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Abstract: One of the bottlenecks hindering the usage of polymer electrolyte membrane fuel cell
technology in automotive applications is the highly load-sensitive degradation of the cell components.
The cell failure cases reported in the literature show localized cell component degradation, mainly
caused by flow-field dependent non-uniform distribution of reactants. The existing methodologies
for diagnostics of localized cell failure are either invasive or require sophisticated and expensive
apparatus. In this study, with the help of a multiscale simulation framework, a single polymer
electrolyte membrane fuel cell (PEMFC) model is exposed to a standardized drive cycle provided
by a system model of a fuel cell car. A 2D multiphysics model of the PEMFC is used to investigate
catalyst degradation due to spatio-temporal variations in the fuel cell state variables under the highly
transient load cycles. A three-step (extraction, oxidation, and dissolution) model of platinum loss
in the cathode catalyst layer is used to investigate the cell performance degradation due to the
consequent reduction in the electro-chemical active surface area (ECSA). By using a time-upscaling
methodology, we present a comparative prediction of cell end-of-life (EOL) under different driving
behavior of New European Driving Cycle (NEDC) and Worldwide Harmonized Light Vehicles Test
Cycle (WLTC).

Keywords: polymer electrolyte membrane fuel cell (PEMFC); modeling; catalyst degradation; driving
cycle; durability estimation

1. Introduction

Fuel cell durability is currently the biggest bottleneck in the commercialization of fuel cell
electric vehicles. In a highly transient loading environment such as an automobile, a fuel cell
does not only undergo potential cycling but also cycling of various internal state variables such as
temperature, pressure and humidity. Such a cyclic operation leads to multiple degrading side
reactions, eventually rendering the fuel cell unable to provide the requested power demand or fail
catastrophically. One of the weak links with respect to the durability of fuel cell components is the
catalyst layer (CL). The commonly used platinum (Pt)-based catalysts are state of the art due to their
low overpotentials and high catalytic activities for hydrogen oxidation reaction (HOR) and oxidation
reduction reactions (ORR) [1,2], but the downside is that they are expensive and prone to high rates of
degradation. In order to predict fuel cell durability or propose effective mitigation strategies, one needs
to focus on degradation mechanisms leading to Pt loss, including the search for lifetime-extending
operating strategies.
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Irreversible catalyst degradation occurs through various mechanisms such as Pt dissolution,
particle growth by Ostwald ripening, coalescence of particles and detachment from the carbon support
following carbon corrosion [3], but to add to the complexity of the catalyst degradation process,
irreversible catalyst degradation has also been shown to be mitigated by a reversible degradation
process such as Pt oxidation, which can protect the Pt from dissolution at potentials above 1.1 V [4].
Nevertheless, any kind of catalyst degradation eventually leads to a loss of electrochemically active
surface area (ECSA) or loss of catalyst contact with electron conductors (e.g., carbon support).
Many researchers have explored the phenomena leading to Pt dissolution and corresponding ECSA
loss in PEMFCs [5–7]. Zhang et al. reviewed the various plausible degradation mechanisms for
Pt-based catalysts [8]. Bi et al. [9] explored the effect of humidity and oxygen concentration on Pt
dissolution rates and found that a reduction in humidity reduces the rate of Pt dissolution while
oxygen concentration has a quite insignificant contribution.

The inhomogeneity in the CL due to manufacturing defects and the load-based spatial distribution
of reactant concentration and pressure gradients in the flow field also leads to a spatially varying cell
operating behavior. The spatial inhomogeneity of a catalyst layer has been studied by Bussian et al. [10]
using atomic force microscopy. This in turn causes spatial gradients in the electrochemical properties
of the fuel cell components and consequently creates specific areas of variable performance in the
membrane electrode assembly (MEA), which results in the non-homogenous distribution of the local
current density [11,12]. Most single cell or system level cell performance evaluations only provide a
spatially averaged insight into cell voltage and current values that does not reveal the spatial resolved
behavior of the cell state variables. Since the reported cell failure cases in the literature show highly
localized cell component degradation [13], a spatially averaged analysis will not be able to provide a
thorough insight into the causes of the cell failure and to propose appropriate mitigation strategies.

