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Abstract: Open communication is an exigent need for future power systems, where time delay
is unavoidable. In order to secure the stability of the grid, the frequency must remain within its
limited range which is achieved through the load frequency control. Load frequency control signals
are transmitted through communication networks which induce time delays that could destabilize
power systems. So, in order to guarantee stability, the delay margin should be computed. In this
paper, we present a new method for calculating the delay margin in load frequency control systems.
The transcendental time delay characteristics equation is transformed into a frequency dependent
equation. The spectral radius was used to find the frequencies at which the root crosses the imaginary
axis. The crossing frequencies were determined through the sweeping test and the binary iteration
algorithm. A one-area load frequency control system was chosen as a case study. The effectiveness
of the proposed method was proven through comparison with the most recent published methods.
The method shows its merit with less conservativeness and less computations. The impact of the
proportional integral (PI) controller gains on the delay margin was investigated. It was found that
increasing the PI controller gains reduces the delay margin.

Keywords: communication time delays; delay margin; delay dependent stability; load frequency
control system; sweeping test

1. Introduction

For a stable power system operation, loads and the demands must be matched in real time.
This task is achieved through a load frequency control (LFC) system. Load frequency control is one
of the classical power system control problems where the imbalance between the generation and the
load is sensed through measuring the frequency. The LFC system must perform three main tasks:
(1) to maintain uniform frequency; (2) to share the load between the generators; and (3) to control the
tie-line interchange schedule [1]. In order to achieve these tasks the automatic generation control (AGC)
signals are sent through dedicated communication links, and if this link fails, voice communication
through telephone lines is used [2]. To guarantee uniform frequency in multi-area power systems,
the area control error (ACE) and the generator control error (GCE) signals are distributed between the
different areas [3]. Since the control signals are exchanged over communication networks, the time
delay is inevitable, especially if the open communications are adopted in the power system [4].
Time delays could arise in power systems for different reasons and their magnitudes depend on the
type of the communication link. The communication links used are telephone lines, fiber-optics, power
lines, and satellites [5].

The presence of the time delay could lead to poor system performance or at worst results in
system instability. Extensive research has been carried out in the last decades to tackle the problems
associated with the delay in the LFC system. The published research either focuses on stabilization of
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the LFC system with the presence of the time delay or computing the delay margin required for system
stability. The latter is the focus of this paper. The stabilization of the LFC system while considering the
time delay has been studied by many researchers, the reader can refer to References [6–15] and the
references there in.

The delay margin is defined at the maximum time delay that the system can withstand without
losing stability. In the published research work two approaches are used to determine the delay
margin; the first one is based on Lyapunov–Krasovskii theorem and the second approach is based
on tracking the eigenvalues in the s-domain. The s-domain methods prove to give less conservative
delay margins; however, they can only be applied to constant time delay. The simulation is used in
Reference [2] to investigate the impact of the time delay on the stability of the LFC system. Two types
of the time delays are studied; the constant and the random. It was found that the large number of
packet losses or long-time delays could lead to LFC system instability; however, the authors do not
consider computing the delay margin or stabilization of the LFC system with the presence of the
delay and data loss. In Referene [16], the delay margin for single-area and multi-area LFC systems is
computed through solving a set of linear matrix inequalities (LMIs). The LMIs are derived through
solving Lyapunov–Krasovskii functionals, replacing the time delay terms with a Newton–Leibnitz
formula, and introducing free weighting matrices (FWMs) [17]. The introduction of the variable FWMs
reduces the conservativeness of the delay margin values. The effect of the proportional integral (PI)
controllers, KP and KI, on the delay margin was also investigated. In Reference [18], an improved and
less conservative criterion for computing the delay margin was introduced. The Lyapunov–Krasovskii
functional was used to reduce the conservativeness of the method, the Wirtinger inequality and Jenson
integral inequality were applied to bound the derivative of the Lyapunov function. It was reported
in References [10,19] that the number of decision variables were reduced compared to the number of
decision variables in Reference [16], and this will lead to less conservative results for the delay margin.

