor voltage) of the
GC-MMC during unbalanced voltage sag.

5. Experimental Results

To examine the performance of the proposed controller, an experimental setup has been developed.
The test system is connected to 750 W rooftop solar system. Since the system required many
input/outputs and sampling frequency up to 10 kHz, the dSPACE MicroLabBox was decided to
be used as the real-time interface for control of the MMC. The structure of the test setup is shown in
Figure 11. The experimental setup is of a low power, 3 levels, single phase MMC, as shown in Figure 11.
In the laboratory, MPPT module is used to regulate the output voltage of PV panels. The parameters
for the experimental setup are listed in Table 3.

Table 3. Parameters of Power converters and Controllers.

Arm inductance 5 mH
DC link voltage 20 V
Cell capacitance 3.3 mF
Rated frequency 50 Hz

Carrier frequency 2000 Hz
Sampling frequency 10 kHz

kfs 15

The experimental results only show the dynamic tracking properties of the proposed controller.
The profile given to it was of 6 A current for the first 50 s and then it was increased to 9 A thereafter.
In the test setup, the input voltage at MPP is around 29 V. The rms output voltage is illustrated in
Figure 12. It is principally constant as the dc-link voltage should. The voltage across the capacitor of
module 1 as obtained on the control desk can be seen in Figure 13. As the voltage was obtained at
ν dc ≈ 20 V, it is expected the average value across any submodule at any given time, when the sorting
algorithm is active, should be approximately 10.
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Figure 13. Capacitor voltage for submodule 1 obtained from the experimental setup.

To survey the robustness of the proposed controller, the real value of arm inductance changes
to 5.6 mH. The power supply was operated in a constant current mode, to emulate a PV module at a
constant temperature but different insolation. Figure 14 shows the input current waveform.
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Figure 14. Input current waveform.

The change in input current is only reflected as a change in output power which is illustrated
in Figure 15. As depicted, the proposed controller properly follows the reference value and its
dynamic performance is satisfied. By comparison between the simulation and experimental results,
it is achieved the offered control strategy is able to overcome the parameter mismatches in the output
filter. The dynamic performance is guaranteed during changing the demanded power. The dynamic
performance is the trade-off between the kfc and the number of rule bases during designing of the
fuzzy controller and it influences on both simulation and experimental results. From the simulation
result, it is evident that the controller is capable to reduce the impact of the external events such as
asymmetric grid voltage fault and it is very important during connection of photovoltaic systems
to weak grid. From the simulation results, it can be observed that the proposed current controllers
let retaining power as requested by the DC current source during and after the event. Despite the
unbalance of AC voltages, the AC current controller can balance the resulting AC currents. As a result,
the active as well as reactive powers start oscillating with double frequency of AC grid. Thanks to the
developed current controller, the applied event is damped by the stored energy inside the MMC and
consequently does not disturb the DC current and voltage.
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6. Conclusions

This paper presents the fuzzy sliding mode current control strategy for GC-MMC configuration.
Considering the unbalance voltage conditions and complexity of the model including a high number of
state variables and parameters uncertainties, a robust adaptive current control structure using sliding
mode control and fuzzy control, is developed for GC-MMC. The proposed control makes a proper
performance for MMC and enables separate control of the symmetrical elements of grid currents.
The simulation and experimental results suggest that the proposed controller is very robust during
the changing of filter parameters. The dynamic response, also, proves that the fuzzy sliding mode
controller is not sensitive to plant uncertainties and adequate dynamic response. Moreover, based
on the proposed controller, the capacitor voltages fluctuate within acceptable limits and they are not
influenced by grid voltage faults. In the simulation results, in phase, A, voltage sag is considered to
drop 20%. From the simulation results, it can be observed that the proposed current controllers let
retaining power as requested by the DC current source during and after the event. Moreover, it is
obtained from the experimental results by changing 12% of real value of inductor in output filter;
the current controller could overcome the parameter mismatch inside the MMC.
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