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Abstract: More and more countries and utilities are trying to develop smart grid projects to make
transformation of their power infrastructure towards future grids with increased share of renewable
energy production and near zero emissions. The intermittent nature of solar and wind power can
in general cause large problems for power system control. Parallel to this process, the aging of
existing infrastructure also imposes requirements to utility budgets in the form of a need for large
capital investments in reconstruction or maintenance of key equipment. Synchrophasor and other
synchronized measurement technologies are setting themselves as one of the solutions for larger
wind power integration. With that aim, in this paper one possible solution for wind power control
through data mining algorithms used on a large quantity of data gathered from phasor measurement
units (PMU) is described. Developed model and algorithm are tested on an IEEE 14 bus test system
as well as on real measurements made on wind power plants currently in operation. One such wind
power plant is connected to the distribution grid and the other one to the transmission grid. Results
are analyzed and compared.
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1. Introduction

Many utilities are facing new challenges when trying to develop various kinds of smart grid
projects in order to make transformation towards smarter and more sensible [1,2] power grids
and utilities. This demanding task becomes even more complex when utilities are facing the
aging of existing infrastructure which makes huge demands to public budgets regarding the need
for large CAPEX (capital expenditure) amounts in reconstruction and upgrades of power system
infrastructure [3–5]. The ageing problems combined can cause severe faults extending along the grid
and to cope with the fact that new ways of power system monitoring and control are required [2].

Phasor measurement units (PMU) have already been defined as suitable for many applications
of larger renewable energy integration [2,6]. Furthermore, latest developments in the information
and telecommunication technologies (ICT) industry creates large possibilities in the areas of data
transmission, sensor measurements, energy savings, asset management etc. [7,8] and that provides
new opportunities for finding better solutions.

Probably the most suitable installation that imposes itself as an upgrade of the existing system
is the usage of simple intelligent electronic devices (IEDs) [9,10]. Together with the increase of
the renewable energy share that requires new paradigms and market designs [11], there is also an
increasing need for improved monitoring and control possibilities in power systems. Also, operators
have a great need for early warning in critical transition situations [12].
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In this paper, one possible application for wind power monitoring and control is described
which integrates several of these additional services as an example. This kind of project can easily be
upgraded, scaled and multiplied for application in the other utilities and transmission systems.

The paper is structured as follows: Section 1 gives an overview and introduction to basic concepts,
Section 2 describes the developed big data algorithm and Section 3 depicts test case results. Sections 4
and 5 describe the real system results and provide specifics for different network designs while Section 6
concludes the work and provides guidelines for future work. Fundamental system framework is
structured in a way that the integration of additional modules can be arranged around existing basic
infrastructure like energy distribution grid, transmission power lines, substations etc. Main groups of
additional modules are shown on figure below (Figure 1).
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Figure 1 depicts the importance of the integration of all components. Having such a vital role
in the whole process the experts working in the field will be required to have a broader insight and
understanding of the that process in order to successfully integrate all new technologies. Fundamental
basic system architecture is defined as a set of nodes around telecom backbone sending crucial data of
the system operation to corresponding servers.

Internet Protocol (IP) multicast [13] is one such technique for one-to-many and many-to-many
real-time communication over an IP infrastructure in a network. In smart grid applications, there
are different protocols that need to be integrated in a system such as WAMS (Wide Area Monitoring
System) that include protocols based on IEEE C37.118, substation automation protocols (IEC 61850)
etc. All smart grid services and protocols (WAMS, Smart Metering infrastructure and IEC 61850
based applications) can be efficiently transported over such networks of telecommunication platforms
(Figure 2).
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Figure 2. Basic system architecture of IP/MPLS (Multiprotocol Label Switching) techniques.

Having all the data concentrated would enable efficient data storing and processing enhancing
the current information stream with the extraction of right information from the big data surrounding.
Key characteristic of such future infrastructure enhancements would need to be adaptivity towards
existing power grid infrastructure and modularity to allow system’s components separation and
recombination (“adaptidular” infrastructure). The most important benefits of the new infrastructure
(Figure 3) following the adaptidular design paradigm can be described as following:

• Existing capacities and possibilities of existing infrastructure enhancement and upgrading
• Capital expenditures (CAPEX) postponing or abolishing (building of new lines, substations,

power infrastructure reconstruction) due to availability of new information in asset management
systems, dynamic line rating system, PMU systems etc.

• Maintenance cost cutting through the usage of predictive maintenance enabled through sensor
networks and IoT gateways

• Additional services provision: numerous additional services such as meteorological data
assessment, air quality mapping, telecom services provision through IP/MPLS etc.
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2. Developed Algorithm for Wind Power Monitoring and Control

In order to investigate the possibility and potential of wind power monitoring and control based
on big data surrounding an algorithm for monitoring and incorporating synchrophasor measurement
was developed. As described earlier, it has all the characteristics of adaptive and modular applications
that can easily be installed and commissioned on the existing infrastructure. It also provides ability for
later upgrades and integration into large scale applications.

