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Abstract: Feeding the world’s population sustainably is a major challenge of our society, and was
stated as one of the key priorities for development cooperation by the European Union (EU) policy
framework on food security. However, with the current trend of natural resource exploitation, food
systems consume around 30% of final energy use, generating up to 30% of greenhouse gas (GHG)
emissions. Given the expected increase of global population (nine billion people by 2050) and the
amount of food losses and waste generated (one-third of global food production), improving the
efficiency of food systems along the supply chain is essential to ensure food security. This study
combines life-cycle assessment (LCA) and data envelopment analysis (DEA) to assess the efficiency
of Spanish agri-food system and to propose improvement actions in order to reduce energy usage
and GHG emissions. An average energy saving of approximately 70% is estimated for the Spanish
agri-food system in order to be efficient. This study highlights the importance of the DEA method as
a tool for energy optimization, identifying efficient and inefficient food systems. This approach could
be adopted by administrations, policy-makers, and producers as a helpful instrument to support
decision-making and improve the sustainability of agri-food systems.

Keywords: data envelopment analysis; energy efficiency; food loss and waste; life-cycle assessment

1. Introduction

The food industry is one of the major manufacturing sectors, representing 15% of the sales in
the European Union and more than 1,120,000 million euros [1]. However, the rapid growth of global
population and its corresponding consequences, such as the increasing demand of food production,
caused an intensive use of energy resources [2]. In this sense, a considerable use of energy, estimated
at 30% of the total energy consumption, is attributed to agri-food systems [1]. Given the strong
dependency on fossil fuels of our current energy system, such energy consumption is responsible
for 20-30% of total anthropogenic greenhouse gases (GHG) [3]. This fact results in the depletion of
fossil resources and GHG emissions being of major concern. Energy is required at every stage in food
production, including the cultivation and harvesting of crops, animal husbandry, transportation and
distribution, and food processing for consumption, with the agricultural stage as the most critical [4].
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This causes a low efficiency for food systems, with around 10 kcal of fossil fuel energy to produce 1 kcal
of food [1]. Some foods are very efficient in their use of resources to produce a nutritious meal, such
as fruits and vegetables, while others are very inefficient, such as animal-based products. In general,
animal foods require eight times more energy per calorie than plant-based commodities [5].

Concerns regarding inefficiency are wider when food losses and waste (FLW) are taken into
account. According to the Organization for Economic Co-operation and Development (OECD) [6],
more than one-third of the food produced worldwide is lost along the supply chain, involving around
38% of the energy consumed in its production. In fact, FLW was identified as a major global concern
putting at risk environmental, economic, and health security [7]. This food produced is, therefore,
lost or wasted from initial agricultural production down to final household consumption. Since
the embodied amount of energy builds up along the chain, the later the waste occurs, the higher
the energy waste and the related GHG emissions will be. In addition, due to the expected global
population increase, a 60% rise in food production was forecasted for the year 2050, entailing a 50%
rise in global energy consumption [8]. Therefore, the efficient use of energy is a necessary step toward
reducing environmental hazards, preventing destruction of natural resources, and ensuring food
sustainability [9].

With the aim of attaining sustainability, many analytical tools are applied individually or
combined to determine an appropriate productive performance. Life-cycle assessment (LCA) is
a powerful tool that assesses the environmental impacts of products, processes, and services; it gained
in acceptance since it first appeared in the 1990s and is today well established [10]. Many authors
used LCA to assess the energy efficiency of their processes. For instance, Marique and Rossi [11],
Ingrao et al. [12], and Berg and Fuglseth [13] applied LCA to energy uses in the building sector, while
Li and Feng [14] used it to improve the energy recovery from sewage sludge comparing different
pathways. Sundaram et al. [15] assessed the energy efficiency of the production of gasoline from biogas
and pyrolysis oil using an LCA approach. Regarding the agri-food sector, Carrasquer et al. [16] created
a new indicator to estimate the water and energy efficiency in agro-industries based on life-cycle
thinking methodologies. Skunca et al. [17] performed the LCA of the chicken meat chain to estimate
the cumulative energy demand (CED), while Pires-Gaspar et al. [18] carried out an energy-LCA of
Portuguese peach production using energy efficiency indicators.

