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Abstract: This paper proposes the application of a non-linear Extended Kalman Filter (EKF) for
accurate instantaneous dynamic phasor estimation. An EKF-based algorithm is proposed to better
adapt to the dynamic measurement requirements and to provide real-time tracking of the fundamental
harmonic components and power system frequencies. This method is evaluated using dynamic
compliance tests defined in the IEEE C37.118.1-2011 synchrophasor measurement standard, providing
promising results in phasor and frequency estimation, compliant with the accuracy required in the
case of off-nominal frequency, amplitude and phase angle modulations, frequency ramps, and step
changes in magnitude and phase angle. An important additional feature of the method is its capability
for real-time detection of transient disturbances in voltage or current waveforms using the residual of
the filter, which enables flagging of the estimation for suitable processing.

Keywords: power system measurements; dynamic phasor estimation; Kalman filters; phasor
measurement; power quality

1. Introduction

Accurate estimation of synchrophasors of voltage and current waveforms is a key aspect of
the correct operation of modern electric power systems. IEEE standard C37.118.1-2011 defines the
measurement of synchrophasors under all operation conditions, specifying methods for evaluating
these measurements and requirements for compliance with the standard, under both steady-state and
dynamic conditions [1,2].

The traditional methods for synchrophasor estimation are based on a steady-state model
that assumes phasor parameters are constant during the measurement window, but in general,
power system voltage and currents are not steady-state sinusoidal waveforms, particularly during
disturbances. Harmonic and other non-harmonic frequency components, step changes in magnitude
and phase angle, oscillations, fast transients, and high-frequency components can be produced during
electromagnetic and electromechanical transient disturbances. The estimation of phasors under these
dynamic conditions may produce erroneous results as is reported in [3].

Discrete Fourier Transform (DFT)-based phasor estimation algorithms have traditionally been
used because of their good performance in steady-state conditions, and they are used in many
commercial phasor measurement units (PMUs), but they fail for off-nominal frequencies and under
transient and dynamic conditions. Under these conditions, time-varying amplitude and phase angle
models have been proposed to improve the accuracy of phasor estimation and for compliance with
synchrophasor measurement standards [4-12].

Dynamic phasor estimation algorithms have been proposed [4-6], where the phasor is
approximated with a Taylor polynomial expansion around the reference time. A Kalman filter was
used [7,8] to estimate a dynamic phasor and its derivatives. A state-space model was used where the
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dynamic phasor was approximated by a kth Taylor polynomial expansion. The state-space model uses
the phasor and its derivatives as the state variables and a state transition matrix obtained from the
derivatives of each Taylor truncated dynamic phasor, applying the Kalman filter for estimation.

A Taylor-Kalman-Fourier filter for instantaneous estimation of oscillating phasors was proposed
in [9]. The signal model was extended to the full set of harmonics, using an extended transition matrix
where all harmonics are included, obtaining filters that were more robust to noise and able to estimate
dynamic harmonics, providing phasor estimates free from harmonic infiltration.

A modified Taylor-Kalman filter for instantaneous phasor estimation based on an improved
dynamic model was proposed in [10]. Other extensions of the Taylor-Kalman filter model have been
introduced [11,12]. In [11], an output smoother was applied to improve the estimation accuracy of
the method when large oscillations in amplitude and phase angle in harmonics and interharmonics
affect the input waveforms. Reference [12] introduced a Taylor Extended Kalman Filter formulation
that separately considers the amplitude and phase angle of the Taylor expansion. A new dynamic
model was then defined that enables the reduction in the state space dimension considering different
expansion orders of magnitude and phase angle, while including harmonics in the model.

A different approach from those based on the use of the synchrophasor Taylor series expansion
model was proposed in [13]. An adaptive algorithm was used for phasor estimation, eliminating the
effects of various transient disturbances on voltage and current waveforms. The algorithm pre-analyzes
the waveforms in the observation window to detect and localize a discontinuity. The data detected
before or after the singular point, excluding the transient, are used for phasor estimation.

In this paper, we propose the use of a non-linear adaptive Extended Kalman Filter (EKF) to better
adapt to the dynamic requirements of power system signals. The fundamental component, the most
relevant harmonic components, the dominant subsynchronous interharmonic component, and the
power system frequency were used in a 13-state EKF to model the system and to estimate fundamental
and harmonic phasors and the power system frequency. This method enables on-line tracking of the
fundamental, harmonics, and subsynchronous interharmonic phasors and the detection of transient
conditions in the input waveform using the residual of the Kalman filter.