2.1. Big Data Surroundings

The power system infrastructure produces huge amounts of data. The nonlinear nature of this
data makes the extraction of useful information complicated [14]. Compared to standard mathematical
models, data mining techniques are non-deterministic and provide a feasible and valid solution which
is not exact but is simple to obtain, concise, practical and easy to understand. This characteristic is
especially suitable when processing the big data streams which are inevitably involved. As mentioned
earlier, large wind power capacities are being installed and connected to different voltage levels.
Every wind turbine, wind measuring masts inside the wind park transformer substations, etc. represent
the source of large quantities of data every second. All these data streams can be further expanded with
the installation of new data sensors arrays. These large quantities of data can be deemed unnecessary,
but with the usage of different big data algorithms a way to monetize this data can be found.

The most important data that can and should be used in power system data mining algorithms is
the data for state estimation and future power system state predictions. These data streams can be
classified into three main groups:

1. Phasor values measurements;
2. Loads and production measurements;
3. Other influential variables measurements.

Phasor values like voltages and currents together with belonging phasor angles, can be gathered
through PMU measurements and can provide valuable insights into system operation. Also, load and
generation data with exact time stamp can easily be measured and collected to afterwards be used for
different analyses.

Other influential variables of additional data that are not directly connected to power system
monitoring and control are also sometimes highly influential. These include meteorological data from
various kinds of measurement systems of which most important are wind speeds and wind directions,
air temperature, humidity and pressure, solar irradiance measurements. Together with meteorological
data, other measurements such as conductor temperatures, overhead line sags, partial discharges,
current transmission line capacity obtained by dynamic line rating (DLR) systems etc. can also be
collected [15]. All these data series can be used in wind and solar power system monitoring and control
as well as for load forecasting applications and power evacuation possibilities. The prerequisite is to
have an efficient solution for data transmission and processing.

2.2. Data Mining Scope

As described earlier, the huge amounts of data inside power creates the big data surroundings.
The non-linear nature of the system makes the definition of new models for extraction of useful
information from heaps of gathered data even more demanding [16].

Especially demanding is the usage of data from wind power plants since these stochastic sources
produce even bigger amounts of data due to dependable variables which influence the output power.

Therefore, good data mining scope thus integrates wide area of variables. This paper defines
simplified model which comprises of:

• Wind power plant active and reactive power production (PWind, QWind), at wind power plant
point of common coupling (PCC);
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• Wind power plant active and reactive power settings (PSettings, QSettings), which are operational
decisions for the settings of wind power controller placed at wind power (PCC);

• Total system load measurements (PL), expressed in percentage, as a percentage of nominal load;
• Voltage amplitudes and angles (phasors) measurements (Vi, δi) on selected nodes in the system;
• Line, transformer and generator availability information.

Each operating condition (OC) is defined as a mathematical set whose members are the following
elements or variables:

OCk = {V1, V2, V3, . . . Vi, δ1, δ2, δ3, . . . δi, PL, PWind, QWind, Zth} (1)

- with i = 1, 2, 3, . . . n; where n is the number of nodes in power system with measurements of
effective values and voltage angles in the system, and

- with k = 1, 2, 3, . . . m; where m—total number of input states over which data mining techniques
are analyzed.

The abovementioned data can be expanded by defining the finely tuned fractal structures attached
to it:

• Wind power total can be divided into wind power of single wind turbine or a cluster of turbines;
• Total system load can be divided into loads on busbar, consumer, or load area level;
• Voltage amplitudes and angles can be enhanced with current amplitudes and angles for each

branch as well as Thevenin impedance measurements;
• Wind production is defined with wind speed and can further be detailed with wind direction,

air temperature and pressure, solar irradiance and air humidity measurements;
• Line and transformer availability can further be described through breaker status in line bays and

transformer bays or through transformer and line monitoring systems.

All this data needs to form large and well-organized databases for further usage in control,
planning, asset management and operation and maintenance (O&M) optimization process. Therefore,
to take full advantage of the available data efficient algorithms for big data analysis are needed.

2.3. Proposed Algorithm Design

The aim of the developed algorithm is to create a new kind of early warning signal (EWS) and
recognize the structure of critical transitions for transmission system and wind power operators in the
form of a situational awareness (SA) indicator [17]. These signals should be structured to warn the
operators that the alarming operating condition could be reached and that preventive or corrective
actions should be done (e.g., wind power curtailment or reactive power support increase) and thus
move the system to normal operating state, like described in figure below (Figure 4). Created EWS
signal as a situational awareness indicator serves as a main triggering signal for operating decisions in
wind power settings in order to change operating condition back to EWS value NORMAL. Therefore,
EWS could serve as a first line of defense to reduce the risks of total or partial system blackouts and
thus reducing the opportunity costs associated with the costs of electric energy not being delivered.