On the other hand, additional methods to compute which resource/technology combinations
provide the highest amounts of net energy to society are reported as energy return ratios (ERRs) [19].
The most well-known indicator is the energy return on investment (EROI). In fact, its use is widespread
within the energy sector to determine the energy that is returned from an energy-collecting process as
compared to the embodied energy to provide this energy [20]. However, in recent years, some authors
highlighted the benefits of calculating EROI ratios to monitor energy return in food systems [21]. For
instance, Laso et al. [22,23], Vazquez-Rowe et al. [20], Tyedmers [24], and Ramos et al. [25] applied the
EROI ratio to fishery systems. Cancino-Espinoza et al. [26] computed the EROI of organic quinoa, and
Pérez Neira et al. [27] estimated the EROI of tomato production.

In contrast to traditional EERs, the use of the data envelopment analysis (DEA) enables the
identification of energy-saving targets for energy-inefficient processes [28]. DEA is a non-parametric
multi-input/output linear approach for the calculation of the relative efficiency of a set of comparable
decision-making units (DMUs) [29]. In recent years, the application of DEA increased in the fields of
environmental and energy. For instance, DEA was applied in the building sector [30-32], the power
industry [33,34], the food production sector [1,9,35], and for agricultural production [36-38]. Moreover,
it was also used with economic and social variables [3]. The combination of LCA and DEA for the
identification and quantification of potential environmental consequences of operational inefficiencies
experienced a pronounced increase, and enriched the interpretation of results [39,40]. Several previous
studies used the joint LCA/DEA method in different agricultural production systems: fisheries [41,42],
grapes for winemaking [39], wheat [43], rice [44], and dairy farms [45,46].
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In this contribution, a hybrid approach which combines EROI, LCA, and DEA is proposed to
assess the energy and environmental efficiency of agri-food systems. The capabilities of this combined
approach are illustrated through its application to the Spanish agri-food system in order to explore the
operational inefficiencies and improvement actions.

2. Materials and Methods

Figure 1 depicts the methodology described in this analysis, which attempted to assess the energy
and environmental efficiency of Spanish agri-food system using a life-cycle approach. Firstly, an
LCA was conducted to estimate the primary energy demand (PED) and related global warming
potential (GWP). Secondly, the EROI was estimated to describe the energy efficiency of food categories
under study. Finally, DEA was synergistically combined with LCA results to assess the efficiency of
the system.

1) LIFE CYCLE ASSESSMENT (LCA)
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Figure 1. Schematic representation of the methodology applied.

2.1. Life-Cycle Assessment (LCA)

LCA is a powerful tool for performing the potential environmental assessment of impacts and
resource consumption throughout a product’s life cycle [47]. In this regard, LCA became one of the
most relevant methodologies to help organizations perform their activities in the most environmental
friendly way along the whole value chain.
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In the current study, LCA was conducted following the recommendations of International
Organization for Standardization (ISO) 14040 and 14044 international standards [48,49], and was
divided into four stages.

(i). Goal and Scope Definition

This stage consisted of a detailed definition of the intended application of the study in terms of
the system boundaries and functional unit (FU) [50,51]. Moreover, allocation procedures, cut-off rules,
and assumptions were also defined in this step.

(ii). Life-Cycle Inventory (LCI)

In this stage, all relevant energy, water, and material consumptions, and emissions, effluents, and
residues of the process in a specific temporality and geography were collected [52]. Therefore, in this
stage, it was necessary to determine the FLW flows. Moreover, in this study, the LCI also collected data
about the nutritional content of the different food categories.

(iif). Life-Cycle Impact Assessment (LCIA)

The LCIA step transformed the inputs and outputs of the LCI into environmental impact over
all of the stages involved in the supply chain. In this study, the impact assessment method selected
followed the International Reference Life Cycle Data Product Environmental Footprint (ILCD/PEF)
recommendations v1.09 for determining the global warming potential (GWP). The consumption of
primary energy resources (net calorific value, PED) was determined according to PE International’s [53]
life-cycle inventory. Once the PED and GWP embodied along the agri-food supply chain (FSC) were
determined, the embodied energy and GHG emissions in FLW could be determined using FLW rates
from Gustvasson et al. [54], as indicated Equations (1) and (2).