Yu and Tomsovic [7] applied a simple LMI stability criterion for computing the delay
margin of an LFC system; however, the results were very conservative. In Reference [20] an
improved delay-dependent stability method of load frequency control system was presented.
The Lyapunov–Krasovskii functional was used where the time derivative was bounded using truncated
second-order Bessel–Legendre (B-L) inequality. Then, the resulting LMIs were solved using the binary
iteration algorithm. This results were less conservative results. A hybrid method has been proposed by
Xiong et al. in Reference [21], where a constant time delay margin criterion was used for delay margin
computation. Then a robust LMI method was applied to derive robust PI controller. In Reference [22],
the Lyapunov–Krasovskii functional along with the Jesen inequality and the extended reciprocally
convex matrix inequality were used to derive stability criterion for load frequency control systems
with two time delays.

The energy storage units could improve the load frequency system performance in the power
system [23]. The LFC multi-area power system with plug-in electric vehicles and communication delay
was investigated in Reference [24]. The particle swarm optimization and the linear matrix inequalities
techniques are was used to derive a robust PID controller. The robust control theory was also applied in
Reference [25] to handle both the inertia uncertainty and the time varying communication delay where
the LFC system with the Electric Vehicles (EVs) and the communication delay was modeled as an
uncertain time delay system. The time delay margin of load frequency control system was computed
in Reference [26] for a power system with electric vehicles using the Lyapunov–Krasovskii functional
with the Wirtinger-based improved integral inequality. The literature presented in this paper covers
only the issue of the delay margin computation for a load frequency control system. The stability and
stabilization of the load frequency control system is a very broad research area; for a comprehensive
review the reader can refer to References [27–29] and the references therein.

In Reference [30], the direct method for computing the delay margin is presented. Rekasius
substitution was used to eliminate the transcendency in the characteristic equation and to convert it to
a polynomial. The imaginary roots for positive delays were tracked and then Routh–Hurwitz criterion
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was used to determine the time delay margin. However, the results of the delay margin reported
in Reference [30] were less conservative than the results of the method reported in Reference [16];
the drawback of the method in Reference [30] is the increased complexity in the case of multiple
time delay systems. In Reference [31], the set of the PI controller parameters of the single-area
LFC system that satisfies the stability with a given time delay was determined. In Reference [32],
an exact method for computing the delay margin was introduced. The transcendental equation was
transformed to normal polynomial in jω. The analysis was carried out in the frequency domain
without any approximations which reduces the conservativeness of the results. The exponential terms
were eliminated and the transcendental equation was converted to a frequency dependent equation
where the number of frequencies that cross the imaginary access are finite.

Determining the delay margin is crucial for an LFC system operation. In the event of
communication failure, the fault counter counts for a specified period before the LFC mechanism is
suspended [16]. This period is usually selected to be very conservative which is determined from
experience. The delay margin is also very important in determining the upper bound for the sampling
time and aiding the control designer in the tuning [3,8]. In this paper, we present an accurate method
for computing the delay margin for LFC systems. Many of the published methods are derived with
advanced mathematics, which is based on the Lyapunov-Krasovskii theorem. For the method to have
wide application in practice, it should be with less complexity while giving accurate results. Relative to
the methods reported in the literature, the proposed method has a simple structure and easy to follow
procedures while giving accurate values of the delay margin which is very important. The spectral
radius was used to track movement of the system roots from which the crossing frequencies could
be determined with high accuracy. In the next sections, the dynamic model of a single-area LFC
system was briefly described. Then the stability analysis of the LFC system was analyzed in the
frequency domain. The sweeping test and the binary iteration were used to compute the delay margin.
A single-area LFC system was chosen as a case study. The results of the delay margin using the
proposed method were compared with the results of the most recent published research.

