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Abstract: The paper proposes a modified Bat algorithm (MBA) for searching optimal solutions of
Economic dispatch of combined heat and power generation (CHPGED) with the heat and power
generation from three different types of units consisting of pure power generation units, pure heat
generation units and cogeneration units. The CHPGED problem becomes complicated and big
challenge to optimization tools since it considers both heat and power generation from cogeneration
units. Thus, we apply MBA method with the purpose of enhancing high quality solution search ability
as well as search speed of conventional Bat algorithm (BA). This proposed approach is established
based on three modifications on BA. The first is the adaptive frequency adjustment, the second is the
optimal range of updated velocity, and the third is the retained condition of a good solution with
objective to ameliorate the search performance of traditional BA. The effectiveness of the proposed
approach is evaluated by testing on 7, 24, and 48 units systems and IEEE 14-bus system and comparing
results with BA together with other existing methods. As a result, it can conclude that the proposed
MBA method is a favorable meta-heuristic algorithm for solving CHPGED problem.

Keywords: Bat algorithm (BA); cogeneration unit; pure heat generation unit; pure power generation
unit; electrical generation.

1. Introduction

Economic dispatch of combined heat and power generation (CHPGED) plays an important role in
modern power systems. Thus, many researchers have constantly developed its problem formulation
and applied different optimization tools for solving such problems. The fuel cost is comprised of heat
generation and power generation in which heat from electricity generation process is retained and
transmitted to heat loads such as industrial zones and manufacturers as well as for other aims [1].
In combined heat and power systems, pure power generation units and cogeneration units are in
charge of providing electricity to electric loads while pure heat generation units and cogeneration
units undertake heat generation and heat transmission to heat loads. In general, the operating
enhancement of pure power plants is much simpler than that of cogeneration plants; that is because
of the complicated output characteristics of a cogeneration plant. In practice, the energy generation
characteristics of pure plants are a fuel cost function. For pure plants, this function is either only heat
or power output. Meanwhile cogeneration plants comprise both heat and power outputs which shows
that the operating range of cogeneration plants is more complicated. Therefore, the CHPGED issue
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is a major challenge for the optimization tools for finding optimal solutions satisfying all constraints
exactly and reducing total fuel cost effectively.

Over several decades, the authors in [2–7] have introduced different methods to solve the
CHPGED. The Newton [2] and Lagrange relaxation (LR) [3] methods are two of those methods
that were first applied to solve the CHPGED issue. However, they have a common main disadvantage
of being limited when dealing with a large-scale system. In order to overcome this disadvantage,
the authors in [4] have proposed the combined method between the augmented Lagrange and Hopfield
network (ALHN). As a result, a very good solution with a short computation time is obtained.
In order to reduce the number of iterations and the loop time by speeding up the computation,
the authors of [5] have presented the novel direct search (NDS) method based on a successive
refinement search technique. The Newton method and other methods such as ALHN and NDS
can solve nonlinear constrained optimization problems but Lagrange relaxation (LR) cannot deal with
the issue. Thus, ref. [6] has proposed the combination of sequential quadratic programming (SQP) and
LR, called SQP-LR method. In the method, SQP could solve nonlinear constraints successfully while
LR could find optimal solution satisfying all remaining constraints. Unlike SQP-LR, meta-heuristic
algorithms can solve non-linear problems simply and successfully although they do not need to use
SQP method. LR with surrogate sub-gradient technique (LR-SST) [7] has been developed by using
the main search function of LR and the updating function of SST. LR has also been used for the
same purpose as the methods in [3,6] while SST has been used to calculate the values of Lagrange
multipliers automatically. Compared to LR, LR-SST was more effective for applications because
selection of Lagrange multipliers was no longer an issue in LR-SST. However, LR-SST and other
methods in the conventional method group have the same main disadvantage of impossibility of
solving CHPGED problem considering valve point loading effects, which is represented as non-convex
fuel cost function form.

A number of studies [8–19] have used meta-heuristic algorithms based on random search
considering the non-convex objective issue for the CHPGED. Among those, the authors in [8] have
proposed a method that is a combination of the modified genetic algorithm (AG) and penalty function
trials. However, this method may be only trapped at a local optimal solution when varying a wide
range of the penalty factors. To have a better result compared to the method proposed in [8], the authors
of [11] have improved AG with multiplier updating by applying an augmented Lagrange optimization
function and penalty method. Nonetheless, their method converged slowly to a satisfactory optimal
solution. The evolutionary programming (EP) method has been introduced in [10]. However,
this method has two disadvantages, namely its slow convergence and easily falling into a local
optimum. The self-adaptive real-coded genetic algorithm has been introduced in [13], in which a
new selection and crossover has been carried out on real-coded GA. As result, this method has good
convergence. Using the harmony search (HS) for the CHPGED, the authors in [15,16] have proposed
to modify it, and the obtained results are significantly improved. However, its convergence tool takes
a long time to approach the optimal solutions. Using the particle swarm optimization (PSO) algorithm
for the CHPGED, a new method [12] was developed on PSO by suggesting the use of the maximum
velocity and selection operations. However, the obtained results are not very good compared to the
methods in [8,11]. The time-varying acceleration factors are introduced in addition to the time-varying
inertia weight coefficients in PSO to modify two acceleration factors on PSO with a constriction
coefficient, so that the optimal solution can be enhanced. On the other hand, a new method in [19]
has been developed by modifying the group search optimization (GSO). In this case, the obtained
result showed that the requested run time is very long when studying a large-scale system. Moreover,
the CHPGED considering the valve point loading effects on pure power units has been sufficiently
solved by the bee colony optimization (BCO) in [14]. The obtained results are better than EP and PSO
under conditions of the optimum value and computation time. However, the major restriction of this
method is the application for large-scale power systems because it has taken long simulation time for
a seven-unit system but gives a low quality solution. Similarly, the CHPGED is solved based on the
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artificial immune system (AIS) method. The objective is to obtain the optimal solution by using of
few control parameters and a small number of iterations. However, the disadvantage of this method
is the ability to suffer premature convergence when applying the aging operator to eliminate the
bad antibodies.

In recent years, some most promising methods have proposed for the CHPGED, like the group
search optimization [20], oppositional teaching learning based optimization [21], opposition-based
group search optimization [22], and eight versions of PSO [23], grey wolf optimization [24], machine
learning algorithm [25], and the cuckoo search algorithm [26]. It is observed that the performance of
these methods seems to be better than all the methods given in [8–19] for most cases.

This paper proposes a pertinent method for solving the CHPGED on the basis of the Bat algorithm
(BA), considering three modifications that are the adaptive tuning frequency, optimal range of updated
velocity, and retained condition of a good solution with the purpose to improve the searching
performance of conventional BA. To verify the effectiveness of the proposed method, several simulation
cases of the proposed method and conventional BA are analyzed based on four test case with a 7-unit
system, 24-unit system, 48-unit system and an IEEE 14-bus system. In addition, transmission power
losses, non-differential objective function and all constraints of transmission power networks have
been taken into consideration. The main new contributions of this paper are summarized as follows:

(i) Conventional BA is first applied for solving the CHPGED and
(ii) Pointing out drawbacks of BA and suggesting modifications on conventional BA to develop

modified Bat algorithm with better performance.

The remainder of this paper is organized as follows. Section 2 covers the methodologies for the
CHPGED problem while Section 3 gives the proposed algorithm for CHPGED. Case study, simulation
results, and discussion of the results are handled in Section 4 and Appendix A. Finally, conclusions are
reported in Section 5.

2. Methodologies

Suppose that we have a complex power system that includes the pure power generation units Npp,
pure heat generation units Nph, and cogeneration units Nc. Here, the main objective of the CHPGED
is to minimize total fuel cost of heat generation and electricity generation from available generation
units. To reach the objective, the main duty is to determine heat output of cogeneration units and
pure heat generation units, and power output of cogeneration units and pure power generation units.
In addition, constraints of working limitations from all generation units, power balance and heat
balance must be exactly satisfied. Especially, the relationship between heat and power outputs of a
cogeneration units shown in Figure 1 is really complex.
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Figure 1 is an example of the feasible operating zone of a cogeneration unit. Figure 1 is depicted
by using given data of heat outputs and power outputs of a typical cogeneration unit in which the
efficiency of the unit cannot be known as observing the figure but its performance can be evaluated
by using a fuel cost function. The observation from Figure 1 in [27] and Figure 5 in [28] can indicate
that efficiency of the cogeneration unit is complicated for calculation. In fact, the efficiency is directly
influenced by thermal efficiency and heat efficiency, and it is also related to power output and heat
output. Simulation results from [29] also indicate the same statement, since points of efficiency are not
a mathematical function. In our work, we suppose that feasible operating zone and fuel cost function
of cogeneration units are exactly given by taking data from previous studies. Our main task is to
determine power and heat outputs so that the values must be inside the feasible operating zone and
the fuel cost can be reduced as much as possible.