The paper is organized as follows: Section 2 presents the main characteristics of the EKF and
the signal model used in our proposal. Section 3 outlines the performance of the algorithm under
off-nominal frequencies, frequency ramps, power oscillations, and step changes in magnitude and
phase angle dynamic compliance tests defined in IEEE C37.118.1-2011. The obtained results are
also analyzed in this section. Section 4 outlines the transient detection capability of the method and
Section 5 presents the conclusions.

2. Kalman Filtering and Signal Model

2.1. Extended Kalman Filter

The Extended Kalman Filter (EKF) is a modified version of the linear Kalman filter that is applied
to systems with non-linear processes and measurement equations. In each step of the recursive
algorithm, the non-linear equations are linearized using a first order Taylor series to form a linear
process, and then the linear Kalman filter model is applied.

The EKF defines the state transition function and the relationship between the states and the
measurements by means of the nonlinear functions f and &, respectively:

Xky1 = flxx k] + wy

zi = hlxg, k] + vk

where x; and z; are the state vector and the measurement at instant k, respectively; and wy and vy
are the uncertainties introduced by the state transition and the measurement noise, both with zero
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mean and covariances Qx and Ry, respectively. The nonlinear functions f and / are linearized using a
first-order Taylor series as follows:
X1 = PrXp + W

zr = Hixp + v

with
&, = afi[xkrk]
ax]'
_ Ohi[xy, K]
Hk - Bx]

where f; and }; are the ith elements of functions f and &, respectively, and @, and Hj are the state
transition and the measurement matrices, respectively.

The Kalman filter is a two-step prediction-correction process. Starting with an initial estimate of
the process x’k, and its error covariance matrix P’y, the measurement at instant k, z, is used to improve
the estimation. A linear combination of the estimate and the measurement is chosen according to
Equation (1):

X = xp + Ki(z — HixX'i) = % + Kieg M

where x;, is the estimation update at instant k and K}, is the filter coefficient.
g is the residual, defined as:
ex = zk — Hx's @)

which represents the difference between the measurement z; and the estimation x’; at instant k.
The state transition matrix @y is used to project the filter ahead using the measurement at instant
k + 1. Kalman filter equations can be found in [14].

2.2. Signal Model

Considering the input signal as a single-phase sinusoidal with superimposed harmonic and
interharmonic components:

n
x(k) = ZAZ sin(27rifkT5 + 61) + Ay sin(27'cfihkT5 + Gih)
i

where i is the harmonic order; A; and 6; are the amplitude and phase angle of each harmonic component
respectively; Ay, 0, and f;, are the amplitude, phase angle, and frequency of a dominant interharmonic
component, respectively; f is the fundamental frequency; and T; is the sampling period.

The successful application of a Kalman filter depends on the accuracy of the model used,
which requires previous knowledge of the system. The lack of relevant components in the signal
model may produce erroneous results in the estimation of the components of interest [11,12]. In order
to estimate the dominant frequency components in a specific power system network, a DFT analysis
was applied to the input signal to select the best possible state vector, which is the DFT output
bins-harmonics and interharmonics-with the highest magnitudes, as well as their initialization values
and error covariances.

Other proposals to obtain these dominant components in the signal to improve the accuracy of the
model can be found in the literature. A compressive sensing approach was proposed in [15] to identify
the most relevant components of the signal and to model them in the phasor estimation procedure.
A frequency-domain decomposition of the residuals of a linear Kalman filter using the Short-Time
Fourier Transform was used in [16] to obtain the dominant subsynchronous component of the signal
to be included in the model of the system to achieve an accurate phasor estimation.

Fundamental and odd harmonic components from the third to the ninth are normally dominant in
low-voltage supply systems and were proven in [17] as an efficient solution to model the signal. The use
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of a higher order model improves the accuracy of the estimation but also increases the computational
complexity, so a trade-off is required between accuracy and model complexity. The presence of a
dominant sub-synchronous interharmonic component close to the fundamental frequency may affect
the estimation of the fundamental phasor [16]. Including this frequency component in the model of
the system is necessary to obtain an accurate phasor estimate.