2. Dynamic Model of One-Area LFC System with Time Delay

The one-area LFC system is shown in Figure 1. When an imbalance between the generation
occurs, the frequency will deviate. In order to reset the frequency deviation to zero an integral control
is required, as shown in Figure 1. The main assumption is that all the generators are equipped with
non-reheat turbines. The state-space linear model of a one-area LFC system is expressed as [16]:{

xc(t) = Acxc(t) + Bcu(t) + Fc∆Pd
y(t) = Ccxc(t)

(1)

where; Ac =

 − D
M

1
M 0

0 − 1
Tch

1
Tch

− 1
RTg

0 − 1
Tg

 Bc =

 0
0
1

Tg

 Fc =

 − 1
M

0
0

 Cc =
[

β 0 0
]

xc(t) =

[ ∆ f ∆Pm ∆Pv ]
T

; y(t) = ACE.
The parameters are defined as: ∆Pd is the load deviation, ∆Pm is the generator mechanical output

deviation, ∆Pv is the valve position deviation, ∆f is the frequency deviation. M (=2H) is the inertia
constant, D is the load damping coefficient [33,34], Tg is the time constant of the governor, Tch is the
time constant of the turbine, R is the speed drop, and β is the frequency bias factor. For a one-area LFC
system, the area control error ACE is given as [16]:

ACE = β∆ f (2)
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The AGC has two components: the first is updated every 5 min and the second is updated in the
order of 1–5 s. The latter signal delay is the one considered in the paper. Stabilizing the system with a
conventional PI controller is given as:

u(t) = −Kp ACE− KI

∫
ACE (3)

where KP is the proportional gain, KI is the integral gain, and
∫

ACE is the integration of the area
control error. With the PI controller, the closed-loop system is expressed as follows:

.
x(t) = Ax(t) + Adx(t− τ) + F∆Pd (4)

where; A =


− D

M
1
M 0 0

0 − 1
Tch

1
Tch

0
− 1

RTg
0 − 1

Tg
0

β 0 0 0

 Ad =


0 0 0 0
0 0 0 0
−KP β

Tg
0 0 −KI

Tg

0 0 0 0

 F =
[
− 1

M 0 0 0
]T

x(t) = [ ∆ f ∆Pm ∆Pv
∫

ACE ]
T

.
The time delay τ is composed of a transducer delay, analog-to-digital conversion delay, processing

delay, multiplexing delay, and the delay in the communication link [5]. This time delay can be constant
in dedicated communication links and time varying if open communication is used [16]. Setting ∆Pd
to zero, the single-area LFC system becomes a linear time delay system, then Equation (4) becomes:

.
x(t) = Ax(t) + Adx(t− τ) (5)

To find the maximum delay margin, τd, we transform Equation (5) using Laplace transform and
the characteristics equation becomes:

sI − A− Ade−sτ = 0 (6)

The system is asymptotically stable for a given delay if all the roots of Equation (6) lie on the left
half plane. The free delay system is assumed to be stable and all the roots are on the left half plane.
For some values of the delay one or more roots will cross the imaginary excess. One of the approaches
is to replace s with jω and perform the analysis in the frequency domain.

3. Delay Margin Computation Using the Sweeping Test

Time delay systems can be either delay-independent or delay-dependent. The delay-dependent
system is asymptotically stable for τ < τd, marginally stable for τ = τd, and unstable for τ > τd.
The delay independent system is asymptotically stable for any positive value of the time delay. For the



Energies 2018, 11, 3460 5 of 18

single-area LFC system represented by Equation (5) to be asymptotically stable independent of delay,
we must have:

det(sI − A− Ade−sτ) 6= 0∀s ∈ C+, ∀τ ≥ 0 (7)

where C+ is the open right half plane. If Equation (7) is satisfied, then there are no positive roots for
any value of the time delay. The delay-dependent stability implies that for time delays less than the
delay margin the system is asymptotically stable and all the roots are on the closed left half plane,
and when the time delay exceeds the delay margin the system becomes unstable and some roots
will be on the right half plane. In this manner, the roots will cross the imaginary axis when τ = τd.
We are interested in determining both the delay-independent and delay-dependent conditions of the
system. To simplify the analysis, we replace s with jω. Now, we turn our attention to find the delay
that produce frequencies on the imaginary axis. Then system (5) is said to be asymptotically stable
independent of delay if [35]:

det(jωI − A− Ade−jωτ) 6= 0∀ω ∈ (0, ∞), τ ≥ 0 (8)