One of the interesting methodologies to study spatially resolved local cell behavior is to use
a segmented cell system [14–16]. However, the invasive segmented cell studies influence the cell
operation and are limited by cell and component geometries. The non-invasive techniques involve
complicated and expensive diagnostic tools [17,18]. Hence, in order to understand the locally resolved
cell behavior, there is a concrete need for more flexible and economic non-invasive techniques.

Further, the rate of Pt dissolution is also greatly influenced by the nature of cell loading.
Uchimura et al. [19] studied the effect of various potential cycle profiles on the Pt dissolution rates.
They measured the changes in ORR specific activity due to the loss ECSA through cyclic voltammetry.
However, the effect of a realistic load cycle on ECSA loss is still not investigated. In order to come up
with an effective degradation mitigation (or durability enhancement) strategies, fuel cell durability
should be evaluated under realistic load cycling. Although there have been some studies on the long
term durability and performance of a fuel cell in a transportation based load cycle [20,21], performing
parametric studies on experimental test benches that run for highly extended periods viz. hundreds of
hours, is not practical.

Multiphysics modeling of fuel cell transport process and electrochemistry and their interaction
with cell geometry, operating conditions, degradation mechanisms, and load cycles, assist in
understanding the complex coupling between cell components and underlying physical phenomena.
They also help optimizing the parameter space for experimental investigation, thus economizing time
and money. There have been multiple attempts to model component degradation [20–24] in PEMFCs
but application of those degradation mechanisms towards estimation of PEMFC durability is still
missing in the existing literature. Mayur et al. [25] developed a multiscale approach for on-the-fly
coupling between a car model (system-scale), 2D single fuel cell model (cell-scale), and degradation
model (nanoscale). A piecewise linear time upscaling methodology was developed to achieve
end-of-life (EOL) predictions for the fuel cell in operation for a faster prediction of cell durability and
performance reduction with respect to the cell state variables.

This paper focuses on the role of different automobile induced load cycles on Pt dissolution and
its effect on durability of a PEMFC. The catalyst degradation model that is used in this work relies on a
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mechanistic approach at the nanoscale and only considers Pt dissolution as a degradation mechanism
developed by Robin, Gerard et al. [26,27]. With the help of a 2D transport model of a PEMFC developed
by Bao et al. [28], the spatially resolved cell performance and durability is discussed with respect
to Pt dissolution and the ensuing reduction in ORR activity due to ECSA loss. The time upscaling
methodology and virtual fuel cell car model of Mayur et al. [25] is used for durability predictions
under two separate driving cycle (DC) loads, namely, New European Driving Cycle (NEDC) [29] and
Worldwide Harmonized Light Vehicles Test Cycle (WLTC) [30].

2. Simulation Methodology

2.1. Overview of Simulation Framework

The simulation framework used in this study has been presented previously [25] and is only
summarized here. Figure 1 shows the multiscale coupling of models where a two-way approach
(bottom-up and top-down) is used to predict durability of fuel cells in an automobile application. In this
methodology, the top-down direction starts from the system-generated transient load conditions for the
fuel cell, which causes a transient variation in the state variables of the cell. The bottom-up direction
starts from the degradation library (which is based on nanoscale studies). The generated degradation
rates follow the transient changes in the fuel cell state variables and lead to a component-level
performance loss of the fuel cell. The two-way approach leads to an active integration of the system
model (fuel cell car) and component model (single cell) extended onto microscopic physicochemical
processes governing degradation mechanisms. Firstly, the system model (Simulink) generates highly
dynamic power demand (Pd,cell) by matching the velocity requirement of the driving cycle (ud(tDC))
to the fuel cell power demand. The power is supplied by a fuel cell stack that is modeled by upscaling
the single-cell generated power supply. The fuel cell model (COMSOL) interacts on the fly with
the degradation library that provides instantaneous degradation factor ( fdeg,C) based on included
degradation mechanisms through look-up tables (LUT), analytical functions or empirical mappings.
The Simulink model simulates the time duration of a single driving cycle (tDC). The total degradation
over the driving cycle is calculated in MATLAB (2016a), which linearily upscales the degradation over
one driving cycle to over ‘n’ driving cycles. This new state of degradation via the upscaled degradation
factor ( f up

deg,C) is set into the COMSOL model via Simulink. The entire framework is controlled in
MATLAB that runs the durability loop until the cell end-of-life (tEOL). The details of the various
components shown are discussed in the following sections.
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2.2. Fuel Cell Car Model