FLWEE,i = Z;:l (PEDL]‘) O(i,j/ (1)

FLWGwp; = 2;::1 (GWPLJ') Xijs )

where PED;; is the PED in stage j for food category i, o is the percentage of FLW in stage j for food
category i, and GWP; is the GWP of stage j for food category i (see the example in Section 54 of the
Supplementary Materials).

(iv). Interpretation of the Results

2.2. Energy Return on Investment (EROI)

The concept of EROl is part of the field of net energy analysis (NEA), and is one way of measuring
and comparing the net energy availability from different energy sources and processes. In general,
EROI can be defined as “the ratio between the energy returned from an energy-gathering activity
compared to the embodied energy in that process” [55]. Although this concept was used initially to
develop an energy-focused approach to the economy [56], the concept was adapted to calculate ratios
between food energy output and food production energy inputs. In this sense, the most commonly
used EROI perspective is the human-edible food energy return on industrially energy investment, as
indicated in Equation (3). This provides an anthropocentric perspective on the non-renewable resource
efficiencies of competing food production technologies [5]. Therefore, the higher the EROI of a food
system is, the more “valuable” it is in terms of producing (nutritionally) useful energy output.

Z}:l FOOdi,j X NCi,j
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Y], PED;
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where Food; j represents the amount of the food category i available in stage j after withdrawing the
FLW, NC;j; is the nutritional content of food category i in supply chain j expressed in kcal, and PED;;; is
the PED in stage j for food category i calculated using LCA.

2.3. Data Envelopment Analysis (DEA)

DEA is a non-parametric method widely used to compare the inputs and outputs of a set of
homogenous DMUs. This method focuses on evaluating the performance of DMUs based on the
evaluation of relative efficiency of comparable DMUs by estimating an empirical efficient boundary [9].

Charnes, Cooper, and Rhodes (CCR) introduced the DEA method for the first time. The original
CCR model was applicable to the assumption of constant returns to scale (CRS) [57]. In this sense, the
CCR model considers that the efficiency frontier is a straight line intersecting the point of origin and
the best performer(s), as shown in Figure 2a. The best performer is determined by the highest ratio of
output to input; thus, as DMUj has this condition, it is considered as the reference DMU for all other
units [38]. The remaining four DMUs in Figure 2a are inefficient since they use more amounts of input
than DMU P, to produce one unit of output.

Banker et al. [58] modified the CCR model by introducing the so-called “convexity constraint”,
which changed the efficiency frontier from being a straight line to a convex hull (see Figure 2b). The
new model, referred to as BCC, was built based on variable returns to scale (VRS). This model presents
two advantages as compared to the CCR model: (i) more units can potentially be considered efficient,
and (ii) inefficient units can be compared to more appropriate peers [38]. As shown in Figure 2b, using
the BCC model, a higher number of units are efficient (DMU;, DMU,; and DMU3).

DMU output
DMU output

DMU;

eDMU, s

DMU, .~ DMU, -~
® o

® DMU
o omy, MY ® DMU, ‘

® DMU, ® DMU,

DMU input DMU input

a) CCR model b) BCC model

Figure 2. Graphical representation of the efficiency frontier of the (a) Charnes, Cooper, and Rhodes
(CCR) model, and (b) the CCR model modified by Banker et al. (BCC model). Adapted from
Hosseinzadeh-Bandbafha et al. [38].

The slacks-based measure (SBM) model is a typical extension of DEA. Although CCR and BCC
approaches calculate the efficiencies of the DMUs based on the proportional decrease/increase of
inputs/outputs, the SBM model uses the input excess and output shortfall of each DMU to measure its
efficiency [59]. Moreover, it is possible to create and estimate models that provide input-oriented or
output-oriented approaches for both CRS and VRS envelopments. An input-oriented model attempts
to reduce input variables while remaining within the envelopment space. On the other hand, an
output-oriented model increases output variables while remaining within the envelopment space [37].
In this study, an input-oriented approach was selected because multiple inputs were used, while there
was only one output.
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The DEA linear programming (LP) model (M1) deployed to generate CCR efficiency factors of
DMUs is as follows [54]:
M1 (CCR model input-oriented to be solved for each DMU ky):

n
minBccr (ko) = 21 Y, ;
]:
s.t.
m
ViXik, = 1;
i=1

n m
-Z‘lujyiko_-zlvixiko <0, k=1,...,Kj=1,....n;i=1,..., m;
j= i=

u; > 0,
vi >0,

where v; is the weight for output j, v; is the weight for input i, m is the number of inputs, n is the
number of outputs, k is the number of DMUs, Vik 18 the amount of output j of DMU k, and xjy is the
amount of input i of DMU k.