2.1. Cost Objective Function

For the objective of the CHPGED issue, we consider a minimum cost objective function of the
heat and electricity power production under the following form:

Min


Npp

∑
i=1

Fpi(Ppi) +
Nc

∑
j=1

Fcj(Pcj, Hcj) +

Nph

∑
k=1

Fhk(Hhk)

, (1)

The cost functions of the pure power generator i for the case of neglecting and considering valve
point loading effects are respectively mathematically formulated in Equations (2) and (3) [14]:

Fpi(Ppi) = api + bpiPpi + cpiP2
pi (2)

Fpi(Ppi) = api + bpiPpi + cpiP2
pi +

∣∣∣epi × sin( fpi × (Pmin
pi − Ppi))

∣∣∣ (3)

The cost objective function of the kth pure heat generator can be calculated as follows [17]:

Fhk(Hhk) = ahk + bhk Hhk + chk H2
hk, (4)

The cost objective function of the jth cogeneration unit can be calculated as follows [17]:

Fcj(Pcj, Hcj) = acj + bcjPcj + ccjP2
cj + kcjHcj + lcj H2

cj + mcjHcjPcj, (5)

where Ppi and Pcj are the power output of the ith pure power generation unit and jth cogeneration unit,
respectively; Hcj and Hhk the heat output of the j-th cogeneration unit and heat output of the kth pure
heat generation unit, respectively; api, bpi, cpi, epi and fpi are the pure electricity generation cost function
coefficients of the ith pure power generation unit; ahk, bhk and chk are the pure heat generation cost
function coefficients of the kth pure heat unit; and acj, bcj, ccj, kcj, lcj and mcj are the heat and electricity
generation cost function coefficients of the jth cogeneration unit. Among the definitions, values of
power outputs and heat outputs are determined by operators in power plants while coefficients in all
cost functions are predetermined by experts in power plants by conducting experiments on the units.

2.2. Constraints

2.2.1. Active Power balance

The active power generated by pure power and cogeneration units must be equal to the active
power demand of power systems, and can be considered as follows:

PD + PL −
Npp

∑
i=1

Ppi −
Nc

∑
j=1

Pcj = 0, (6)



Energies 2018, 11, 3113 5 of 27

where PD is the power demand and PL is the loss power in the transmission line, and can be calculated
as follows [14,17]:

PL =
Npp+Nc

∑
i=1

Npp+Nc

∑
j=1

PiBijPj +
Npp+Nc

∑
i=1

B0iPi + B00. (7)

2.2.2. Heat balance

The produced total heat due to the pure heat and cogeneration units must satisfy the heat demand
and neglect heat loss, and can be considered as follows:

HD −
Nc

∑
j=1

Hcj −
Nph

∑
k=1

Hhk = 0, (8)

In the constraint, heat losses are supposed to be zero because there have not been any studies
about heat losses during process of transmitting heat to heat loads. In the work, we have also used
that assumption for simplicity. However, if heat losses are a function of heat outputs similar to power
loss function or a constant, heat balance constraint will be solved simply and successfully.

2.2.3. Power and heat unbalance

Each generation unit must operate within its upper and lower limit. The power of ith pure power,
jth cogeneration, and the kth pure heat and the jth cogeneration units can be expressed, respectively, as
follows:

Pmin
pi ≤ Ppi ≤ Pmax

pi , (9)

Pmin
cj (Hcj) ≤ Pcj ≤ Pmax

cj (Hcj), (10)

Hmin
cj (Pcj) ≤ Hcj ≤ Hmax

cj (Pcj), (11)

Hmin
hk ≤ Hhk ≤ Hmax

hk , (12)

in which, the limit functions of power output of the j-th cogeneration unit can be calculated as follows:

Pmax
cj (Hcj) = min

{
Pcj(Hcj)

∣∣
AB, Pcj(Hcj)

∣∣
BC

}
, (13)

Pmin
cj (Hcj) = max

{
Pcj(Hcj)

∣∣
CD, Pcj(Hcj)

∣∣
DE, Pcj(Hcj)

∣∣
EF

}
, (14)

the limit functions of heat outputs of the j-th cogeneration unit can be calculated as follows:

Hmax
cj (Pcj) = min

{
Hcj(Pcj)

∣∣
BC, Hcj(Pcj)

∣∣
CD

}
, (15)

Hmin
cj (Pcj) = 0. (16)

2.3. Slack Units

In this paper, two slack variables including the slack pure power Pp1 and the slack pure heat
generation unit Hh1 are considered to exactly meet the balance constraints of power and heat:

2.3.1. Pure Power Generation Unit

Suppose that the power outputs of (Npp −1) pure power generation units and Nc cogeneration
units are known. The power output of the first pure power generation unit can be calculated using
Equation (6) as follows:
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Pp1 = PD + PL −
Npp

∑
i=2

Ppi −
Nc

∑
j=1

Pcj, (17)

where PL can be calculated by using Equation (7).

2.3.2. Pure Heat Generation Unit

The slack pure heat generation unit Hh1 is considered using Equation (8) according to the known
heat outputs of other pure heat and cogeneration units as:

Hh1 = HD −
Nc

∑
j=1

Hcj −
Nph

∑
k=2

Hhk. (18)

3. Algorithms

3.1. Conventional Bat Algorithm

The Bat algorithm was developed in 2010 derived from the behavior of bat species during their
food search [30]. The main rules of the BA method can be summarized as follows:

(i) Each Bat d has a position Xd and a velocity Vd, and it generates a pulse with the frequency fd,
the loudness Ad, and the rate rd as well.

(ii) The loudness Ad generated by a Bat gets the largest value at the beginning of the search process,
reduces gradually, and then reaches the lowest one as approaching to its prey.

Each Bat’s position is the indices of a solution of optimization problems, which will be gradually
enhanced while the number of iterations is increased, and the velocity is used to determine the
following positions emblematizing the possibility of changing positions of a Bat. Increasing the
number of iterations, normally, the searching process could generate a new position which would be
closer to the food source than the previous positions. It means that the quality of a new solution tends
to be better than that of the previous solution. To generate new positions, search space around each old
solution, called global search and search space around the best solution in the population, called local
search are carried out. Basic steps of BA can be summarized in detail as bellow.

Given a set of NB Bats, calling XG
d and VG

d are the current position and velocity of the dth Bat in
the population, d = 1, 2, . . . , NB.

At the beginning of each iteration step, the frequency of each Bat can be randomly initialized as:

f G
d = fmin + rand.( fmax − fmin), (19)

and, the new velocity and position of each Bat are:

VG
d = VG−1

d + f G
d

(
XG−1

d − X∗
)

, (20)

XG
d = XG−1

d + VG
d , (21)

where X* is the best position among NB Bats in a population. This solution is determined from the
random positions of the initial population for the first iteration and chosen from existing population at
the end of each iteration.

For a local search, each Bat has a chance to generate a new position which is around the best
location, can be described as follows:

Xd,new = X ∗+εAG, (22)
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where ε is a random number selected in range [0, 1], and AG is the average loudness of all Bats.
In fact, the loudness and pulse emission rate of each Bat are not fixed values, but they should be

rapidly changed as the Bat moves around its prey. It means that once the Bat has discovered a prey,
its loudness tends to decreases meanwhile the pulse emission rate increases. As a result, the updated
loudness and rate are determined as:

AG+1
d = αAG

d , (23)

rG+1
d = rG

d [1− exp(−γG)], (24)

in which the coefficients α and γ are arbitrary values in range [0, 1], and kept constant during
the search process. In the studies [30–32], the two parameters were set to the same value of 0.9
for simplicity, but they should be dependent on the specific applications by experiment. However,
analyzing Equation (24), we can see that the pulse emission rate does not increase if the γ is set to 0.9,
and the probability for local search is not higher during the search process.