If Equation (8) is not satisfied for some values of ω, then the system is delay-dependent stable.
Now the problem is to find the crossing frequency, ωc, where the roots crosses the imaginary axis.
To find the crossing frequencies we use the spectral radius in the following definition.

Definition 1 ([36]). The spectral radius of two matrices pair is defined as:

ρ(A, Ad) := min{|λ||det(A− λAd) = 0|} (9)

where λi(A) is the ith eigenvalue of the matrix A and λi(A, Ad) is the generalized eigenvalue of matrix pair A,
and Ad.

The computation of the delay margin is carried out in the ω domain. To compute the maximum
delay margin we adopt the sweeping test [37]. The sweeping test is very valuable tool especially with
the advances in the computing capabilities of the today’s computers. The seeping test is better for its
simplicity with less computation and accurate results. To find the delay margin of the LFC system we
use the following theorem.

Theorem 1 ([36]). For the system (5) stable at τd = 0, i.e., A + Ad is stable and rank(Ad) = q, we define

τi :=


min

1≤k≤n

θi
k

ωi
k
, i f λi(jωi

k I − A, Ad) = e−jθi
k

f or some ωi
k ∈ (0, ∞), θi

k ∈ [0, 2π]

∞, ρ(jωI − A, Ad) > 1 ∀ω ∈ (0, ∞)

Then τd := min1≤i≤qτi, and the system in (5) is stable for all τ ∈ [0, τd) and becomes unstable at τ = τd.

Proof ([35–38]). The system (5) is stable independent of the time delay if the following condition
is satisfied:

ρ(jωI − A, Ad) = ρ(jωI − A, Ade−jωτ) > 1 for ω > 0, τ ≥ 0 (10)

Condition (10) implies that the system is stable with τ = 0, that is, det(A + Ad) 6= 0. Now
we assume that the system becomes unstable for some value of τ. This means τd < ∞. Now, we
assume that:

det(jωI − A− Ade−jωτ) 6= 0 ∀ω ∈ (0, ∞) (11)

This can be true for ω 6= ωi
k, and consequently at this condition:

|λi(jωI − A, Ad)| 6= 1 i = 1, . . . , n (12)
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For any τ ∈ [0, τd), τωi
k 6= θi

k we must have:

det(jωi
k I − A− Ade−jωi

kτ) 6= 0 (13)

When τ = τd there is a pair (ωi
k, θi

k) that satisfies τd = θi
k/ωi

k, and consequently:

det(jωi
k I − A− Ade−jωi

kτd) = det(jωi
k I − A− Ade−jθi

k ) = 0 (14)

�

Corollary 1 ([36]). The system (5) is stable independent of delay if and only if:

(i) A is stable,
(ii) A + Ad is stable, and
(iii) ρ(jωI − A, Ad) > 1, ∀ω > 0

The three conditions in Corollary 1 represents the delay independent stability, where (i) states
that the system is stable at τ = 0, (ii) the system is stable at τ = ∞, and (iii) the system is stable for
every τ in the range τ ∈ [0, ∞).

Theorem 1 determines both the delay independent and the delay dependent stability. First, we
can verify the delay independent stability by checking the following condition:

ρ(jωI − A, Ad) > 1 ∀ω ∈ (0, ∞)

If the above condition is satisfied, then the system is stable independent of time delay and if it
is not satisfied for some values of ω that makes ρ(jωI − A, Ad) < 1 then we calculate the crossing
frequencies using the algorithm in Figure 2. Finally, we compute the exact delay margin. The algorithm
can be summarized as follows:

Step 1: With the given system parameters, compute A and Ad. Using the sweeping test, check if
the system is stable independent of delay or not, that is ρ(jωI − A, Ad) > 1 for ω ∈ (0, ∞). If for some
values of ω, ρ(jωI − A, Ad) = 1, then proceed to step 2, otherwise the system is stable independent of
the time delay.