Commonly used data mining algorithms identified by the IEEE International Conferences on
Data Mining (ICDM) are C4.5, k-Means, Support Vector Machine (SVM), Apriori, PageRank, AdaBoost,
Neural Networks, Naive Bayes and Classification and regression trees (C&RT). These 10 algorithms
cover classification, clustering, statistical learning, association analysis, and link mining, which are all
among the most important topics in data mining research and development. In [18] a review on the
applications of data mining in power systems is given.
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Figure 4. Early warning signal (EWS) concept as a first line of defense inducing preventive and
corrective actions after system state change.

The approach described here combines several segments of classification and clustering and
statistical learning in one algorithm. Also, it brings combined solution for monitoring and preventive
measures operating decisions.

A basic workflow diagram of the proposed algorithm is described on Figure 5. The first step
in the algorithm is data management and preparation which consists of time synchronization,
format unifying, and ordering of historical raw data from actual power system measurements.
Additionally, synthetic data which is produced and gathered from various kinds of simulations
based on mathematical models is also included in this step. In this paper DigSilent Power Factory
power system analysis software [19] is used as a tool for production of simulation data.

The input data vector in the clustering process is equal to:

OC = [OC1; OC2; OC3; OCm]T (2)

In this way, mathematically defined power system states are defined as input data in the algorithm.
It is important to note that except for the variables defined herein, the input set of system states can be
extended to a whole range of additional input signals such as data from various measuring devices
for measuring electrical and nonelectric values, meteorological measuring devices, sensors and other
devices. The model is therefore adaptive and modular. It is easy to upgrade by simply expanding the
operating condition (OC) math data set.

The second step is data clustering, with the aim of defining system states on a given database or
set of operating conditions. For the algorithm design described in this paper, the analytics software
package Statistica [20] was used. Standard variable definition from statistical theory was used where
an independent variable (also called experimental or predictor variable), is being manipulated in an
experiment to observe the effect on a dependent variable (also called an outcome variable). Total set of
operating conditions in this example to be a representative sample needs to be large enough and cover
all possible system states and. K-Means algorithm with Euclidian distances was used for clustering of
the initial data set in following way:

• Thevenin impedance at bus 8 (Figure 6) was used as dependent variable;
• Thevenin impedance absolute value is used as first dependent variable;
• Thevenin impedance angle was used as second dependent variable;



Energies 2018, 11, 3525 7 of 23

Clustering was finally made into three clusters which describe normal (NORMAL), transition
(WARNING) and problematic (ALARM) conditions. It is important to stress that all three system states
should be present in input datasets in order to have a viable solution of this part of the algorithm.

After the clustering of the system states of a particular group or clusters for normal, warning
and alarm operating conditions, the same definitions of the target groups serve as inputs for the
classification part of the algorithm. With these clustered data, data classes are defined for later analysis
of new metric input data:

CA = {CNORMAL, CWARNING, CALARM} (3)

CA—a set of data classes in the algorithm
CNORMAL—data class for normal operating condition
CWARNING—the class of data for transition operating condition
CALARM—data class for normal critical condition
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Figure 5. Basic workflow diagram.

The third step consists of data classification of new measurement data and definition of a set
of new system operating conditions (OC). Assigned system condition (NORMAL, WARNING and
ALARM) were set as independent variables and previously defined variables in data mining scope
(PWind, QWind, PL, Vi, δi) as dependent. New measurement data, according to its parameters, in the
classification part of the algorithm are classified into predefined groups according to the values of the
parameters that are taken as input data. Classification groups are defined as clusters created by earlier
clustering of operating conditions.

Classification and regression trees (C&RT) method was used for this classification analysis.
For that purpose, software Statistica [20] was used. To assign weight factors to decision making
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process, misclassification costs [21] were defined heuristically according to table below (Table 1).
In columns are predicted variables and in rows are measured variables.

Table 1. Misclassification costs defined for data classification.

EWS NORMAL WARNING ALARM

NORMAL 0 1 5
WARNING 1 0 3

ALARM 1 1 0

To prevent overfitting of the data, a V-fold cross validation is used. 5% of the cases were used
as “v-value” [21]. V-fold cross validation where the data set is randomly divided into v equal parts
and the learning phase of the algorithm is done on v − 1 parts and test on the remaining piece
is especially suitable for such situations where a small number of cases is used for classification.
Furthermore, pruning on variance that reduces the size of decision trees by removing sections of the
tree that provide little power to classify instances was used to get closer look at cost sequence for all
calculated classification and regression trees. Cost sequence was calculated for re-substitution and
cross-validation costs for all generated C&R (Classification and Regression) trees. In this way, a more
simplified decision tree can be chosen according to law of parsimony, anticipating that things are
usually connected or behave in the simplest or most economical way, especially with reference to
alternative evolutionary paths [22]. To reach a normal system state, as a final result there can be several
operating conditions fulfilling the given conditions. This means the output from data classification
process will be a set of possible operating conditions (OCs). In the final step, final wind power plant
operating decisions are made according to a simple procedure of selecting the best possible solution
among the vector of possible operating states (OCP) whereby:

OCP = [OC2; OC3; . . . OCp]T (4)

With the requirement that each element of vector OCP is also an element of the class CNORMAL.
A final operating decision still needs to be made, meaning settings of wind power plant controller

(Psetting and Qsetting) at the point of common coupling need to be defined. Variable Psetting is defined as
setting of for output active power. If this setting is lower than available wind power, the result will be
wind power curtailment. This variable is defined as a continuous variable. Variable Qsetting is defined
as setting of regime for reactive power regulation. This variable is defined as categorical variable
(of total output Q or cos ϕ) meaning one setting represents one possible category (e.g., cos ϕ = 0.9
lagging or Q equal to 0.5 p.u.). This way reactive power control variable is discretized. Final operating
decisions for wind power plants are made according to simple process of selecting the best possible
solution among the set of possible operating conditions (OCs). Final operating condition is chosen
to minimize the opportunity costs of wind energy export and thus maximizing the produced energy.
Also, according to [23], to prolong the lifetime of wind turbines it is necessary to lower reactive
power production and its influence on power electronics in turbine converters. In harmony with the
availability of wider range of PMU measurements the operation can be optimized with both available
measurement and analysis results [24]. Therefore, final decisions can be summarized as maximization
of output active power and minimization of reactive power (Equations (5) and (6)).

max {Pwind} (5)

min {Qwind} (6)
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Power transformers at point of common coupling (PCC) have limited capacity. Therefore,
additional condition needs to be fulfilled in order not to endanger operational limits (Equation (7))
where STR is the power transformer capacity (MVA).

STR ≤ (PWind
2 + QWind

2)1/2 (7)

3. Test System Example

3.1. Test System Description

IEEE 14 bus test system was used as a first test case for the application of the proposed algorithm.
Instead of synchronous compensator that is originally included in the IEEE 14 test system connected
to bus 8, a wind power plant on that given bus was defined with rated power of 20 MW, which can be
seen on Figure 6.
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Figure 6. IEEE 14 bus test system with addition of a win power plant on bus 8.

3.2. Operating Conditions

In this numerical example, only synthetic data was produced and analyzed. Power system
calculations were made in DigSilent Powerfactory software (DIgSILENT GmbH, Gomaringen, Germany)
as was mentioned earlier with the series of power flow simulations for different network conditions.

Operating conditions (OCs) were calculated for a wide range of different simulation scenarios
including:

• Variable wind power plant active power production change in an interval from 0–100% of rated
power in discrete steps of 25%;

• Variable wind power plant reactive power settings definition in three different modes:

• power factor regulation (setup point change from 0.9 p.u. lagging to 0.9 p.u. leading in steps
of 0.05 p.u.);
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• reactive power regulation (setup point change from 1.0 p.u lagging to 1.0 p.u. leading in
steps of 0.05 p.u.);

• voltage regulation (setup point change from 0.9 p.u. lagging to 0.9 p.u. leading in steps of
0.05 p.u.).

• Power system load change in an interval from 1 p.u. to 1.6 p.u. (100–160%) in steps of 0.2 p.u.
(20%);

• Line, transformer and generator availability status change switching off in different combinations
for different OCs.

This way, a total of 396 OCs was created with most of the variables defined as continuous variables.
Thus, large database covering a large number of possible network situations was created and further
analyses were enabled.

3.3. Test Model Results

Large number of different analyses made in Statistica software, (Tibco Software, Palo Alto, CA,
USA) as mentioned earlier. For example, voltage isolines for bus 8 at subject test system in various
system load conditions and wind farm production (wind farm working in cos ϕ regulation mode with
cos ϕ = 1) are given in following figure (Figure 7).

Energies 2018, 11, x FOR PEER REVIEW  10 of 23 

 

This way, a total of 396 OCs was created with most of the variables defined as continuous 
variables. Thus, large database covering a large number of possible network situations was created 
and further analyses were enabled. 

3.3. Test Model Results 

Large number of different analyses made in Statistica software, (Tibco Software, Palo Alto, CA, 
USA) as mentioned earlier. For example, voltage isolines for bus 8 at subject test system in various 
system load conditions and wind farm production (wind farm working in cos φ regulation mode 
with cos φ = 1) are given in following figure (Figure 7). 

 
Figure 7. Voltage profiles for bus 8 of the IEEE 14 test system for different load conditions and wind 
power production with reactive power mode cos φ = 1. 

From Figure 7 it can be seen how with the increase of load and/or wind production, voltage 
isolines become denser, which is explained through larger voltage sensitivity in these operating 
regions and conditions. 