The BA’s pseudo code was described in detail in [30]. The BA has been more advanced than
other algorithms in terms of accuracy and efficiency for many test functions [30] as well as successfully
applying for simple cases of optimal operation of power systems [33,34]. However, to deal with more
complex problems, some modifications have been suggested in the variants of the BA as mentioned
in [35].

3.2. Modified Algorithm

In order to improve the searching performance of the BA for solving the CHPGED, in this
paper, we propose three new modifications, including adaptive tuning frequency, the optimal range of
updated velocity, and new criteria of competitive solutions. The three modifications can be summarized
as follows:

3.2.1. Adaptive Frequency Adjustment Corresponding to the Number of Iterations

In the BA, at each iteration, the frequency is randomly produced within its operating frequency
range as defined in Equation (19). As a result, an updated velocity generated arbitrarily as defined in
Equation (20) could be over-speeded and make the Bat fly away from the optimal point. This problem is
more serious at higher iterations where the Bats are closely approached to the prey. In the optimization
point of view, at higher iterations when a Bat is nearly reach to the prey, this Bat’s flying speed must be
slowed down and the movement should be just around the current position (neighboring areas of the
prey’s location). Thus, by experiment, we suggest that at each iteration, the updated frequency should
be adjusted as:

f G
d = (Gmax−G)

Gmax
f G−1
d

= f G−1
d − G

Gmax
f G−1
d

(25)

In Equation (25), our intention is to reduce the frequency gradually according to the increase of
iteration. As the iterations increase, the frequency decreases. On the other hand, the new velocity
obtained from Equation (20) and new position calculated from Equation (21) are also narrowed as the
iteration increases because the velocity is proportional to the frequency and the position is proportional
to the velocity. It is clear that the search space is exploited in large ranges at the beginning of the search
process but it contracted as the iterations increase to the maximum value.

3.2.2. Set the Optimal Range of the Updated Velocity

The velocity is one main factor used to update new position for each Bat. If the velocity is high,
the Bats’ positions, i.e., solutions could move the feasibility area outside whereas the small velocity
could limit the discovery areas. For the BA, there is no information discussing the optimal range of
velocity, while this term has been constantly improved in PSO [23]. In [23], authors have mentioned
that the optimal range of the velocity can be fixed from 10% to 15% of the difference between the
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boundary positions. For this study, we suggest that the updated velocities of the Bats should be
narrowed in a range of

[
Vmin

d , Vmax
d

]
, where:

Vmax
d = 0.15 (Xmax

d − Xmin
d ), (26)

Vmin
d = −Vmax

d , (27)

and Xmax
d and Xmin

d are the maximum and minimum positions in the searching area, respectively.

3.2.3. Define New Criteria of Competitive Solutions

In the BA, a new solution is retained only if both conditions are satisfied, that is its fitness function
is smaller than that of the old solution (of the same Bat) and its assigned random value is equal to
or lower than the current loudness [30,31,35]. The selection technique of BA can expressed by the
following Algorithm 1.

Algorithm 1. Selection technique of BA

I f
(

FFd,new ≤ FFd
)

&
(
randd ≤ AG

d
)

Xd,new = Xd,new & AG+1
d = αAG

d
else

Xd,new = Xd,new &AG+1
d = AG

d
end

In the algorithm, if the two conditions are true, the loudness AG
d becomes much smaller than the

previous value because α is fixed at 0.9 and the possibility that better solution is kept to be low. Thus,
we suggest that the loudness should be set to 1 at the beginning and afterwards decreased by a very
small step size as shown in Equation (28):

AG
d = Gmax−

√
G

Gmax

= 1−
√

G
Gmax

(28)

The equation can increase the value of AG
d compared to that of Equation (23), giving an opportunity

for the use of a new solution with a better fitness function and replacement of old solutions with worse
fitness functions.

The proposed modified bat algorithm (MBA) has been applied for a complex optimal power
system operation problem where the combined heat and power outputs have been closely related
together. In this problem, the power system was supplied by many kinds of the normal thermal
generators and cogeneration sources.

3.3. Application

In CHPGED problems, a power system is supplied by Npp pure power generation units,
Nph pure heat generation units and Nc cogeneration units. Similar to other meta-heuristic algorithms,
the proposed MBA needs a set of Bats NB where each Bat has its own velocity and position. The position
of the Bat dth, called Xd (d = 1 ÷ NB), is a solution of the problem containing power outputs of (Npp−1)
pure power units and heat outputs of (Nph-1) pure heat generation units together with heat and power
outputs of Nc cogeneration units. The maximum iterations are fixed at beginning and the position of
Bats (solutions) NB will be updated time by time after each iteration. The search process- based MBA
will guide the Bats moving toward the prey (the optimal solution) quickly and stably as shown in the
following steps. The flowchart for solving the CHPGED is presented in Figure 2.
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Step 1: Initialization of the whole population

The initialization is implemented as follows:

Ppi,d = Pmin
pi + rand(Pmax

pi − Pmin
pi ); i = 2, ..., Npp, (29)

Pcj,d = Pmin
cj + rand(Pmax

cj − Pmin
cj ); j = 1, ..., Nc, (30)

Hcj,d = Hmin
cj + rand(Hmax

cj − Hmin
cj ); j = 1, ..., Nc, (31)

Hhk,d = Hmin
hk + rand(Hmax

hk − Hmin
hk ); k = 2, ..., Nph. (32)

The velocity of each Bat is initialized as:

Vd, = Vmin
d + rand(Vmax

d −Vmax
d ); d = 1, ..., NB. (33)

where Vmax
d , Vmin

d are obtained by applying the second modification, Equations (26) and
(27), respectively.
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From the initialized values of NB Bats, the fitness function corresponding to the position of each
Bat is calculated as follows:

FT(Xd) =
Npp

∑
i=1

FPi(Ppi,d) +
Nc
∑

j=1
Fcj(Pcj,d, Hcj,d) +

Nph

∑
k=1

Fhk(Hhk,d)

+Kp(Pp1,d − Plim
p1 )

2
+ Kh(Hh1,d − Hlim

h1 )
2
.

(34)

where Pp1,d nd Hh1,d are the power and heat output of the slack pure power and pure heat generation
units of the d-th solution, obtained from Equations (17) and (18), respectively; and Kp and Kh are
penalty coefficients for the power and heat outputs of those slack generation units, respectively.

The limits of the slack generation units Plim
p1 and Hlim

h1 in Equation (34) are determined as follows:

Plim
p1 =


Pmax

p1 if Pp1,d > Pmax
p1

Pmin
p1 if Pp1,d < Pmin

p1

Pp1,d otherwise.

(35)

Hlim
h1 =


Hmax

h1 if Hh1,d > Hmax
h1

Hmin
h1 if Hh1,d < Hmin

h1

Hh1,d otherwise.

(36)

Note that Pmax
p1 and Pmin

p1 are the maximum and minimum power generations of the slack power
generation unit, which must be similar to the limits of other pure power generation units. Hmax

h1 and
Hmin

h1 are the maximum and minimum heat productions of the slack heat generation unit to be similar
to the the limits of other pure heat generation units.

Among all initialized members, the Bat’s position with the lowest value of fitness functions is
assigned as the global best position (solution), X*.

Step 2: Update New Velocity and Position for Each Bat

In this proposed method, each Bat has a position and a velocity where the position represents a
solution and the velocity represents an updated step size for a new position. Therefore, the value of
the velocity has an impact on the obtained solution while the value of current frequency also plays
a very important role to generate an effective velocity. The adaptive frequency f G

d is caculated from
Equation (25) and the each Bat velocity is updated by applying Equation (20).

Furthermore, the new velocity needs to be checked by the optimal range of the velocity as
mentioned in Equations (26) and (27). The constraint for this velocity can be described by:

Vd =


Vmax

d if Vd > Vmax
d

Vmin
d if Vd < Vmin

d
Vd otherwise

; d = 1, ..., NB, . (37)

and a new position of each Bat related to the new velocity is determined from Equation (21).