The fuel cell car model is a modular representation of various components of a mid-size car
that has an automotive driving cycle as an input and converts it into a cell-level power demand,
as described in detail in our previous work [25]. Table 1 shows the car and stack parameters used in
the current study. Figure 2 shows the velocity variation and corresponding predicted stack power
demand from the driving cycles, NEDC and WLTC. Table 2 lists some basic characteristics of the two
driving cycles.
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Table 1. Parameters for the fuel cell car and fuel cell stack.

Parameter Value

Mass of car + H2 tank (m) 1100 kg + 99.7 kg a

Coefficient of rolling resistance (Cr) 0.0085 a

Drag coefficient (Cw) 0.3 a

Shadow area (A) 1.91 m2 a

Final drive ratio (ηgear) 6.066 a

Powertrain efficiency (η
PT) 0.8 a

Wheel radius (Rw) 0.291 m a

Auxiliary power consumption 400 W a

Fuel cell stack power 75 kW c

Number of cells in the stack (Nstack) 315 b

Active cell area 0.025 m2

Total stack weight 153.8 kg b

Stack power density 0.49 kW/kg c

Proportional gain (Kp) 5 c

Integrator gain (KI) 0.6 c

a Estimated from a middle-size passenger car. b Taken from Auto-Stack project [31]. c Tuned parameters.

Table 2. Characteristics of the driving cycle load.

Characteristics NEDC WLTC

Duration 1180 s 1800 s
Idling duration 280 s 242 s

Theoretical distance 11,023 m 23,262 m
Maximum speed 120 km/h 131.3 km/h

Maximum stack power 37.9 kW 44.9 kW

2.3. Single Cell Model

The single cell model is based on a 2D transport model where the electrochemistry is described
with a modified Butler-Volmer equation derived from elementary kinetics mechanisms, as published
previously [25,28]. The transport properties of the porous gas diffusion layer (GDL) and the polymer
electrolyte membrane (PEM) are taken to be isotropic. The thickness of the catalyst layer is not
spatially resolved in this study and contributes as a boundary source/sink term for reaction products
and reactants. It has been shown in the literature that catalyst layer structure and the Pt transport
in catalyst layer (CL) give more detailed insights into the volume-specific electrochemistry and
species transport, which affect the cell performance, specially in the case of low Pt loading conditions
(ca. 0.025 mg/cm2) [32,33], but in this work, we decided to use a reduced complexity model with a
uniform distribution of Pt (loading of 0.15 mg/cm2) along the CL. Further, we hypothesize that
the Pt dissolution in the CL is significantly influenced by the local cell parameters such as cell
voltage, oxygen, and water concentration, mainly originating from the transport in the GDL and
the membrane. Consequently, the CL was approximated as a line source/sink of the species where
the direct consequence of Pt dissolution was the loss in ECSA, as shown in the following sections.
The reactant gases are assumed to be ideal and an isothermal model with single-phase transport for
water is considered.

Figure 3 shows the cell geometry, which is a straight single channel with counter-flow
configuration. The objective of the present work is to spatially resolve the cell performance and
degradation under transient operation. To this goal, we investigate degradation at different positions
along the continuous domain along the cathode catalyst layer (CCL) and the flow channels. Figure 3
shows the beginning (y = 0 m) and the end (y = 0.93 m) positions. For the cell operating conditions,
we have assumed that the inlet pressure of cathode and anode channels is 250 kPa, at a temperature
of 85 ◦C and a humidity of 100%. At such a high humidity, one shortcoming of the current model
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is that due to the single-phase treatment of water transport, the simulated partial pressure of water
vapor can increase beyond its saturation partial pressure at high loads (which in the case of a
two-phase water model would have been compensated by liquid water formation). This decreases
the oxygen partial pressure in the model, thus influencing the effect of oxygen concentration in the Pt
dissolution mechanism.