On the other hand, the DEA LP model deployed to generate BCC efficiency factors of DMUs is as
follows [58]:

M2 (BCC model input-oriented to be solved for each DMU k):

n
minBpcc (ko) = Z:l u]-yjko — 1.1(1(0)/'
j=

s.t.

m
'21 ViXik, = 1;

i=
n m

L Wy, — X ViXikg ~ Ugg) =0,

=1 i=1
k=1....,Kj=1,....n;i=1,..., m;
uj >0,

vi >0,

where v; is the weight for output j, v; is the weight for input i, m is the number of inputs, n is the
number of outputs, k is the number of DMUs, yj, is the amount of output j of DMU k, and x;j is the
amount of input i of DMU k.

To combine the LCA and DEA methods, a five-step procedure was followed [60,61]: (i) individual
LCI for each of the DMU; (ii) LCIA for every DMU included in the inventory (in this case, using the
PED and GWP indicators, as explained in Section 2.1); (iii) determination of the operational efficiency
for each DMU; (iv) LCIA of the target DMUSs; (v) quantification of the environmental consequences of
operational inefficiencies [42].

3. Case Study: The Spanish Food Basket

3.1. Goal and Scope

The Spanish Agency of Food Security and Nutrition (AECOSAN), along with the Spanish Society
of Community Nutrition (SENC), is the institution that sets the nutritional recommendations for the
Spanish population. These recommendations take into account the main diet-related public health
challenges, as well as cultural habits of the Spanish population, to promote healthy eating and regular
physical activity [62].

In this study, a basket of products was selected based on the consumption data reported by the
Ministry of Agriculture, Fisheries, and Food (MAPAMA) [63]. These food commodities were classified
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according to eleven categories following the Food and Agriculture Organization of the United Nations
(FAOSTAT) classification: eggs, meat and animal fat, fish and seafood, dairy, cereals, sweets, pulses,
vegetable oils, vegetables, fruits, and roots and tubers. The food commodities considered in each
category are collected in Table 1.

The goal and scope of this study was to assess the energetic and environmental efficiency of the
Spanish food basket by means of the combination of LCA and DEA approaches. An additional goal of
this analysis was to determine whether the use of DEA methodology is a viable tool for assessing the
energy efficiency of food systems with FLW. The results are expected to provide an overview regarding
the energy efficiency of the different food categories under study with the aim of identifying the most
inefficient and the stages where improvement measures should be applied.

Table 1. Food commodities included in the study.

Food Category Commodities Included
Cereals Wheat, rice, maize, and others
Roots and tubers Potatoes
Sugar Sugar
Vegetable oils Sunflower seed oil, palm oil, olive oil, and others
Vegetables Tomatoes, onions, and others
Fruit Oranges and mandarins, grapes (excluding grapes for winemaking), apples,
and others
Pulses Beans, peas, and others
Meat and animal fat Beef, pork, lamb, and poultry
Fish and seafood Fish and seafood
Dairy Milk, cheese, and butter
Eggs Eggs

3.2. Function, Functional Unit, and System Boundaries

The methodology proposed included three main parts: LCA, EROI, and the combination of LCA
and DEA. Therefore, the function of the study was the estimation of the environmental impacts of the
Spanish food basket and the determination of its energy efficiency. To quantify this function, it was
necessary to define an FU to which inputs and outputs would be referred. In this case, the FU was
described as the food basket with the representative food products consumed by a Spanish citizen in a
year, covering the daily energy requirement of 2000 kcal of an adult.

The system boundaries comprise the entire supply chain of a food system following
Garcia-Herrero et al. [4] (see Figure 3), i.e., agricultural production, postharvest and storage, industrial
processing, distribution (i.e., retail/wholesale), and consumption. The consumption stage was divided
into household consumption and related extradomestic consumption.