Step 3: Search a New Solution

As described in the conventional BA [30,35], there is a possibility that a current Xd can be newly
produced around the current global best solution by applying Equation (22) if its random value is
less than the pulse rate rd, within range [0,1]. This rd is set to a specific value at the beginning of
the search process and increased during the following iterations. Obviously, if the rd is set to at a
high value equal to 1, almost all new solutions are nearby the current global best solution and the
final optimal solution may possibly fall in a local optimal value. Inversely, few solutions could be
newly generated that can be nearby the global best solution if the rd is set to a very low value. Each
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specific optimization problem should be existed a suitable range of the pulse rates depending on its
characteristics. Therefore, in order to discover the suitable, the pulse rates of the MBA for the CHPGED
problem will be carried out by varying within range [0, 1] with a step of 0.1.

The new solutions need to be checked whether they satisfy their limits, which are mentioned in
Equations (9)−(12), by using the following models:

Ppi,d =


Pmax

pi if Ppi,d > Pmax
pi

Pmin
pi if Ppi,d < Pmin

pi
Ppi,d otherwise

; i = 2, ..., Npp (38)

Pcj,d(Hcj,d) =


Pmax

cj (Hcj,d) if Pcj,d(Hcj,d) > Pmax
cj (Hcj,d)

Pmin
cj (Hcj,d) if Pcj,d(Hcj,d) < Pmin

cj (Hcj,d)

Pcj,d(Hcj,d) otherwise
; j = 1, ..., Nc (39)

Hcj,d(Pcj,d) =


Hmax

cj (Pcj,d) if Hcj,d(Pcj,d) > Hmax
cj (Pcj,d)

Hmin
cj (Pcj,d) if Hcj,d(Pcj,d) < Hmin

cj (Pcj,d)

Hcj,d(Pcj,d) otherwise
; j = 1, ..., Nc (40)

Hhk,d =


Hmax

hk if Hhk,d > Hmax
hk

Hmin
hk if Hhk,d < Hmin

hk
Hhk,d otherwise

; k = 2, ..., Nph (41)

The power of the slack power generation unit and the heat of the slack heat generation unit can
be calculated by using Equations (17) and (18), and can be checked by applying Equations (35) and
(36), respectively.

Step 4: Find New Solution through the New Criteria of Competitive Solutions

The current solutions are evaluated through the calculation of the fitness functions, and then
the selection of between the current and the initialized solutions) is decided according to the last
modification in Section 3.2. We update the new loudness Ad according to the current number of
iterations G as shown in Equation (28).

4. Case Study and Discussion

In the section, four study cases with different numbers of units, constraints and objective functions
are carried out for investigating the performance of MBA. The description of the four cases in detail is
as follows:

Case 1: We consider a power system with seven generation units under two conditions of transmission
power losses and the non-convex fuel cost function.

Case 2: We consider a power system with 24 generation units under two conditions of the neglecting
power losses and the non-convex fuel cost function.

Case 3: We consider a power system with 48 generation units under two conditions of the neglecting
power losses and the non-convex fuel cost function.

Case 4: We consider a IEEE 14-bus system with three pure power generation units, two cogeneration
units and one pure heat generation unit in which non-convex fuel cost function is considered
for slack pure power generation unit.

The power and heat load demands and the information about the number of Bats, number of
iterations are listed in Table 1. The control parameters for the BA and the proposed method are chosen
at each study case with the purpose of obtaining acceptable results for both the BA and MBA methods
when compared to other existing methods.
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Table 1. Information of BA and proposed MBA.

Method Test Case No. of Units PD (MW) HD (MWth) NB Gmax

BA

Case 1 7 600 150 40 200
Case 2 24 2350 1250 40 200
Case 3 48 4700 2500 60 200
Case 4 6 259 400 40 200

Proposed
MBA

Case 1 7 600 150 20 200
Case 2 24 2350 1250 20 150
Case 3 48 4700 2500 30 200
Case 4 6 259 400 20 200

For the CHPGED problem, in this paper some quantitative criteria such as minimum cost ($/h),
maximum cost ($/h), average cost ($/h), standard deviation ($/h), and successful rate (number of
successful runs/total runs) are considered to compare the performance in which the comparison of
costs is used to evaluate the quality of searching process whilst the successful rate reflects the ability of
handling the complex problem. The initial pulse rate is considered in range [0.1, 1] with step 0.1.

However, how to verify the effectiveness and robust of the BAs with other methods mentioned
in the literature review may not be an easy mission because, in fact, different studies may select
the different computer configurations and different values of the population size and maximum
number of iterations. In order to adapt to the mentioned differences, the maximum number of fitness
evaluations (FEmax) and the scaled computational time (SCT) introduced in [36] and [37] have been
used, respectively, re-applied as two relative criteria for fair comparisons when different studies have
run their proposed methods in different conditions as different population sizes, different iteration
number, and different computer configuration. In fact, for meta-heuristics, FEmax is also a comparison
criterion to analyze the effectiveness among considered methods [36]. For this study, we consider
the FEmax = NP × Gmax [37] to compare the performance of all methods. This is a value that directly
concerned with the quality of obtained solution and execution time. On the other hand, the SCT
in Equation (42) has been applied to convert the reported CPU time from a different processor to
a common value associated with the same processor [37]. A 2.4 GHz processor used in the study.
In addition, to show how many times of a proposed method is faster than other ones, SCT should be
expressed in per unit (p.u.) as shown in Equation (43) [38,39]:

Scaled CPU time (second) =
reported CPU processor (GHz)
CPU processor from the study

× reported CPU time (second) (42)

Scaled CPU time (Per unit) =
Scaled CPU time (second)
MBA′s CPU time (second)

(43)

4.1. Case 1

The power system with seven generation units, including four pure power generation units, two
cogeneration units, and one pure heat generation unit, is considered to be the first case. This power
system supplies an electricity power demand of 600 MW and heat demand of 150 MWth [14]. The data
of this system are given in Tables A1–A3 and in real power loss matrix coefficients in the Appendix A.
The obtained results with different pulse rate values through BA and MBA are listed in Tables 2 and 3,
respectively. It is pointed out that the best minimum cost from BA is obtained at pulse rate of 0.6 whilst
that from MBA is at pulse rate of 0.9; however, the better results from the two methods tend to be
in the range from 0.6 to 0.9 while the range from 0.1 to 0.5 results in worse average cost, maximum
cost, and standard deviation. When calculating the difference between two values, all the best values
of the minimum, average, and maximum cost and standard deviation from the proposed method
are less than that from BA by $199.1353, $1080.5437, $431.4505, and $118.6701, respectively. Clearly,
the proposed method can reflect higher efficiency than BA in terms of optimal solution and the stable
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quality of solution. In addition, this case study also investigates the success rate (SR) between the two
methods and reports the values at the final column. From the reported values, it can be concluded that
the proposed method can handle all constraints more effectively than BA since SR from the proposed
method is around 96% but that is only from 70% to 80.6% obtained by BA. The whole search process by
using BA and the proposed method at the best run with the lowest fuel cost plotted in Figure 3 from
the fourth iteration onwards indicates that the proposed method can find better optimal solution than
BA at each iteration. In addition, the same fitness values from the 80th iteration onwards also report
that BA has trapped a local optimal solution and its search could not be out of the local zone. On the
contrary, the proposed method could tackle the drawback since its fitness value decreased gradually
after a low number of iterations. Figure 4 plots the fluctuation of 100 obtained fitness function values
by BA at r0 = 0.6 and the proposed method at r0 = 0.9. This figure shows that the proposed method
has obtained higher peak than BA while the stabilization of 100 runs of the proposed method is much
better than those from BA. Most of runs, MBA has yielded better optimal solutions than BA because
most points of MBA are below points of BA. On the other hand, there are many solutions having
approximate fitness functions with the best solution of MBA while points that are close to the best
point of BA are few.

Table 2. Result obtained by conventional BA with different pulse rates for Case 1.

r0
Min. Cost

($/h)
Average

Cost ($/h)
Max.

Cost($/h)
Std. Dev.