In this series of calculations, only simulation data was used. Simulation data was generated on 
an IEEE 14 bus system. Thus, data preparation step was simplified and there was no need for data 
formatting/unifying and time synchronization. 

After data clustering, resulting centroids of Thevenin equivalent, for k-means clustering based 
on a total of 396 training cases, are given in following table (Table 2): 

Table 2. Centroids of Thevenin equivalent for the k-means clustering—IEEE 14 bus test model. 

EWS Zth abs Zth arg No. of Cases 
NORMAL 0.438743 87.91876 295 

WARNING 0.554339 80.64339 85 
ALARM 2.179344 69.31481 16 

Thevenin impedances can be used for a wide range of protection applications [25]. 

voltage at bus 8 (p.u.)

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22

Pwind (MW)

50

60

70

80

90

100

110

120

130

140

150

160

170

LO
AD

 (%
)

 1.02 
 0.98 
 0.94 
 0.90
 0.86 
 0.82 

Figure 7. Voltage profiles for bus 8 of the IEEE 14 test system for different load conditions and wind
power production with reactive power mode cos ϕ = 1.

From Figure 7 it can be seen how with the increase of load and/or wind production, voltage
isolines become denser, which is explained through larger voltage sensitivity in these operating regions
and conditions.

In this series of calculations, only simulation data was used. Simulation data was generated on
an IEEE 14 bus system. Thus, data preparation step was simplified and there was no need for data
formatting/unifying and time synchronization.
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After data clustering, resulting centroids of Thevenin equivalent, for k-means clustering based on
a total of 396 training cases, are given in following table (Table 2):

Table 2. Centroids of Thevenin equivalent for the k-means clustering—IEEE 14 bus test model.

EWS Zth abs Zth arg No. of Cases

NORMAL 0.438743 87.91876 295
WARNING 0.554339 80.64339 85

ALARM 2.179344 69.31481 16

Thevenin impedances can be used for a wide range of protection applications [25].
According to EWS centroids given in Table 2 and EWS clustering depicted in Figure 8, it can be

seen how power system changes its impedance to higher absolute and more resistive values during
warning and alarm operating conditions. This represents an expected behavior that can be detected
and further actions can be planned accordingly.
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Further validation of such clustering was made using Jacobi matrix eigenvalues. Since Jacobi
matrix for IEEE 14 bus test system has 14 eigenvalues, root mean square value of all 14 values was
used as leveled variable which is labeled as lambda. In Figure 9 it can be seen how lambda values are
clustered for normal, warning and alarm operating conditions. In this way, the early warning signal is
verified with Jacobi matrix eigenvalues.
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Figure 9. EWS clusters based on Jacobi matrix eigenvalues with least square method fitting.

Calculated clusters are used for further classification of cases of OCs. Classification was made
with the usage of clustered EWS in OCs as dependent variables. Independent variables are voltage
values and voltage angles on all buses as well as total system load, wind power active power and wind
power reactive power settings.

As a stopping rule during classification tree calculation, prune on misclassification error criteria
was used as described in Breiman et al. [21]. The pruning process results in a sequence of optimally
pruned trees and a criterion to select the “right-sized” tree is applied afterwards. Trees with smallest
misclassification costs often have hidden over-fitting. Thus, it is needed to make automatic tree
selection procedure to avoid “over fitting” and “under fitting” of the data. To distinguish calculated
trees, re-substitution costs and cross-validation costs are calculated according to [21] for all trees and
cost sequence is shown on the figure below (Figure 10).

Energies 2018, 11, x FOR PEER REVIEW  12 of 23 

 

 
Figure 9. EWS clusters based on Jacobi matrix eigenvalues with least square method fitting. 

Calculated clusters are used for further classification of cases of OCs. Classification was made 
with the usage of clustered EWS in OCs as dependent variables. Independent variables are voltage 
values and voltage angles on all buses as well as total system load, wind power active power and 
wind power reactive power settings. 

As a stopping rule during classification tree calculation, prune on misclassification error criteria 
was used as described in Breiman et al. [21]. The pruning process results in a sequence of optimally 
pruned trees and a criterion to select the “right-sized” tree is applied afterwards. Trees with smallest 
misclassification costs often have hidden over-fitting. Thus, it is needed to make automatic tree 
selection procedure to avoid “over fitting” and “under fitting” of the data. To distinguish calculated 
trees, re-substitution costs and cross-validation costs are calculated according to [21] for all trees and 
cost sequence is shown on the figure below (Figure 10). 

 
Figure 10. Early warning signal (EWS) cost sequence for different classification and regression trees. 

Lambda = -0.0013+0.0017 x EWS

NORMAL WARNING ALARM

EWS

-0.005

0.005

0.01

0.015

La
m

bd
a

Figure 10. Early warning signal (EWS) cost sequence for different classification and regression trees.