3.3. Life-Cycle Inventory (LCI)

An extensive LCI was built up using data from the literature (for more details, see
Batlle-Bayer et al. [64]) and the PE GaBi database [53]. The food balance sheet and the unavoidable
FLW percentages of each food category were collected from Garcia-Herrero et al. [3], where production
values were mainly sourced from Eurostat [65-68]. Imported food products were taken into account
based on trade statistics compiled by the Spanish Tax Agency (AEAT) [69]. The food balance sheet
for Spain in 2015 and the FLW percentages are available in Sections S1 and S2 in the Supplementary
Materials (SM).

For transportation, 400-km and 100-km distances to wholesale and retailers were assumed,
respectively. Electricity consumption for retail storage was considered, assuming two days of storage
for products requiring cooling conditions, and 15 days under freezing conditions. Transport to home
was estimated based on Mila i Canals et al. [70]. Regarding home storage, data from the LCA Food
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Database was used [71]. For cooking, energy factors of Foster et al. [72] were taken (for more details,
see Batlle-Bayer et al. [64]).

On the other hand, nutritional data for the EROI estimation were obtained from the food
composition tables of the Institute for Education in Nutrition and Dietetics from Spain (CESNID) [73].
Such tables are registered in the FAO’s International Network of Food Data Systems [74].
The nutritional content for each food category under study is collected in Section S3 in the
Supplementary Materials.
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Figure 3. System boundaries for the Spanish food basket using a life-cycle assessment (LCA)/data
envelopment analysis (DEA) approach.

3.4. Selection of the DEA Model

The selected DEA model was the slacks-based measure of efficiency (SBM). The choice of model
was based on its flexibility concerning the computation of the DMUs irrespective of the units of measure
used for the different inputs/outputs [42]. Moreover, for the sake of further discussion, the CRS and
VRS approaches were computed in parallel in the current study under an input-oriented approach.

3.5. Inputs and Output Selection for the DEA Matrix

One DEA matrix composed of 11 DMUs was computed in this study. The number of DMUs under
study must satisfy Equation (4). Each DMU included two different inputs (see Figure 3). As input 1,
the primary energy invested in food production was computed in MJ/cap/day, whereas the GWP
was considered as input 2. As mentioned previously, an input-oriented approach was based on the
assumption that inputs have to be minimized and outputs have to be maximized. However, in some
situations, undesirable (bad) inputs and outputs may be presented in the production process [75]. In
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this case, the GWP was a bad output that was computed as an input to be minimized. Finally, the
nutritional energy supply was computed in kcal/cap/day as output.

n > max {mxs,3x (m+s)}, 4)
where m is the number of inputs used in the DEA study, and s is the number of outputs involved.

4. Results and Discussion

Following the methodology described in Section 2, the LCA of the 11 food categories selected was
performed, and the PED and GWP were calculated. These values were obtained from a previous study
developed by Batlle-Bayer et al. [64]. As shown in Table 2, the total energy invested in food production
daily amounts to around 19,500 kcal for an average Spanish citizen. This involves an emission of close
to 4 kg of CO, equivalent per day, with meat production as the most responsible: 28% for PED and
42% in terms of CO, equivalent emissions. Dairy, and fish and seafood are the second main categories
contributing to GWP, each representing 12% of total emissions. Results suggest a high correlation
between the investment of energy along the FSC and the generation of GHG emissions, owing to
the high dependency of the energy matrix on fossil fuels. Conversely, this is not directly related to
the nutritional energy provided to consumers. As displayed in Table 1, the major contributors to the
Spanish average diet are vegetable oils and cereals, responsible for nearly half of the energy supply.
However, the contribution of meat to nutritional energy supply is relegated to less than 12%, with
eggs as the food category providing the lowest amount of nutritional energy to consumers (2%). These
results are in agreement with data reported by the European Commission [76], which confirm that
livestock products, such as meat, fish and seafood, and dairy products, incorporate a substantial
amount of energy; in addition, the consumption of dairy and meat products has a major role in
GHG emissions.

Table 2. Energy invested from cradle to plate for the food categories under study, related CO, eq.
emissions, and nutritional energy provided to consumer. PED—primary energy demand; GWP—global
warming potential; FLW—food losses and waste.