($/h)
CPU

Time (s)
Successful

Rate

0.1 10973.3016 13089.434 16494.8999 1058.006 0.152 70%
0.2 11299.8738 12835.2335 17153.7671 1130.479 0.147 74%
0.3 10884.4859 12756.4205 15103.4264 879.1722 0.154 80%
0.4 10854.9498 12733.3401 16592.676 1053.4902 0.154 74.1%
0.5 10834.1996 12670.6388 15244.5295 897.1314 0.157 80.6%
0.6 10376.4676 12891.1092 15073.8855 1029.8753 0.154 73.5%
0.7 10791.4189 13017.7221 16482.8848 1313.3115 0.152 78.7%
0.8 10847.9788 12822.8466 14827.1693 974.4667 0.151 72.9%
0.9 10847.0621 12820.3035 15166.9521 964.7737 0.146 76.9%

Table 3. Results obtained by the proposed method with different pulse rates for Case 1.

r0
Min. Cost

($/h)
Average

Cost ($/h)
Max.

Cost($/h)
Std. Dev.

($/h)
Cpu

Time (s)
Successful

Rate

0.1 10,398.1675 12,782.6709 18,007.4111 1623.8038 0.097 97.3%
0.2 10,327.0576 12,178.3402 17,566.5925 1149.3772 0.098 95%
0.3 10,364.4183 11,856.9317 17,442.3304 985.1259 0.094 96.2%
0.4 10,264.8436 11,666.1561 15,921.6793 830.0485 0.097 95.5%
0.5 10,320.5175 11,590.0951 14,829.7757 760.5021 0.097 96.7%
0.6 10,253.3078 11,680.8227 16,413.1656 830.2498 0.097 96.3%
0.7 10,264.4059 11,668.139 14,395.7188 797.647 0.099 96.3%
0.8 10,228.1634 11,759.8685 15,946.7045 967.4042 0.099 95.3%
0.9 10,177.3323 11,854.4444 16,173.1346 1090.2966 0.101 95.2%

Table 4 illustrates the minimum cost, execution time, and associated information with the
comparison of computational time (CPU time) using MBA and other methods. Observing this table,
the fuel cost comparison indicates that MBA finds a better optimal solution than most methods
excluding two methods, that are GCPSO [23] and GWO [25] with slightly less costs of $33.54 and
$66.09 than MBA, respectively. Despite the disadvantage, MBA is still a the strongest method since
its CPU time is the fastest among the compared methods, especially 1.01 s for GCPSO [23] and 5.26 s
for GWO [25] while that is only 0.1 second for MBA. Moreover, as indicated in the FEmax and SCT (s)
columns, MBA used 4000 fitness evaluations and spent a runtime of 0.1 second, which are lower than
all other methods like BCO [14] and AIS [17], that used 5,000 fitness evaluations and take 6.45 s and
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6.62 s, respectively. When compared to GCPSO [23] and GWO [25], FEmax and SCT(s) are 20,000 and
0.76 s when using GCPSO, respectively. Whilst there was no population size reported when using
GWO, it has taken a quite long time of 5.04 s to search the solution. For the SCTs (PU), MBA is much
faster than other methods by 50.41, 64.45 and 80.90 times corresponding to GWO [25], BCO [14] and
RCGA [14], respectively. Based on three comparisons, we conclude that the proposed method is a very
efficient method for solving the CHPGED problem for a system with seven units. The optimal solution
obtained for this study case is given in Table A4 in the Appendix A.Energies 2018, 11, 3113 14 of 28 
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Table 4. Result comparison among methods for Case 1.

Method Min Cost
($/h) NP/Gmax FEmax CPU (S) Processor SCT (S) SCT (Pu)

BCO [14] 10,317 50/100 5000 5.1563 3 6.45 64.45
RCGA [14] 10,667 100/100 10,000 6.4723 3 8.09 80.90
AIS [17] 10,355 50/100 5000 5.2956 3 6.62 66.20
EP [17] 10,390 100/100 10,000 5.3274 3 6.66 66.59
PSO [17] 10,613 100/100 10,000 5.3944 3 6.74 67.43
LCPSO [23] 10199.5458 10/2000 20,000 1.02 1.8 0.77 7.65
LCPSO-CD [23] 10279.1023 10/2000 20,000 1.02 1.8 0.77 7.65
LWPSO [23] 10194.0217 10/2000 20,000 1.03 1.8 0.77 7.73
LWPSO-CD [23] 10265.6716 10/2000 20,000 1.02 1.8 0.77 7.65
GCPSO [23] 10143.7898 10/2000 20,000 1.01 1.8 0.76 7.58
GCPSO-CD [23] 10294.2369 10/2000 20,000 1.02 1.8 0.77 7.65
GWPSO [23] 10243.0249 10/2000 20,000 1.03 1.8 0.77 7.73
GWPSO-CD [23] 10281.6835 10/2000 20,000 1.03 1.8 0.77 7.73
CSA [26] 10177.67 10/1500 30,000 1.2 1.8 0.90 9.00
GWO [25] 10111.24 -/200 - 5.26 2.3 5.04 50.41
BA 10376.4676 40/200 8000 0.154 2.4 0.15 1.54
MBA 10177.3323 20/200 4000 0.1 2.4 0.1 1

4.2. Case 2

The power system with 24 generation units consisting of 13 pure power generation units, five pure
heat generation units, and six cogeneration units, is considered to be the second study case. This power
system supplies an electricity power demand of the electrical load demand 2350 MW and a heat load
demand of 1250 MWth. The data of this system has been taken from [18] and are given in Tables A5–A7
in the Appendix A. The two control parameters NB and Gmax are set at 40 and 200 for BA, respectively;
and set at 20 and 150 for MBA, respectively. For the study case, SR when applying BA is 74.6% poorer
than that applying MBA which is 92.8%. For the minimum fuel costs, when applying BA and MBA,
they are $58,198.82 and $57,851.9133, respectively. The fitness function value of the best solution from
the 2nd iteration onwards, when using BA and MBA, is plotted in Figure 5. Observing this figure,
from the beginning to the 90th iteration, BA and MBA have found approximately good solutions and
it is difficult to state which one is better than the other, however, from the 90-th iteration to the end
of the search process, BA has failed to improve its search ability because the fitness function values
seemed to decrease inconsiderably and it have trapped at a local optimum. Unlikely BA, MBA has
still improved its solutions gradually and its fitness function values have been much lower than those
of BA. This means that MBA could tackle the local optimum better than BA. Figure 6 plots the 100
fitness function values of BA and MBA. Observing this figure, MBA is superior to BA because most
points of MBA are below those of BA. Besides, the differences of fitness function values of BA and
MBA are too high, leading to a space above with approximately black color while the space below with
approximately blue color. Other information that can be seen is that MBA can search many solutions
of similar quality for the best solution.

Table 5 lists a comparison of the results yielded by many reference methods. The minimum cost
yielded by MBA is $ 57,851.9133, which is less than most methods eliminating GSO [20], OBGSO [22]
and GWO [24]. The comparison implies that the proposed method is ranked as the fourth best optimal
solution among the compared methods. In addition, to indicate the exact amount of money that MBA
can save compared to others, we have calculated the saving cost by determining the difference between
the reported cost from others and that from MBA as shown in the last column of Table 5. Observing
this figure, MBA obtained a higher cost than GSO [20], OBGSO [22] and GWO [24] by $5.0733, $8.3933
and $22.6633, respectively. Compared to other methods, MBA can save from $4.3567 to $1884.3467
related to OTLBO [21] and PSO [18], respectively. On the other hand, to apply fair comparisons among
the different methods, the values of FEmax and SCT (in seconds and PU) have also been calculated



Energies 2018, 11, 3113 16 of 27

and listed in Table 5. It is shown in this table that MBA has employed the second lowest FEmax with
3,000 fitness evaluations, which is only higher than that of GWO [24] (1350 fitness evaluations) and
significantly less than 1,000,000 of PSO as well as TVAC-PSO [18]. As for the criterion of convergence
speed, MBA is outstanding over all other methods, e.g., 75 times faster than GWO [24] and 635.29 times
as fast as PSO [18]. In this criterion, BA is also faster than all methods except MBA with the SCT (in PU)
of 1.43 (i.e., 1.43 times slower than MBA). Based on the three advantages over other methods including
the best optimal solution, the second lowest FEmax and the fastest convergence speed, the proposed
MBA is absolutely superior to all methods and it is a very efficient method for solving the CHPGED
problem in the system with 24 units. The optimal solution obtained by the proposed MBA for case 2 is
given in Table A8 in the Appendix A.
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Table 5. Result comparison for Case 2.