Another necessary and important aspect in the successful application of Kalman filters is the
adequate selection of the filter parameters, the initial estimation of the state vector, and the covariance
matrices, based on previous knowledge of the system to be modeled. The process and the measurement
noise covariance matrices, Q and Ry, respectively, act as tuning parameters to balance the dynamic
response of the filter against the sensitivity to noise. Convergence rate and noise rejection of the filter
requires a trade off against each other. The degree of stability improves as the process covariance
increases and/or the noise covariance decreases [18], the filter response depending more on the ratio
of these two matrices than on their specific values [19,20].

The state vector selected at instant k, x, is:

Xp = [X1X2 -+ - X11X12X13)¢ 3)

where x1, x3, ..., X9 are the in-phase components of the fundamental and the dominant harmonic
components; xp, X4, ..., X19 are the corresponding in-quadrature components; x11, X2 are the in-phase
and in-quadrature components of the dominant sub-synchronous interharmonic component at instant
k; and x13 is the power system frequency. The magnitude and phase angle of each frequency component
are computed using the instantaneous rectangular components considered in the model of the signal.
The inclusion of the power system frequency in the state vector enables the filter parameters and the
phasor to be updated with the new estimation of the frequency in each step of the recursive process,
improving the accuracy of the estimation algorithm, and avoiding the need for a separate frequency
estimation algorithm, as required in other previously proposed Kalman filter phasor estimation
methods [16,21].

The on-line estimation of fundamental phasors and power system frequency with each new
sample of the input signal allows increasing the reporting rate without decreasing the frequency
resolution, which would be the case for the application DFT-based synchrophasor estimation methods.

3. Performance Analysis

The performance of the proposed phasor estimation method was evaluated using the dynamic
compliance tests defined in the IEEE synchrophasor measurement standard and its amendment [1,2],
for both P-class and M-class compliance. In each test, the estimated phasor at instant k is compared with
the theoretical value provided as an input, computing the Total Vector Error (TVE), Frequency Error
(FE), and Rate of Change of Frequency (ROCOF) Error (RFE) performance indices as measurement of
the difference between the ideal values and their estimates as defined in [1].

This section presents the results obtained with the proposed method under the different dynamic
tests defined in IEEE Standard C37.118.1-2011: frequency deviations, amplitude and phase angle
modulations, frequency ramps, and step changes in magnitude and phase angle.

As previously mentioned in Section 2, a previous analysis of the signal in a specific power system
network is required to select the dominant frequency components to be included in the state vector.
To this end, the daily mean value of the fundamental and odd harmonic components from the 3rd
to the 11th order and the mean square values of voltage supply measured in the specific power
system network were selected as the initialization values of the state vector and its covariance matrix,
respectively. We selected 50 Hz as the initial value of the power system frequency and a Qy /R ratio of
10. This ratio was proven to be an efficient solution in the low-voltage distribution network in [17].
Other power system networks require a similar previous analysis to select the most adequate state
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vector and the initialization parameters of the Kalman filter. The sampling rate used in the simulations
was 6.4 kS/s (128 samples/cycle in a 50 Hz system).

3.1. Frequency Deviation

In these tests, a constant frequency was is applied to the nominal frequency in the range of £5 Hz
for M-class or -2 Hz for P-class compliance, with constant phase angle in steps of 0.1 Hz, as defined
in [1], computing the maximum magnitudes of the three indices: TVE, FE and RFE. The maximum
acceptable values of these performance indices are 1%, 0.005 Hz, and 0.01 Hz/s, respectively, for M-class
compliance. According to the standard amendment [2], the values are 1%, 0.005 Hz, and 0.4 Hz/s for
P-class compliance, respectively.

The test signal used in this test was [1]:

x(t) = Xmcos(2nt(fo + faeo)t + ¢)

where X, is the magnitude, ¢ is the phase angle of the fundamental component, f( is the nominal
power system frequency, and f;,, is the frequency deviation.