PED Energy Provided GWP Embodied Embodied GWP in
Food Category (keal/cap/d) to Consumer (g CO, Energy in FLW FLW (g CO,
P (kcal) eq./cap/d) (kcal/cap/d) eq./cap/d)
Eggs 1059 41 221 163 35
Meat 5465 261 1673 1162 378
Fishand 3170 99 468 852 128
seafood
Dairy 1411 289 496 137 55
Cereals 2717 456 372 1042 143
Sweets 156 103 28 35 8
Pulses 490 58 85 142 27
Vegetable Oils 717 461 158 150 39
Vegetables 3297 72 261 745 70
Fruits 690 159 159 171 52
Roots 330 53 51 88 16
Total 19,501 2000 3971 4685 951

When considering FLW, it was observed that embodied energy waste duplicates the daily energy
supplied to consumers (4685 kcal/cap/d). As shown in Figure 4a, the largest contributor to this fact is
the meat category, accounting for 25%. This is directly related to the unnecessary emission of CO, eq.,
which also contributes 40% to the total GWP (Figure 4b). It is followed by cereals and fish and seafood
categories, for which a 22% and 18% embodied energy waste was estimated, respectively, whereas a
15% and 12% of embodied GWP waste was calculated.
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Figure 4. Contribution of each food category in the average Spanish diet to the (a) embodied energy,
and (b) embodied global warming potential (GWP).

These findings suggest the need for estimating the efficiency of the Spanish agri-food system. As a
first approach, the EROI indicator was used to estimate the energetic efficiency. As displayed in Table 3,
the maximum EROI was observed for sweets and vegetable oils, which means that such food categories
are the most efficient from an energy perspective. These results also suggest the need of studying
more in-depth nutrients that should be either encouraged or limited, in order to provide a nutritional
efficiency perspective. Results also show that animal-based products such as eggs, meat, and fish
present the lowest EROI values (3.1-4.0%), which agree with the study of Pelletier et al. [5], where an
eightfold difference between animal- and plant-based products was determined. An exception was
observed in our results for vegetables. This is mainly due to the inclusion of processed commodities in
this category, particularly tomato sauce, which exhibits an EROI value of 1.2%.

Table 3. Energy return on investment (EROI) values for food categories in the Spanish diet.

Food Category Eggs Meat Fish and Seafood Dairy Cereals Sweets
EROI (%) 3.90 3.96 3.14 20.52 16.79 66.00

Food category Pulses Vegetable Oils Vegetables Fruits Roots
EROI (%) 11.75 64.27 2.18 23.05 16.10

However, these efficiency results do not consider the environmental impacts of food production
along the supply chain. For this reason, DEA was combined with LCA, allowing a wider scope of
the efficiency of the Spanish agri-food system to be provided. To perform an LCA/DEA analysis,
it is firstly necessary to elaborate the DEA matrix. Table 4 represents the DEA matrix, composed of
11 DMUgs, with each one represented by two inputs and one output, as explained in Section 3.4.

Table 4. Data envelopment analysis (DEA) matrix under study. DMU—decision-making unit.

Input1 Bad Output (Input 2) Output1
Food Category DMU Primary Energy GWP (g CO, Nutritional Supply
Invested (M]/cap/day) eq/cap/day) (kcal/cap/day)

Eggs 1 443 221 413
Meat 2 22.84 1672 216
Fish and seafood 3 13.25 468 99.7
Dairy 4 5.90 496 289
Cereals 5 11.36 371 456
Sweets 6 0.53 28.5 103
Pulses 7 2.05 85.0 57.6
Vegetable Oils 8 3.00 158 461
Vegetables 9 13.78 261 71.7
Fruits 10 2.84 154 151
Roots 11 1.38 50.5 53.1
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DEA Frontier was the software used for the computation of the DEA matrix [77]. Results using
CRS and VRS perspectives were compared and are shown in Figure 5, which includes the efficiency
score for each DMU. A food category was considered inefficient with an efficiency score ¢ < 1, whereas
@ =1 represented an efficient food category. According to that, when the CRS perspectives were
considered, one food category was efficient (sweets), while a 0.97 efficiency was observed for vegetable
oils (see Figure 5a). The CRS approach presented a wide range of efficiencies, between 0.06 and 0.97.
Egg production was the least efficient food category, followed by fish, meat, and vegetables, with
similar efficiencies ranging from 0.06 to 0.08. On the other hand, when the VRS model was applied, a
total of two food categories were considered efficient (sweets and vegetable fats; see Figure 5b). Despite
the fact that the VRS approach presented an additional efficient DMU, the range of efficiencies was
lower than when using a CRS perspective, ranging from 0.06 to 0.56. Finally, the average efficiencies
(including efficient DMUSs) were similar: 0.33 & 0.34 for CRS and 0.40 £ 0.34 for VRS. Some authors
state that using a VRS approach rather than a CRS formulation leads to a higher number of efficient
DMU s since the constraint set for CRS is less restrictive and, consequently, lower efficiency scores
are possible [78]. In addition, the convexity constraint added in the VRS simply guarantees that each
DMU is only compared to others of similar size [43]. Therefore, considering that the unit of reference
(i.e., DMU) is, in each case, a different food category and that the food categories inventoried in this
study present different characteristics, we considered that the use of the VRS approach should prevail.