Energies 2018, 11, 3525 13 of 23

For making the selections “1 Standard error rule” proposed by Breiman et al. [21] proposed a
“1, of the “right-sized” tree. In this way, tree number 2 is selected to avoid “over fitting” and “under
fitting” of the data (Figure 10). Also, through this classification analysis, it is possible to calculate
importance for all independent variables according to the definition of variable importance given
in [21]. Importance for all dependent variables is given on a Figure 11.

Practically all voltage and angle measurements from PMU devices have very high importance,
except measurements from node 1 which was chosen as the slack busbar. Voltage angles (d1, d2, to d14)
have very high importance which is understandable since they represent active power flows. Wind
power active power production and reactive power settings have lower importance which can be
described through moderate installed power of wind power plant compared to the network size.
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Figure 11. EWS importance plot for different dependent variables.

4. Radial Distribution System Example

4.1. Distribution System Description and Operating Conditions

Wind power plant (WPP) VE ZD 6 is 9.2 MW renewable energy source connected to 30 km long
radial transmission 35 kV voltage level line in the middle of its length (Figure 12). Subject 35 kV
power line is part of distribution system operator network in central Croatia. General characteristics of
this network are low loadings especially during the night time. Therefore, large voltage deviations
can occur in this relatively long and lightly loaded medium voltage line. Since wind power plant is
connected through a T-junction situated in the middle of its length, it can serve as a voltage controller
and provide preventive measures for system support.

In this numerical example, synthetic data was used to perform data mining calculations and real
operation measurement data was used to verify the model. Measurements were made on the point of
common coupling (PCC) using PMU device Arbiter 1133a and metering device ION 7660.
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4.2. Distribution System Results

After data clustering, resulting centroids of Thevenin equivalent, for k-means clustering based on
a total of 135 training cases, are given in following table (Table 3).

Table 3. Centroids of Thevenin equivalent in PCC for k-means clustering—WPP VE ZD 6 model.

EWS Zth abs Zth arg No. of Cases

NORMAL 4.090202 74.98206 41
WARNING 3.781597 78.12948 71

ALARM 3.228652 80.60002 23

In accordance to the EWS centroids given in Table 3, EWS clustering was made and the results are
shown on Figure 13.
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After data classification, resulting C&RT is given in Figure 14. Operating conditions can easily be
recognized by monitoring voltage angle at transformer substation 110/35 kV Obrovac.

In these figures (Figures 14 and 15) ID represents ordinal number of the decision tree leaf, and N
the number of cases on that leaf. Additional classification was made on a reduced set of parameters for
a substation 110/35 kV Obrovac, where set of input parameters was built from available measurements
since at the testing period real operation measurements were not available. Those measurements
include voltage amplitudes and voltage angles, as well as active and reactive power at PCC of WPP VE
ZD 6. Voltage angle was measured with reference angle at transformer substation 400/110 kV Velebit.
This high voltage node was also defined as slack node in the calculations of operating conditions.
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With such reduced set of input parameters, it is evident that there are only two variables in the
classification tree of decision-making process: effective values of voltage at the PCC and the settings of
reactive power control. Therefore, in defining the conditions in the local network around the WPP, it is
enough to monitor the effective voltage values at that PCC and base decision making on that variable.

Decision-making in this case refers to the change of the wind power for reactive power production
to aid the system conditions. The peak power of the WPP is 9.2 MW which can easily be evacuated
through the corresponding 35 kV transmission line (approximately 16 km long). The problem occurs
in regard to the voltage security of the power system. Final operating decision making thus results in
Psetting = max {PWIND} = 9.2 MW and Qsetting = min {QWIND} = Const. ϕ = 1 for all operating conditions
with voltages at PCC above 31.7275 kV (0.9065 p.u). 31.7275 kV (0.9065 p.u) represents the critical
voltage value that was obtained through the analysis process.

5. Meshed Transmission System Example

5.1. Transmission System Description and Operating Conditions

Wind power plant (WPP) VE ZD 2&ZD 3 has a capacity of 36.8 MW and is connected to meshed
110 kV grid (Figure 16). Subject 110 kV network is part of transmission system operator network
in southern Croatia. General characteristic of this network are also low loadings, especially during
night. Therefore, large voltage deviations occur. Furthermore, the PCC of the wind power plant is
represented through the power transformer with rated power of 40 MVA.

Energies 2018, 11, x FOR PEER REVIEW  16 of 23 

 

With such reduced set of input parameters, it is evident that there are only two variables in the 
classification tree of decision-making process: effective values of voltage at the PCC and the settings 
of reactive power control. Therefore, in defining the conditions in the local network around the WPP, 
it is enough to monitor the effective voltage values at that PCC and base decision making on that 
variable. 