Step 2: Define a range ω ∈ [ω1, ω2]. At ω1 the spectral radius ρ(jωI − A, Ad) < 1 and at ω2 the
spectral radius ρ(jωI − A, Ad) > 1. Now the crossing frequency, ωc, lies in the range from ω1 to ω2, in
other words ωc ∈ [ω1, ω2].

Step 3: Use the binary iteration to find the crossing frequency, ωc, with a given error tolerance
ωe [39,40]. We set ωnew = (ω1 + ω2)/2, if ρ(jωnew I − A, Ad) > 1 then ω2 = ωnew and if
ρ(jωnew I − A, Ad) < 1 then ω1 = ωnew. Now the search range is reduced every iteration until the
desired accuracy is reached.

Step 4: When the desired accuracy is reached, we calculate θi
k, the crossing angles, through solving

λi(jωi
k I − A, Ad) = e−jθi

k . Finally, τd = min
1≤k≤n

θi
k/ωi

k is the desired delay margin.
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4. Case Study: One-Area LFC System

To compare the results of our proposed method with the published ones we use the same
parameters in References [16,18,32]. The parameters of the LFC system shown in Figure 1 are given
as: Tch = 0.3, Tg = 0.1, R = 0.05, D = 1.0, β = 21.0, and M = 10. Under an open communication
network, the remote terminal unit (RTU) sends the signals to the central controller through the shared
network, and then the controller sends the commands back. In most of the studies these two delays are
aggregated into a single delay and this assumption is made in this paper. The ACE signals are updated
every 2–4 s [10]. In power systems the data collection is in the order of 1−5 s [4]. The results of the
delay margin with different values of the controller gains, KP and KI, are shown in Table 1 along with
the results of the methods in References [16,18,32]. It should be noted that the method in Reference [32]
gives the most accurate reported delay margins. Table 1 shows clearly that the proposed method gives
almost exactly as the results of the method reported in Reference [32]; however, the proposed method
is simpler with less computations.

The delay margin as a function of the integral gain for various values of the proportional gain
with the proposed method and the method reported in Reference [32] are shown in Figures 3–9. As can
be seen, the proposed method accurately determines the delay margin for the single-area LFC system.
The relative error between the proposed method and the method published in Reference [32] is very
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small. The average relative percentage error is 0.023867% which shows that the delay margin values
are nearly exactly as the same reported in Reference [32].

Table 1. The delay margin for different values of KP and KI.

KP
τd, s KI

Method 0.05 0.1 0.15 0.2 0.4 0.6 1

0

Theorem 1 30.928 15.207 9.961 7.338 3.382 2.042 0.923
[32] 30.915 15.201 9.96 7.335 3.382 2.042 0.923
[18] 30.853 15.172 9.942 7.323 3.377 2.04 0.922
[16] 27.927 13.778 9.056 6.692 3.124 1.91 0.886

0.05

Theorem 1 31.851 15.687 10.277 7.573 3.502 2.122 0.97
[32] 31.875 15.681 10.279 7.575 3.501 2.122 0.97
[18] 31.498 15.647 10.258 7.561 3.496 2.119 0.969
[16] 27.874 14.061 9.284 6.866 3.215 1.974 0.927

0.1

Theorem 1 32.769 16.127 10.575 7.793 3.61 2.194 1.012
[32] 32.751 16.119 10.571 7.794 3.61 2.194 1.012
[18] 30.415 15.765 10.547 7.777 3.604 2.191 1.011
[16] 27.038 13.682 9.22 6.941 3.29 2.029 0.963