As an example of the performance of our method, Figure 1 shows the actual and the estimated
magnitude and frequency in the case of a 230 V magnitude and 52 Hz voltage waveform. After a
short initialization time, both the estimated magnitude and frequency quickly converged to their
real values. In this case, the maximum TVE, FE, and RFE were 3.4 x 107°%, 5.48 x 10~3 mHz,
and 2.34 x 1075 Hz/s respectively.
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Figure 1. (a) Estimated phasor magnitude and (b) frequency in the case of a 230 V magnitude and
52 Hz voltage waveform.
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Figure 2 shows the maximum values of TVE, FE, and RFE during the five second record for each
of the frequency deviation test signals. The maximum values of the three performance indices were all
below the minimum requirements of the synchrophasor measurement standard for both P-class and
M-class compliance.
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Figure 2. Maximum values of (a) Total Vector Error (TVE), (b) Frequency Error (FE), and (c) Rate of
Change Frequency Error (RFE) for constant frequency deviation tests.

3.2. Amplitude and Phase Angle Modulation

These tests were performed by modulating the input signal with sinusoidal signals simultaneously
applied to signal magnitude and phase angle, which were used to estimate the bandwidth of the
estimation algorithm. These signals are mathematically represented for a single phase as [1]:

x(t) = X[l + ky cos(wt)] cos(wot + k, cos(wt — m))

where X, is the amplitude, wy is the nominal frequency, w is the modulating frequency, and k, and k,
are the amplitude and phase angle modulation factors, respectively.

The IEEE synchrophasor measurement standard allows a maximum 3% TVE for modulating
frequencies from 0.1 Hz to 5 Hz, and the maximum values of FE and RFE should be lower than 0.06 Hz
and 3 Hz/s for P class compliance, respectively, and reporting rates higher than 20, and 0.3 Hz and
30 Hz/s, respectively, for M-class compliance at the same reporting rate. According to the standard,
TVE, FE, and RFE indices should be measured over at least two full cycles of the signal in the different
modulation tests.

Figure 3 shows the estimated amplitude and frequency in the case of a 230 V magnitude and
50 Hz voltage waveform with a 10% magnitude, and 0.1 Hz amplitude modulation starting from 1 s of
the record. As can be seen in the figure, the estimated amplitude accurately tracked the actual voltage
fluctuation with minimum frequency error.
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Figure 3. Performance of the method during a 10% magnitude and 0.1 Hz amplitude modulation test:
(a) magnitude and (b) frequency.
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Figure 4a,b show the maximum TVE, FE, and RFE values obtained for the different amplitude and
phase modulation test signals for modulation frequencies from 0.1 Hz to 5 Hz, varying in steps of 0.1 Hz
and 10% amplitude and 10% phase angle modulation. From the results reported, the maximum 3%
TVE criteria was satisfied under all conditions. The same applies for the measurements of maximum
values of FE and RFE indices.
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Figure 4. Effect of modulation frequency on maximum TVE, FE, and RFE for (a) amplitude modulation
and (b) phase modulation tests.

3.3. Frequency Ramp

According to the synchrophasor measurement standard, the performance of a measurement
method should also be evaluated during frequency ramp tests. Mathematically, the input signal can be
represented by:

x(t) = X cos[wot + 7R ;7]

where Xy, is the amplitude, wy is the nominal frequency, and Ry (=df /dt) is the frequency ramp rate
in Hz/s.

According to [2], the ramp rate and the frequency range in frequency ramp tests should be
+1.0 Hz/s and 42 Hz for P-class compliance and £1.0 Hz/s and +5 Hz for M-class compliance,
respectively. The measurement error limit in TVE is 1% in both cases, whereas the limits are 0.01 Hz
and 0.4 Hz/s (P-class), and 0.01 Hz and 0.2 Hz/s (M-class) for FE and RFE, respectively. A transition
time of £2/Fs, where F; is the reporting rate, is allowed for TVE, FE, and RFE compliance before and
after the sudden change in ROCOF occurs.

Figure 5 shows the time evolution of the frequency and TVE computed with the 13-state EKF
method proposed during a positive and a negative ramp test of 1 Hz/s in the range of +2 Hz
(P-class). All results reported were obtained considering the previously mentioned exclusion intervals,
with Fs = 50. With the exception of the beginning of the frequency ramp, the method presented an
accurate convergence during the test. The maximum values of TVE were 0.074% and 0.071% for the
positive and negative ramp test, respectively.
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Figure 5. Time evolution of frequency and TVE in (a) positive and (b) negative frequency ramp test of
1 Hz/s in the £2 Hz frequency range.