Decision-making in this case refers to the change of the wind power for reactive power 
production to aid the system conditions. The peak power of the WPP is 9.2 MW which can easily be 
evacuated through the corresponding 35 kV transmission line (approximately 16 km long). The 
problem occurs in regard to the voltage security of the power system. Final operating decision 
making thus results in Psetting = max {PWIND} = 9.2 MW and Qsetting = min {QWIND} = Const. φ = 1 for all 
operating conditions with voltages at PCC above 31.7275 kV (0.9065 p.u). 31.7275 kV (0.9065 p.u) 
represents the critical voltage value that was obtained through the analysis process. 

5. Meshed Transmission System Example 

5.1. Transmission System Description and Operating Conditions 

Wind power plant (WPP) VE ZD 2&ZD 3 has a capacity of 36.8 MW and is connected to meshed 
110 kV grid (Figure 16). Subject 110 kV network is part of transmission system operator network in 
southern Croatia. General characteristic of this network are also low loadings, especially during 
night. Therefore, large voltage deviations occur. Furthermore, the PCC of the wind power plant is 
represented through the power transformer with rated power of 40 MVA. 

 

Figure 16. Wind power plant VE ZD 2 & ZD 3 connected to a meshed 110 kV grid. 

In this numerical example, synthetic data was used in order to perform data mining calculations 
and measurement data was used to verify the model. Measurements were made on point of common 
coupling (PCC) using PMU device Arbiter 1133a and metering device ION 8800. 

5.2. Transmission System Results 

After data clustering, resulting centroids of Thevenin equivalent, for k-means clustering based 
on a total of 150 training cases, are given in following table (Table 4). 

Table 4. Centroids of Thevenin equivalent in PCC for k-means clustering—WPP VE ZD 2&ZD 3. 

Figure 16. Wind power plant VE ZD 2 & ZD 3 connected to a meshed 110 kV grid.

In this numerical example, synthetic data was used in order to perform data mining calculations
and measurement data was used to verify the model. Measurements were made on point of common
coupling (PCC) using PMU device Arbiter 1133a and metering device ION 8800.

5.2. Transmission System Results

After data clustering, resulting centroids of Thevenin equivalent, for k-means clustering based on
a total of 150 training cases, are given in following table (Table 4).
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Table 4. Centroids of Thevenin equivalent in PCC for k-means clustering—WPP VE ZD 2&ZD 3.

EWS Zth abs Zth arg No. of Cases

NORMAL 11.98351 83.80223 130
WARNING 10.42744 81.64916 14

ALARM 7.33635 71.44346 6

According to EWS centroids given in Table 4, EWS clustering was made and the results are given
on Figure 17.
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After data classification, resulting C&RT tree is given on figure below (Figure 18). Operating
conditions can easily be recognized and predicted by monitoring of voltage amplitudes and voltage
angle at 4 influential nodes of the observed segment of the transmission network.
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During testing, only measurements at substation 110/20 kV Bruska were made. Therefore, additional
classification is made on a reduced set of parameters, where set of input parameters was built from
available measurements (Figure 19). Those measurements include voltage amplitudes and voltage
angles, as well as active and reactive power production measured on PCC of WPP VE ZD 2 & ZD 3.
Voltage angle was measured with reference to angle at substation 400/110 kV Velebit. This node was
also defined as slack node in the calculations of operating conditions.
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It is evident that there are several variables in the classification tree of the decision-making process
that have significant importance:

• WPP reactive power production setting;
• Voltage amplitudes at substation 110/20 kV Bruska (PCC of WPP VE ZD 2&ZD 3);
• Curtailment amount of the active power generation of the wind power plant.

Thus, to define the opportunities in a local network around the wind power plant, it is enough
to monitor voltage values at that measuring point and reach decisions based on that variable. As a
critical voltage value threshold, the value of 0.9435 p.u. i.e., 103.785 kV is defined. When voltage drops
below the above-mentioned value at the WPP VE ZD 2 & ZD 3 or at substation 110/20 kV Bruska,
critical conditions can be expected in the system.

Decision-making primarily relates to the change of wind power operational regime in regard to
the reactive power production. The results are also understandable from the power flows point of
view since the installed active power of the wind power plant is 36.8 MW, which is not a problem
in the observed segment of the transmission system. The evacuation of installed rated power over a
distance of about 16 km over the 110 kV transmission line towards substation 110/35 kV Obrovac and
110/35 kV Benkovac is done without any problems. Therefore, the only problem is the problem of
voltage control to avoid out-of-limit voltages through reactive power production regulation.
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5.3. Transmission System Model Validation

Transmission system model validation was done using real operation measurements from the
same WPP and the following tests were analyzed:

1. Active power curtailment test;
2. Tripping of 110 kV transmission line Obrovac—Bruska test;
3. Change of reactive power regulation regime test.

Results are given in following figures (Figure 20—curtailment test; Figure 21—tripping test;
Figure 22—reactive power change test).