0.2

Theorem 1 34.198 16.86 11.06 8.16 3.792 2.313 1.079
[32] 34.226 16.856 11.062 8.162 3.792 2.313 1.079
[18] 28.01 14.597 10.107 7.821 3.784 2.309 1.077
[16] 25.114 12.76 8.617 6.535 3.32 2.108 1.016

0.4

Theorem 1 35.802 17.661 11.596 8.559 3.981 2.426 1.118
[32] 35.834 17.658 11.594 8.559 3.98 2.426 1.118
[18] 22.457 11.835 8.287 6.505 3.718 2.419 1.116
[16] 20.364 10.426 7.065 5.384 2.832 1.912 1.017

0.6

Theorem 1 34.906 17.198 11.28 8.311 3.826 2.281 0.947
[32] 34.922 17.195 11.278 8.312 3.826 2.281 0.947
[18] 16.033 8.624 6.209 4.997 3.038 2.178 0.964
[16] 14.618 7.477 5.157 3.958 2.13 1.475 0.827

1

Theorem 1 0.595 0.586 0.575 0.564 0.516 0.463 0.361
[32] 0.596 0.586 0.575 0.564 0.516 0.463 0.361
[18] 0.594 0.584 0.574 0.563 0.515 0.463 0.36
[16] 0.546 0.538 0.53 0.522 0.482 0.438 0.348
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Case I (KP = 0 and KI = 0.4): In Reference [32], it is reported that the delay margin with KP = 0
and KI = 0.4 is 3.382 s, with the proposed method it was 3.382 s. The proposed method gives accurate
values of the delay margin as the method reported in Reference [32]. The proposed method gives
less conservative results than the LMI methods reported in Reference [16,18]. To validate the results,
simulations with Matlab/Simulink were carried out. The frequency response of the LFC system with
KP = 0 and KI = 0.4 for different values of the time delay is shown in Figure 10. A 0.1 p.u change in
the load occurs at 10 s. Figure 10 shows the frequency response with 3.3 s, 3.382 s, and 3.4 s, and it
is clear that the system is stable with 3.3 s and unstable with 3.4 s. From the simulation the system
was marginally stable with 3.384 s. The percentage error with the simulation-based delay margin
was 0.071%. For this system, we have only one generalized eigenvalue. The spectral radius as a
function ofω is shown in Figure 11. From Figure 11 the crossing frequency was 0.4025 rad/s, solving
Equation (14), we have θ = 1.3678 rad which makes the delay margin equal 3.382 s. From Figure 10 the
oscillating frequency was 0.4025 rad/s which proves the validity of the results.
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Figure 10. The frequency response for different values of the time delay with KP = 0 and KI = 0.4.
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Case II (KP = 0.6 and KI = 0.6): In Reference [32] it is reported with KP = 0.6 and KI = 0.6 that the
delay margin is 2.281 s, while with our method it was 2.281 s. The frequency response with different
delays is shown in Figure 12. The system is stable with 2.1 s; however, it becomes unstable with 2.4 s
which is larger than the delay margin. The simulation-based delay margin was 2.282 s. The crossing
frequency was 0.8015 rad/s, solving Equation (14) for θ, then; θ = 1.8283 rad. Figure 13 shows the
spectral radius as a function ofω for KP = 0.6 and KI = 0.6.
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Case III (KP = 0.05 and KI = 0.05): In Reference [32] it is reported with KP = 0.05, KI = 0.05 that the
delay margin is 31.875 s, while with our method it was 31.8509 s. The frequency response with different
delays is shown in Figure 14. The system is stable with 31.8509 s; however, it becomes unstable with
33 s which is larger than the delay margin. The simulation-based delay margin was 31.88 s. The relative
percentage error was 0.0438%. The crossing frequency was 0.0502 rad/s, solving Equation (14) for θ
then θ = 1.596 rad. Figure 15 shows the spectral radius as a function ofω for KP = 0.05 and KI = 0.05.
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The delay margin for different values of the PI controller gains is shown in Figure 16. The delay
margin dependence on KI, and KP shows similar behavior as observed in References [16,18,32].
The crossing frequencies and the crossing angles are shown in Tables 2 and 3 respectively.
The variations of the crossing angle and the crossing frequency give more details on the dependence of
the delay margin on KP and KI. From Figure 16, the delay margin decreases with increasing KI if KP is
kept constant. The delay margin increases as KP increase in the range KP < 0.4, then the delay margin
decreases as KP becomes larger than 0.4. This is the same behavior observed in References [16,18,32].
The delay margin becomes large for small values of KP and KI.