3.4. Step Changes in Magnitude and Phase Angle

In these tests, the test signals suddenly transitioned in the magnitude/phase angle between two
steady states. The test signals were used to determine response time, delay time, and overshoot in the
measurement. In our proposal, once the step change was applied, the 13-state EKF re-initialized to
improve its transient response to the step change. Other proposals to improve the transient response
of a Kalman filter have been previously reported [22-24]

Figure 6a,b show the estimated magnitude, the residual, and TVE during a +10% step change in
magnitude (ky = 0.1) and the estimated phase angle and TVE during a +10° phase angle step change
(ks = 0.1). The method was able to accurately track these transient conditions, with the residual
showing a sudden transition in its magnitude at the beginning of these changes, and the TVE always
remained below the maximum 1% limit for both P-class and M-class compliance, and for step changes
in magnitude and phase angle.

Table 1 presents the response time, the delay time, and the overshoots/undershoots for TVE, FE,
and RFE for £10% and £10° step changes in magnitude and phase angle, respectively, for P-class
compliance and a reporting rate Fs = 50. The maximum response time, delay time, and overshoot are
defined in Tables 9 and 10 of [2]. In the case of TVE and FE, the response time with the 13-state EKF
was zero because the magnitude of both indices was always below the limits defined for P-class and
M-class compliance. The maximum response time for RFE (6/f, i.e., 0.12 s for a 50 Hz system, for the
step change in magnitude and phase angle in P-class, and 14/F;, i.e., 0.28 s for Fs = 50, for both step
change tests in M-class) was not surpassed in any of the tests.

Table 1. Step changes in magnitude and phase angle test results.

Range (Hz) TVE Ty (s) FE Tj,s (s) RFE Ty (s)  TVE Delay Time (s)  Overshoot (%)

+10% 0.0 0.0 0.00015 0.00031 0.524
—10% 0.0 0.0 0.00015 0.00031 0.729
+10° 0.0 0.0 0.00031 0.00015 0.035

—10° 0.0 0.0 0.00031 0.00015 0.028
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Figure 6. (a) Estimated magnitude, residual and TVE during a 10% step change in amplitude,
and (b) estimated phase angle and TVE during a 10° step change in phase angle.

The results obtained show the high responsiveness and good estimation of step inputs of our
method, with short response times and small overshoot.

4. Transient Detection

This section outlines an important additional feature of the method proposed: the real-time
detection of sudden transients in the input signal using the residuals of the Kalman filter. In a Kalman
filter, the residual g, defined in Equation (2), reflects the difference between the actual measurement
at instant k, z;, and the predicted measurement Hyx'y. This difference was computed in each step of
the adaptive algorithm. A zero magnitude of the residual ¢, implies total agreement between the
measurement and the prediction, whereas a sudden change in magnitude appears when a sudden
mismatch occurs between the two, as was the case in the beginning of a transient condition in the
signal under analysis. Large sudden changes in a signal produce larger magnitudes in the residuals &.

The transient detection capability of the residuals depends on both the magnitude of the transient
and the detection threshold selected. The detection of a transient condition enables the flagging of the
estimation for its adequate processing and represents an important contribution of our method.

As an example of the capability of our method for step transient detection in the input signal,
Figure 6a,b show the evolution of the residual & during the +10% step change in magnitude and +10°
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step change in phase angle tests, respectively. A sudden change in magnitude of the residual & can be
observed at the beginning of the two step changes.

Reference [25] demonstrated the performance of their method in the detection of other important
transient conditions in voltage or current waveforms in power systems, such as voltage dips and short
interruptions, high-frequency transients, time varying harmonics and power swings, as well as the
procedure for the most adequate selection of the transient detection threshold.

5. Conclusions

In this paper, we presented the application of an Extended Kalman Filter for instantaneous
dynamic phasor and frequency estimation, which includes fundamental and harmonic components,
compliant with the dynamic requirements of the IEEE synchrophasor measurement standards.
The estimates are instantaneous and updated with each new sample of the signal under analysis.
The filter parameters are adapted on-line with each new estimate of the power system frequency.
The algorithm is robust against off-nominal frequencies and power swings, has accurate convergence
during the frequency ramp tests, and shows high responsiveness and good estimation to step
inputs, with short response times and small overshoot. Simultaneous with the estimation of the
phasor magnitude and phase angle and frequency, the method can detect a step change in the input
signal using the residual of the filter in real-time, which enables the flagging of the estimation for
suitable processing.
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