Method Min.
Cost ($/h) NP Gmax FEmax

CPU Time
(S)

Processor
(Ghz)

SCT
(S)

SCT
(PU)

Saving
Cost ($/h)

PSO [18] 59,736.26 500 2000 1,000,000 53.36 2.0 44.47 635.29 1884.3467
TVAC-PSO [18] 58,122.75 500 2000 1,000,000 52.25 2.0 43.54 622.00 270.8367

CGSO [19] 58,225.75 25 300 7500 35.54 2.5 37.02 528.86 373.8367
IGSO [19] 58,049.02 25 300 7500 35.54 2.5 37.02 528.86 197.1067
TLBO [21] 58007 50 300 15,000 5.67 2.53 5.98 85.43 155.0867

OTLBO [21] 57,856.27 50 300 15,000 5.82 2.53 6.14 87.71 4.3567
GWO [24] 57,846.84 30 45 1350 5.48 2.3 5.25 75.00 −5.0733
GSO [20] 57,843.52 100 200 20,000 5.41 3.0 6.76 96.57 −8.3933

OBGSO [22] 57,829.25 100 200 20,000 5.63 3.0 7.04 100.57 −22.6633
BA 58,198.82 40 200 8000 0.1 2.4 0.1 1.43 346.9067

MBA 57,851.91 20 150 3000 0.07 2.4 0.07 1.00 -

4.3. Case 3

In order to investigate more the capability of the proposed method, in this case study, we consider
a large-scale power system with 48 units, consisting of 26 pure power generation units, 10 pure heat
generation units, and 12 cogeneration units. This power system supplies a 2500 MWth heat demand
and a 4700 MW power demand [18]. The data of the system can be obtained by duplicating the data of
System 2 in Case 2. The control parameters NB and Gmax are fixed at 60 and 200 for BA, respectively;
and they are fixed at 30 and 200 for MBA, respectively. Figure 7 plots the fitness function value of the
best solution between the 3rd iteration and the 200th iteration obtained when applying BA and MBA,
respectively. In general, the best solutions from the two methods could dramatically increase their
quality during the first half of the process, afterwards they showed a slight decrease and finally reached
the lowest value at the end of the search. However, as shown in Figure 7, the rate of improvement of
the fitness values in MBA has been higher than that in BA during the search process, and especially
during the last twenty iterations, where MBA’s fitness values have been still decreased significantly
but BA’s fitness values have almost kept constant. Similar to the previous Cases 1 and 2, BA has still
become trapped in a local optimum while MBA could tackle the drawback for the case. Figure 8
can confirm the superiority of MBA over BA as in Cases 1 and 2 as most points of MBA are below
those from BA. However, there is a big difference in this figure compared to Figures 4 and 6 in that
MBA has more stable search than BA for the complicated case with 48 units and non-convex fuel cost
function because the points of BA are in the the upper space while the space below belongs to the
points of MBA.

Table 6 shows the results in terms of minimum cost, computational time, FEmax, and SCT
(in second and PU) of BA, MBA and other methods. In addition, the saving costs have also been
included in the table for further comparisons similar to the two previous cases. As seen from this
table, the modifications on MBA are successful for searching for an optimal solution since MBA can
obtain better minimum fuel cost, lower FEmax, and faster SCT compared to its original BA. In fact,
these values from MBA are $115966.0232, 6000 fitness evaluations, and 0.08 s, respectively; which
are much lower than $117627.2256, 12,000 fitness evaluations and 0.1 s from BA, respectively. A
further investigation of the efficiency of MBA can be executed by focusing on the saving cost and
the SCT in PU. Clearly, MBA is much more effective and robust than all methods because it can save
huge amounts of money and converges to an optimum significantly faster. For instance, it can save
more money and is faster than TVAC-PSO [18] by $1858.8728 and 972.5 times, GSO [20] by $491.9368
and 148.75 times, TLBO [21] by $ 773.3408 and 136.25 times, OBGSO [22] by $437.3078 and 153.75
times, GWPSO-CD [23] by $802.1124 and 688.75 times, and CSA [26] by $877.2768 and 587.5 times.
These compared methods are either well-known original algorithms or improved variants of original
algorithms, which have been famous and superior to others in previously published articles. From the
three advantages of the MBA over all methods such as the lowest minimum cost, lowest maximum
number of fitness evaluations and fastest convergence speed, it can be concluded that MBA is the
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most efficient method for solving the system up to 48 units considering valve effects on pure power
generation units. The optimal solution obtained by the proposed MBA for the case is given in Table A9
in Appendix A.
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Table 6. Result comparison for Case 3.

Method Min. Cost
($/h) NP Gmax FEmax CPU Processor

(Ghz) SCT (S) SCT
(Pu)

Saving
Cost ($)

PSO [18] 119,708.8818 500 2000 1,000,000 93.32 2.0 77.8 972.5 3742.8586
TVAC-PSO [18] 117,824.896 500 2000 1,000,000 89.63 2.0 74.7 933.75 1858.8728
GSO [20] 116,457.96 200 300 60,000 9.51 3.0 11.9 148.75 491.9368
TLBO [21] 116,739.364 50 300 15,000 10.38 2.53 10.9 136.25 773.3408
OTLBO [21] 116,579.239 50 300 15,000 10.93 2.53 11.5 143.75 613.2158
OBGSO [22] 116,403.331 200 300 60,000 9.87 3.0 12.3 153.75 437.3078
LCPSO [23] 117,248.7934 20 80,000 1,600,000 72.4 1.8 54.3 678.75 1282.7702
LCPSO-CD [23] 117,164.117 20 80,000 1,600,000 69.8 1.8 52.4 655 1198.0938
LWPSO [23] 117,088.3912 20 80,000 1,600,000 71.6 1.8 53.7 671.25 1122.368
LWPSO-CD [23] 116,859.8498 20 80,000 1,600,000 73.7 1.8 55.3 691.25 893.8266
GCPSO [23] 117,374.0338 20 80,000 1,600,000 74.5 1.8 55.9 698.75 1408.0106
GCPSO-CD [23] 117,537.475 20 80,000 1,600,000 68.7 1.8 51.5 643.75 1571.4518
GWPSO [23] 116,572.7024 20 80,000 1,600,000 65.7 1.8 49.3 616.25 606.6792
GWPSO-CD [23] 116,768.1356 20 80,000 1,600,000 73.4 1.8 55.1 688.75 802.1124
CSA [26] 116,843.3 50 30,000 1,500,000 62.7 1.8 47 587.5 877.2768
BA 117,627.2256 60 200 12,000 0.11 2.4 0.1 1.25 1661.2024
MBA 115,966.0232 30 200 6000 0.08 2.4 0.08 1 -

4.4. Case 4

In order to evaluate the MBA capability of dealing with the ccomplicated constraints of the
CHPGED problem, we have tested both MBA and BA in study Case 4 with the use of an IEEE 14-bus
system. The original IEEE 14-bus system shown in Figure 9 covers five generators located at five
different buses 1, 2, 3, 6 and 8, 15 load buses, 20 transmission branches, and three transformers and
one compensator. For application of the combined heat and power generation units, we have replaced
the pure power generation units at bus 2 and bus 3 with two different cogeneration units, which have
been taken from [18]. In addition, one pure heat generation unit taken from [18] has also been installed
for supplying heat to load in addition to the heat from the two cogeneration units. The power demand
of 15 loads is 259 MW while the heat demand of load is supposed to be 400 MWth. The whole
data of the IEEE 14-bus system can be obtained by referring to [40] while the entire data of three
pure power generation units, two cogeneration units and one pure heat generation unit are given in
Tables A10–A12 of Appendix A.
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 BA MBA BA MBA BA MBA 