From Table 3, the LFC system oscillate with lower frequencies for small values of KP and KI.
The LFC system tends to oscillate with higher frequency with large values of KP and KI.

The delay margins, crossing angles and the crossing frequencies with different values of KI
when KP = 0 are shown in Table 4. It is interesting to observe that the crossing frequency with
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KP = 0 numerically equals KI. As KP is made larger than 0.2, the crossing frequency increases with
increasing KP.
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Table 2. The crossing angle with different values of KP and KI.

θ/rad KI

KP 0.05 0.1 0.15 0.2 0.4 0.6 1.0

0 1.546 1.521 1.496 1.471 1.368 1.257 0.989
0.05 1.596 1.571 1.546 1.521 1.418 1.307 1.041
0.1 1.646 1.621 1.596 1.571 1.468 1.358 1.092
0.2 1.747 1.722 1.696 1.671 1.567 1.456 1.187
0.4 1.956 1.929 1.902 1.875 1.765 1.647 1.349
0.6 2.184 2.153 2.123 2.092 1.968 1.828 1.419
1.0 1.435 1.413 1.390 1.365 1.262 1.152 0.934

Table 3. The crossing frequency with different values of KP and KI.

ω/(rad/s) KI

KP 0.05 0.1 0.15 0.2 0.4 0.6 1.0

0 0.0500 0.1000 0.1502 0.2005 0.4045 0.6153 1.0714
0.05 0.0501 0.1002 0.1505 0.2009 0.4050 0.6161 1.0732
0.1 0.0502 0.1005 0.1509 0.2016 0.4067 0.6187 1.0784
0.2 0.0511 0.1021 0.1534 0.2048 0.4133 0.6295 1.1004
0.4 0.0546 0.1092 0.1640 0.2191 0.4434 0.6789 1.2065
0.6 0.0626 0.1252 0.1882 0.2518 0.5143 0.8015 1.4981
1.0 2.4102 2.4120 2.4151 2.4193 2.4462 2.4861 2.5867

Table 4. The delay margin for various values of KI and KP = 0.

KI θ ω τd

0.05 1.5460 0.0500 30.9283
0.1 1.5212 0.1000 15.2066

0.15 1.4963 0.1502 9.9614
0.2 1.4712 0.2005 7.3375
0.4 1.3678 0.4045 3.3816
0.6 1.2566 0.6153 2.0422
1.0 0.9889 1.0714 0.9230
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The proposed method has been compared with four different published methods. The delay
margin results are less conservative than the results of the LMI method reported in References [16,18];
however, the LMI method has the advantage of dealing with time varying delays. The results of the
delay margin are equal to the delay margins obtained by the frequency domain methods reported in
References [30,32]; however, the proposed method is simpler for implementation.

5. Conclusions

In this paper, we propose a method for analyzing the stability of load frequency control systems
with a communication delay. The method is a frequency domain method without any approximation
to the resultant delay system. The delay margins are computed through the binary iteration and
the sweeping test. A single-area load frequency control system has been chosen as a case study and
the delay margin values have been compared with values reported in the literature. The method
gives accurate delay margins which is proved by time delay simulation and comparison with the
published methods. The main two advantages of the proposed method are its accuracy and its
simplicity compared with the other methods. Additionally, the method can determine accurately the
oscillating frequency of the load frequency control system when the time delay equals the delay margin.
The proposed method in this paper is applied to a single-delay load frequency system. The method
will be extended to deal with multiple time delays which is the case for multi-area load frequency
control systems.
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