Energies 2018, 11, x FOR PEER REVIEW  19 of 23 

 

5.3. Transmission System Model Validation 

Transmission system model validation was done using real operation measurements from the 
same WPP and the following tests were analyzed: 

1. Active power curtailment test; 
2. Tripping of 110 kV transmission line Obrovac—Bruska test; 
3. Change of reactive power regulation regime test. 

Results are given in following figures (Figure 20—curtailment test; Figure 21—tripping test; 
Figure 22—reactive power change test). 

 
Figure 20. Validation of resulting C&RT—WPP VE ZD 2 & ZD 3 power measurements—wind 
curtailment test. 

During all these curtailment cases, voltages in the network, as well as other parameters from 
C&RT process were classified as normal operating conditions. 

Next, the test of tripping transmission line 110 kV Obrovac—Bruska was measured after circuit 
breaker (CB) tripping in line bay in substation 110/20 kV Bruska. Subject transmission line was 
reconnected after several minutes by circuit breaker in the same line bay. 

Figure 20. Validation of resulting C&RT—WPP VE ZD 2 & ZD 3 power measurements—wind
curtailment test.

During all these curtailment cases, voltages in the network, as well as other parameters from
C&RT process were classified as normal operating conditions.

Next, the test of tripping transmission line 110 kV Obrovac—Bruska was measured after circuit
breaker (CB) tripping in line bay in substation 110/20 kV Bruska. Subject transmission line was
reconnected after several minutes by circuit breaker in the same line bay.
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Figure 21. Validation of resulting C&RT—WPP VE ZD 2 & ZD 3 power and voltage measurements—110 kV
transmission line Obrovac—Bruska tripping case.

During these line tripping cases, voltages in the network, as well as other parameters from C&RT
process were classified as normal and warning operating conditions. Warning EWS is generated right
after circuit breaker tripping. This scenario can be expected as there are lines going from WPP towards
the rest of the meshed grid. With recognition of such circumstances the message to the operator can be
sent to perform corrective actions if other circumstances in the grid worsen. Possible actions include
change of the regulation of reactive power regime which was tested and depicted in the following
figure (Figure 22). Warning EWS is generated after reactive power was set to constant reactive power
−15 Mvar lagging.
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It has been shown that following several voltage angles and amplitudes can give clear early
warning signal about the situation in the grid and clear classification of the operating conditions can
be done. The proposed method interprets and analyzes the measurement data (PMU measurements
included) and provides the foundation to determine which measurements are necessary and crucial to
avoid need to constantly display large quantities of data which can lead to inefficient recognition of
important event.

6. Conclusions

In this paper, one solution for wind power monitoring and control is described through the
enhancement of power system infrastructure with various ICT elements. Adaptive and modular
(adaptidular) ICT installation were suggested and designed for the subject upgrade of power systems
providing the foundations for the smart grid features.

Wind power monitoring and control was done through data mining algorithm using large streams
of data coming from various devices. Most important devices used are PMUs measuring phasor values
of all electrical variables in the system.

Input data defined for the data mining algorithm comprises of wind power plant active power
production, wind power plant reactive power production setting, total system load, voltage amplitudes
and voltage angles (phasors) and line, transformer and generator availability. All these data streams
create a large database for further usage in control, planning, asset management and operation and
maintenance processes.

Developed data mining algorithm for wind power monitoring and control is defined through
three main components: the first component is data management and preparation; the second one is
data clustering; and the third is data classification.

In the described approach, data management and preparation are used for data formatting and
synchronization. Data clustering is done with k-means algorithm in order to define three clusters of
data: NORMAL, WARNING and ALARM operating conditions. Thus, defined clusters are used as
dependent variables during classification with the usage of C&RT algorithm. Independent variables
in the classification algorithm are voltage phasor values (amplitudes and angles), system load, wind
power plant active power production and wind power plant reactive power setting. The resulting
classification tree can serve as decision tree which has combined decisions and measurements in its
leaves. In this way, early warning signal for situational awareness is created with several actions in
the decision tree that can serve as preventive measures and influence the system operating condition.
The possible necessary decisions are in this model related to wind power plant and its active power
production or reactive power setting regime change. The result of such decisions is the transition of the
system state trajectory from WARNING and ALARM operating condition towards NORMAL system
operating condition.

From the resulting C&RT tree as well as from the importance plot, most important variables
can be detected. From these observations, the optimization of PMU infrastructure can be made by
installing only devices necessary for the measurements of variables present in decision tree and/or
importance plot, to provide the possibility for this algorithm to enable automated decision making.

Improvements of the proposed algorithm can be done with the definition of additional operating
conditions either through recorded real system states measurement or through synthetized data from
various kinds of simulations. Although mathematical techniques accurately simulate the synthetic
data, they usually fail to handle the irregularities that exist in real data. It can also be concluded that in
the future, more data will be generated from various measurement devices and efficient algorithms,
such as one proposed here, will be needed to deal with such big data structures.
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