Vegetable fats Vegetable fats

Cereals Roots
Fruits Cereals
Dairy Fruits
Roots Pulses
Pulses Dairy
Vegetables Eggs |mm—
Meat Vegetables |
Fish Meat
Eggs Fish
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
CRS efficeincy () VRS efficiency ($)
a) CRS model b) VRS model

Figure 5. Efficiency (¢) score of the selected food categories (i.e., decision-making units (DMUs)) using
the (a) constant return to scale (CRS) model, and (b) variable return to scale (VRS) model.

The previous findings agree with the pattern observed for the EROI assessment. While this can be
taken as a verification of both approaches, DEA also provides a further exploration of the operational
inefficiencies and the improvement actions of the system under study. Hence, the DEA model was
also used to formulate new virtual and efficient values for the inputs of the inefficient DMUs, by
projecting the inefficient scores on the efficient targets established. Both PED and GWP were subjected
to minimization while maintaining the same nutritional supply.

Figures 6 and 7 compare the current environmental impacts of the different DMUs with the
target PED and GWP calculated with the LCA/DEA methodology. In other words, it presents the
environmental savings that would be reached in these DMUs if they were to operate under the efficient
conditions projected in the computed matrix. In this regard, when the CRS perspective was used,
primary energy invested savings ranged from 2.83% to 96.7%, while, when the VRS approach was used,
reductions ranged from 52.9% to 95.3%. The highest reductions were obtained by the most inefficient
food categories (i.e., vegetables, meat, fish, and eggs). On the other hand, GWP savings followed the
same trend, ranging from 19% to 96.4% for CRS and from 43.6% to 95.8% for VRS. Similarly, the highest
reductions were also reached by vegetables, meat, fish, and eggs.
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Figure 6. Primary energy invested (PED) for original DMUs (blue bar) and virtual targets for the
CRS model (orange bar) and VRS model (green bar). The lines represent the overall environmental
improvements for the CRS model (orange line) and VRS model (green line).
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Figure 7. Global warming potential (GWP) for original DMUs (blue bar) and virtual targets for the
CRS model (orange bar) and VRS model (green bar). The lines represent the overall environmental
improvements for the CRS model (orange line) and VRS model (green line).

The results suggest that the planification of citizens” diet may affect the quantity of embodied
energy waste and related environmental impacts. For this reason, specific strategies should be
addressed to the categories revealing larger inefficiency scores, such as meat, eggs, fish, and vegetables,
which all have better nutritional reputation than sweets or processed cereals. Figure 8 displays the
contribution of each stage of the FSC to the PED for eggs, meat, fish and seafood, and vegetable
categories. As stated by Batlle-Bayer et al. [64], in terms of the life-cycle processes, the primary
production phases were the major contributors to the PED for eggs (85%), meat (65%), and fish and
seafood (59%), while the household stage was the main contributor for vegetables (52%). These results
are related to the production of feed in the case of eggs and meat production [60]. According to
Ghasempour and Ahmadi [79], the production of feed (corn, soybean, and wheat), as well as the
poultry equipment, used in the production of eggs is associated wuth the most energy consumption,
whereas Skunca et al. [17] suggested the use of grain legumes as a protein source in feed instead of
soybean-based ingredients. This fact could decrease the resource consumption since the cultivation of
grain legumes does not require mineral fertilizer application. Moreover, in the case of beef, the use of
electricity and diesel during the suckling cow—calf stage was also significant in the primary production
phase [64].
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Other authors, such as Avadi et al. [80,81], Laso et al. [22], and Vazquez-Rowe et al. [82] assessed
the life cycle of processed fish products identifying the fishery stage as one of the most energy-intensive
due to the use of fossil fuels. Batlle-Bayer et al. [64] analyzed eight fish and seafood species (i.e.,
mussels, shrimps and prawns, Atlantic mackerel, European hake, sardines, salmon, tuna, and octopus),
identifying the use of diesel as the main contributor (around 98%) in the fishery stage, and the use of
electricity (around 97%) in the culture stage (mussels farming).