0.1 12,954.38546 12,600.5759 13,941.01584 13,048.5264 67% 88% 353.80956 

0.2 12,730.4359 12,597.6011 13,163.772 12,987.8871 69% 90% 132.8348 

0.3 12,700.5991 12,568.8029 13,344.9665 12,892.5259 71% 92% 131.7962 

0.4 12,928.5284 12,578.4712 13,914.9948 12,882.534 73% 93% 350.0572 

0.5 12,679.384 12,544.0718 13,218.1625 12,970.4853 75% 93% 135.3122 

0.6 12,669.95783 12,563.0969 13,196.25723 12,974.4669 74% 95% 106.86093 

0.7 12,668.3388 12,552.5954 13,193.6942 12,984.5393 77% 94% 115.7434 

Figure 9. IEEE 14 bus system.
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For implementing BA and MBA, we have set NB and Gmax to 20 and 150. As a result, BA could
not deal with the constraints successfully whilst MBA could achieve a success rate of lower than
50% but the optimal solutions were of low quality. Thus, we have increased the two parameters to
20 and 200 for MBA but 40 and 200 for BA. Table 7 shows minimum cost, average cost and success
rate obtained by BA and MBA for 100 successful runs. As we may observe, the minimum values
of BA and MBA can show that MBA could find better optimal solutions than BA corresponding to
each value of r0. The savings cost also indicates that MBA could improve the results from $81.612
to $353.80956. The best minimum of BA is $12,614.0837 while that of MBA is $12,532.4616. Clearly,
MBA could improve results over BA by 0.65%. However, the result can be improved more significantly
if we decrease NB of BA to 20 or we increase NB of MBA to 40. Although MBA has used a smaller
population size it always get a higher success rate than BA. The highest SR of MBA is approximately
95% at r0 = 0.6, 0.8 and 0.9, but BA only gets 77% at r0 = 0.7. The search process of the best run of BA at
r0 = 0.9 and MBA at r0 = 0.8 are depicted in Figure 10. Besides, the best cost of 100 successful runs of
BA at r0 = 0.9 and MBA at r0 = 0.8 are shown in Figure 11. Figure 10 indicates that MBA could find
better solutions than BA after the 23rd iteration, and the solution of MBA at iteration 120 had a lower
cost than that of BA at the final iteration. It is clearly visible that MBA was faster than BA. On the other
hand, MBA also shows its better stability since most runs of MBA had a lower cost than those of BA as
shown in Figure 11. Thus, we can conclude that MBA can deal with the complicated constraints of
CHPGED problems considering a transmission power network and its performance is significantly
improved compared to BA. The optimal solution of MBA can be obtained by referring to Table A13 in
Appendix A.

Table 7. Results obtained by BA and MBA for IEEE 14-bus system.

r0
Min. Cost ($/h) Average Cost ($/h) Successful Rate (%) Saving

Cost ($/h)BA MBA BA MBA BA MBA

0.1 12,954.38546 12,600.5759 13,941.01584 13,048.5264 67% 88% 353.80956
0.2 12,730.4359 12,597.6011 13,163.772 12,987.8871 69% 90% 132.8348
0.3 12,700.5991 12,568.8029 13,344.9665 12,892.5259 71% 92% 131.7962
0.4 12,928.5284 12,578.4712 13,914.9948 12,882.534 73% 93% 350.0572
0.5 12,679.384 12,544.0718 13,218.1625 12,970.4853 75% 93% 135.3122
0.6 12,669.95783 12,563.0969 13,196.25723 12,974.4669 74% 95% 106.86093
0.7 12,668.3388 12,552.5954 13,193.6942 12,984.5393 77% 94% 115.7434
0.8 12,632.0112 12,532.4616 13,169.9174 12,827.6351 767% 95% 99.5496
0.9 12,614.0837 12,532.4717 13,001.5593 12,785.6208 76% 95% 81.612
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5. Conclusions

This paper has proposed a novel modified Bat algorithm (MBA) developed based on the
conventional bat algorithm (BA) with the purpose of finding high quality solutions for CHPGED
problems. Challenges to MBA arise from non-convex objective functions and the complicated
constraints of CHPGED problems. Complex non-convex objective functions are caused by the
consideration of valve point loading effects on pure power generation unit while the complex
constraints are from the feasible working zone of cogeneration units and of all components in
transmission power network of IEEE 14-bus system. This proposed method has been constructed
by performing three modifications. The first is the adaptive frequency adjustment, the second is
the optimal range of new velocities, and the third is the retained condition of a good solution.
These improvements have been implemented for overcoming the shortcomings of BA. As a result,
the proposed method has been more effective than BA for applications to four different CHPGED
problem systems in terms of higher quality solution, higher success rate, faster search speed and more
stable search ability. The comparisons with other existing methods have shown that the proposed
method had the third best solution, the lowest fitness evaluations and the fastest convergence speed
for the Case 1 with seven generation units, but the best method regarding its optimal solutions for
the Cases 2 and 3, which were systems up to 24 and 48 generation units, respectively. MBA has
continued to show its potential search by dealing with IEEE 14 bus system and obtaining outstanding
cost as well as success rate as compared to BA. Consequently, we can reach the conclusion that the
proposed method is a very effective method for solving combined heat and power systems with
different challenges from pure generation units, cogeneration units and transmission power networks.
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List of symbols

Hmax
cj The maximum heat of the jth cogeneration unit

Hmax
hk The maximum heat of the kth pure heat generation unit

Xmax
d The maximum position in the searching area

Pmax
cj The maximum power of the jth cogeneration unit

Pmax
pi The maximum power of the ith power generation unit

Hmin
cj The minimum heat of the jth cogeneration unit

Hmin
hk The minimum heat of the kth pure heat generation unit

Xmin
d The minimum position in the searching area

Pmin
cj The minimum power of the jth cogeneration unit

Pmin
pi The minimum power of the ith pure power generation unit

Qmin
pi , Qmax

pi The minimum and maximum reactive power of the ith pure power generation unit

Qmin
cj , Qmax

cj The minimum and maximum reactive power of the jth cogeneration unit

acj, bcj, ccj, kcj, lcj, mcj The cost function coefficients of the jth cogeneration unit
Ad The average loudness of all Bats
ahk, bhk, chk The cost function coefficients of the kth pure generation unit
api, bpi, cpi, epi, fpi The cost function coefficients of the ith pure power generation unit
Bij, B0i, B00 Power loss coefficients in power loss matrix
Fcj(Pcj, Hcj) The cost function of the jth cogeneration unit
fdG The adaptive frequency
FEmax The maximum number of fitness evaluation
Fhk(Hhk) The cost function of the kth pure heat generation unit
Fpi(Ppi) The cost function of the ith pure power generation unit
G, Gmax The current and maximum iterations, respectively
Hcj The heat output of the jth cogeneration unit
HD The heat demand
Hhk The heat output of the kth pure heat generation unit
Kh The penalty coefficients for the heat outputs of slack generation unit
Kp The penalty coefficients for the power output of slack generation unit
NB Number of Bats
Nc Number of the cogeneration unit
Nph Number of the pure heat generation unit
Npp Number of the pure power generation unit
Pcj The power output of the jth cogeneration unit
PD The power demand
PL The loss power in the transmission line
Ppi The power output of the ith pure power generation unit
SCT The scaled computational time
SR The successful rate
ε The random number
randd A random number for solution d

Appendix A

Table A1. Characteristic of cogeneration units for case 1.

Unit acj bcj ccj kcj lcj mcj
Feasible Regions

[Pcj, Hcj]

1 2650 14.5 0.0345 4.2 0.03 0.031 [247, 0], [215, 180],
[81, 104.8], [98.8, 0]

2 1250 36 0.0435 0.6 0.027 0.11 [125.8, 0], [125.8, 32.4], [110.2,
135.6], [40, 75], [44, 15.9], [44, 0]
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Table A2. Characteristic of pure power generation units for case 1.

Unit api cpi bpi epi fpi [Pmin
pi , Pmax

pi ]

1 25 2 0.008 100 0.042 [10, 75]
2 60 1.8 0.003 140 0.04 [20, 125]
3 100 2.1 0.0012 160 0.038 [30, 175]
4 120 2 0.001 180 0.037 [40, 250]

Table A3. Characteristic of pure heat generation unit for case 1.

Unit ahk bhk chk [Hmin
hk , Hmax

hk ]

1 950 2.0109 0.038 [0, 2695.2]

Power loss coefficient matrix.

B = 10−7


49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39



Table A4. The best solution obtained by the proposed MBA method for test system 1.

Pp1 (MW) 53.8546 Pp4 (MW) 211.1972 Hc1 (MWth) 43.9396

Pp2 (MW) 101.4966 Pc1 (MW) 91.4051 Hc2 (MWth) 73.9860
Pp3 (MW) 109.797 Pc2 (MW) 40.1921 Hk1 (MWth) 32.0744

Table A5. Characteristic of cogeneration units for case 2.

Unit acj bcj ccj kcj lcj mcj
Feasible regions

[Pcj, Hcj]

1 2650 14.5 0.0345 4.2 0.03 0.031 [98.8,0], [81, 104.8],
[215, 180], [247, 0]

2 1250 36 0.0435 0.6 0.027 0.011 [44, 0], [44, 15.9], [40, 75], [110.2, 135.6],
[125.8, 32.4], [125.8, 0]

3 2650 14.5 0.0345 4.2 0.03 0.031 [98.8, 0], [81, 104.8],
[215, 180], [247, 0]

4 1250 36 0.0435 0.6 0.027 0.011 [44, 0], [44, 15.9], [40, 75], [110.2, 135.6],
[125.8, 32.4], [125.8, 0]

5 2650 34.5 0.1035 2.203 0.025 0.051 [20, 0], [10, 40],
[45, 55], [60, 0]

6 1565 20 0.072 2.34 0.02 0.04 [35, 0], [35, 20], [90, 45],
[90, 25], [105, 0]

Table A6. Characteristic of pure power generation units for case 2.

Unit api cpi bpi epi fpi [Pmin
pi , Pmax

pi ]

1 550 8.1 0.00028300 0.035 [0, 680]
2 309 8.1 0.00056200 0.042 [0, 360]
3 309 8.1 0.00056200 0.042 [0, 360]
4 240 7.74 0.00324150 0.063 [60, 180]
5 240 7.74 0.00324150 0.063 [60, 180]
6 240 7.74 0.00324150 0.063 [60, 180]
7 240 7.74 0.00324150 0.063 [60, 180]
8 240 7.74 0.00324150 0.063 [60, 180]
9 240 7.74 0.00324150 0.063 [60, 180]

10 126 8.6 0.00284100 0.084 [40, 120]
11 126 8.6 0.00284100 0.084 [40, 120]
12 126 8.6 0.00284100 0.084 [55, 120]
13 126 8.6 0.00284100 0.084 [55, 120]
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Table A7. Characteristic of pure heat generation unit for case 2.

Unit ahk bhk chk [Hmin
hk , Hmax

hk ]

1 950 2.0109 0.038 [0, 2695.20]
2 950 2.0109 0.038 [0, 60]
3 950 2.0109 0.038 [0, 60]
4 480 3.0651 0.052 [0, 120]
5 480 3.0651 0.052 [0, 120]

Table A8. The best solution obtained by the proposed MBA method for test system 2.

Pp1 (MW) 538.5749 Pp11 (MW) 77.2659 Hc2 (MWth) 75.4862
Pp2 (MW) 299.4602 Pp12 (MW) 55.0000 Hc3 (MWth) 104.8000
Pp3 (MW) 299.4602 Pp13 (MW) 55.0000 Hc4 (MWth) 75.4862
Pp4 (MW) 109.9476 Pc1 (MW) 81.0000 Hc5 (MWth) 40.0444
Pp5 (MW) 109.9476 Pc2 (MW) 40.5637 Hc6 (MWth) 20.0131
Pp6 (MW) 109.9476 Pc3 (MW) 81.000 Hk1 (MWth) 469.3734
Pp7 (MW) 109.9476 Pc4 (MW) 40.5637 Hk2 (MWth) 59.9983
Pp8 (MW) 109.9476 Pc5 (MW) 10.1044 Hk3 (MWth) 59.9983
Pp9 (MW) 109.9476 Pc6 (MW) 35.0557 Hk4 (MWth) 120.0000
Pp10 (MW) 77.2659 Hc1 (MWth) 104.8 Hk5 (MWth) 120.000

Table A9. The best solution obtained by the proposed MBA method for test case 3.

Pp1 (MW) 536.3301 Pp21 (MW) 109.1864 Hc3 (MWth) 75.0927
Pp2 (MW) 298.7655 Pp22 (MW) 109.1864 Hc4 (MWth) 75.0927
Pp3 (MW) 298.7655 Pp23 (MW) 40.0095 Hc5 (MWth) 40.2060
Pp4 (MW) 109.1864 Pp24 (MW) 40.0095 Hc6 (MWth) 20.1698
Pp5 (MW) 109.1864 Pp25 (MW) 91.98 Hc7 (MWth) 105.1408
Pp6 (MW) 109.1864 Pp26 (MW) 91.9800 Hc8 (MWth) 105.1408
Pp7 (MW) 109.1864 Pc1 (MW) 81.6105 Hc9 (MWth) 75.0927
Pp8 (MW) 109.1864 Pc2 (MW) 81.6105 Hc10 (MWth) 75.0927
Pp9 (MW) 109.1864 Pc3 (MW) 40.1085 Hc11 (MWth) 40.2060
Pp10 (MW) 40.0095 Pc4 (MW) 40.1085 Hc12 (MWth) 20.1698
Pp11 (MW) 40.0095 Pc5 (MW) 10.4829 Hk1 (MWth) 465.8057
Pp12 (MW) 91.98 Pc6 (MW) 35.3783 Hk2 (MWth) 60.0000
Pp13 (MW) 91.98 Pc7 (MW) 81.6105 Hk3 (MWth) 60.0000
Pp14 (MW) 551.8145 Pc8 (MW) 81.6105 Hk4 (MWth) 120.0000
Pp15 (MW) 298.7655 Pc9 (MW) 40.1085 Hk5 (MWth) 120.0000
Pp16 (MW) 298.7655 Pc10 (MW) 40.1085 Hk6 (MWth) 472.5088
Pp17 (MW) 109.1864 Pc11 (MW) 10.4829 Hk7 (MWth) 60.0000
Pp18 (MW) 109.1864 Pc12 (MW) 35.3783 Hk8 (MWth) 60.0000
Pp19 (MW) 109.1864 Hc1 (MWth) 105.1408 Hk9 (MWth) 120.0000
Pp20 (MW) 109.1864 Hc2 (MWth) 105.1408 Hk10 (MWth) 120.0000

Table A10. Characteristic of cogeneration units for case 4.

Location acj bcj ccj lcj kcj mcj
Feasible regions

[Pcj, Hcj]
[Qmin

cj , Qmax
cj ]

Bus 2 2650 34.5 0.1035 0.025 2.203 0.051 [20, 0], [10, 40],[45, 55],
[60, 0] [−40, 50]

Bus 3 1565 20 0.072 0.02 2.34 0.04 [35, 0], [35, 20], [90, 45],
[90, 25], [105, 0] [0, 40]
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Table A11. Characteristic of pure power generation units for case 4.

Location api cpi bpi cpi epi fpi [Pmin
pi , Pmax

pi ] [Qmin
pi , Qmax

pi ]

Bus 1 150 0.00016 2.0 0.00016 50 0.0630 [50, 200] [−40, 100]
Bus 6 0 0.00834 3.25 0.00834 0 0 [10, 35] [−6, 24]
Bus 8 0 0.025 3 0.025 0 0 [10, 30] [−6, 24]

Table A12. Characteristic of pure heat generation unit for case 4.

chk bhk ahk [Hmin
hk , Hmax

hk ]

0.038 2.0109 950 [0, 400]

Table A13. Optimal solution obtained by BA and MBA for case 4.

Variables BA MBA

Hc1 MWth) 40.0045 39.9652
Hc2 MWth) 29.4753 26.3730
Hk1 MWth) 330.5203 333.6618
Pp1 (MW) 153.9262 143.8280
Pc1 (MW) 10.0000 10.0147
Pc2 (MW) 56.0605 49.0263
Pp2 (MW) 27.6515 34.4462
Pp3 (MW) 17.0759 27.1244
Vg1 (pu) 1.0511 1.0872
Vg2 (pu) 1.0242 1.0421
Vg3 (pu) 0.9973 1.0169
Vg6 (pu) 0.9980 1.0997
Vg8 (pu) 0.9812 1.0664
T8 (pu) 0.9743 0.9967
T9 (pu) 0.9670 0.9140
T10 (pu) 1.0080 0.9211

Qc9 MVAr) 11.1043 4.6189
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