On the other hand, for vegetables, several foods were considered (tomato, lettuce, and veggies).
The fact that household consumption was the stage with the highest contribution to PED was due to
the use of energy when cooking veggies (i.e., boiling and frying) and cold storage for preserving their
shelf life. However, the agricultural production stage for vegetables was also important, representing
26% of total PED, due to the cultivation of lettuce, in particular, the use of diesel for machinery. In fact,
although the amount of PED required for meat, fish and seafood, and vegetable consumption is similar
(Table 4), it was distributed in different stages. Finally, the processing stage represented 19% of the
total impact due to the inclusion of processed products, such as tomato processed products, which use
fuel oil and electricity in their processing.

B Agricultural production B Processing Distribution [l Households Transport

Eggs Meat

3%

0%

2%

0%
14% n

65%

85%

Fish & seafood Vegetables
2% 2%

26%

)
19%

1%

16%

Figure 8. Distribution of the primary energy demand (PED) between the different stages of the food
supply chain for the most inefficient food categories: eggs, meat, fish and seafood, and vegetables.

5. Conclusions

Food systems are heavily reliant on energy resources, especially non-renewable resources. This
causes significant amounts of GHG emissions. In this study, the efficiency of the Spanish agri-food
system was addressed from an energy and environmental perspective. Firstly, an LCA was performed
to determine the PED and GWP impact results of the food basket with the representative food products
consumed in and out of home by a Spanish adult in a year. Thereafter, the EROI indicator was
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used to perform an energy-based efficiency assessment. Finally, DEA was coupled with LCA to
include environmental aspects in the efficiency assessment. Both approaches provided similar results,
suggesting a high correlation between PED and CO; eq. emissions. Best results were obtained for the
categories of sweets and vegetable oils (¢ = 1), while vegetables, fish, eggs, and meat exhibited the
lowest efficiency, below 0.1. As expected, animal-based products required more energy resources in
their production than vegetable-based products. However, it is important to mention that these types
of food (i.e., sweets and vegetable oils) are considered “empty kcals”, and their nutritional value is very
low, whereas eggs, meat, and fish are most valuable in terms of nutritional value. Therefore, it would
be interesting to considering other nutrients, such as proteins, in future assessments. On the other hand,
the unexpected results for vegetables are due to the inclusion of processed products in this category.
On average, approximately 70% energy-saving potential is estimated for the Spanish agri-food system
if it were to be efficient, with a similar reduction in related GHG emissions. These results suggest
the need for improving the efficiency of the FSC by introducing circular economy strategies, such as
establishing appropriate food waste management measures and the consequent reduction of FLW.
Therefore, the methodology proposed is a useful tool for promoting the circular economy of food. The
introduction of nutritional- and energy-based criteria, in addition to the environmental pillar, provides
an integrated framework for proposing integrated reduction targets. However, as ongoing research,
other criteria, such as economic and social aspects, could be considered. From the DEA results, it
is possible to define specific strategies for the categories revealing larger inefficiency scores, such as
meat, eggs, fish, and vegetables. In terms of the life-cycle processes, the primary production phases
were the major contributors to PED for eggs (85%), meat (65%), and fish and seafood (59%), due to the
production of feed (corn, soybean, and wheat) in the case of eggs and meat, and the use of diesel and
electricity in the fishery and cultivation stages, respectively. On the other hand, the household stage
was the main contributor for vegetables (52%) due to the use of electricity for cooking and cooling.

Finally, we can establish that DEA is a useful tool for energy optimization, identifying efficient
and inefficient food systems. This approach may be adopted by institutions, policy-makers, and
producers as a helpful instrument to support decision-making and improve the sustainability of
agri-food systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/11/12/
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Calculation; Section S3: Nutritional Food Loss Calculation; Section S4: Example of Calculations According to the
Methodologies Presented in Section 2.
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