The cell is running in a lambda-controlled mode with cathode stoichiometry of 1.3 and anode
stoichiometry of 1.5, so that fuel starvation does not occur. The lambda controlled inflow condition is
calculated as shown in Table 3 of Mayur et al. [25].
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The 2D cell model is simulated in COMSOL Multiphysics for which the equations for mass
conservation, species transport, and electrochemistry are detailed in Mayur et al. [25]. The model uses
the PARDISO solver with backward differentiation formula (BDF) time-stepping, which is a variable
order, variable time-step solver for the transient simulations. The minimum time-step used is 0.01 s
and the maximum time-step is 0.2 s which corresponds to the Simulink time-step. Simulink uses a
Bogacki-Shampine solver, which is an explicit solver with fixed timestep of 0.2 s.

2.4. Degradation Library

Our degradation formulation is based on a first-order decoupling between the performance
and degradation functions [25]. Under this assumption, any multi-physics model parameter P (e.g.,
membrane conductivity or ECSA) can be represented as product of a performance function and a
degradation factor:

P′ = fdeg,P·Pperf, (1)

where, P′ is the parameter of the degraded cell, fdeg,P is the degradation factor which has values
ranging from 1 (fresh cell) to 0 (completely degraded cell), and Pperf is the performance function.
Both, the performance function and the degradation factor generally depend on local conditions (e.g.,
potential, current density, species concentrations, and temperature). Consequently, both of them
have a spatial as well as temporal dependence. In this work, we assume loss of ECSA as the only
degradation mechanism. The underlying model as well as its implementation as look-up table will be
presented below. The degradation factor is the ratio of the current state of a degradation parameter
(e.g., membrane conductivity, ECSA etc.) and the state of the degradation parameter at the beginning
of life. An appropriate degradation mechanism is chosen from a multi-component degradation library
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that gives a rate of change in the degradation function from precompiled lookup tables, analytical
expressions, empirical mappings, or callback functions.

2.5. Time Upscaling

Since, a driving cycle lasts for only few minutes of operation, the cell degradation occurring over
such a short time duration is not sufficient to affect the cell performance. It is only after repetitive
exposure to such load cycles, can one observe significant performance losses and subsequent failure
due to multi-component degradation. The current 2D multi-physics model under transient operation
is not real-time capable. To solve transient operation under one complete NEDC (20 min cycle time)
takes approximately 30 h of simulation time and WLTC (30 min cycle time) about 50 h. In order to do a
cell durability analysis which is expected to last 5000 h of real time usage via simulation is therefore
impractical. In order to address the problem, we use our piecewise time upscaling methodology [25]
to do a durability prediction and analysis in a much faster way. In this methodology, the cell state
of degradation is calculated over one driving cycle (tDC) by integrating the instantaneous rate of
degradation obtained by the degradation library which is upscaled by a jump factor ‘n’ thus saving
simulation time for ‘n’ driving cycles as shown below:

fdeg,P(t + n · tDC) = fdeg,P(t)− n
∫ t+tDC

t

d fdeg,P

dt
dt. (2)

3. Pt Dissolution Model

3.1. Pt Dissolution Mechanism

The Pt dissolution model in this work is taken from Robin, Gerard et al. [26,27]. It is based on an
electro-chemical dissolution reaction as:

Pt 
 Pt2+ + 2e− , (3)

which consists of the following two intermediate reactions [34]:

Pt + H2O 
 PtO + 2H+ + 2e− (4)

PtO + 2H+ 
 Pt2+ + H2O. (5)

The Pt dissolution is considered a three-step process [26] where firstly a Pt atom is extracted from
the Pt crystal lattice and placed on the reactive site, then it undergoes an electrochemical oxidation to
Pt2+, and finally the Pt2+ is desorbed from the reaction site. The total Gibbs energy of the Pt dissolution
reaction ∆G = ∆Gs + ∆Gelec + ∆Gdes therefore consists of three terms:

• The free energy of Pt extraction from Pt crystal lattice, ∆Gs: This free energy is calculated from
density functional theory (DFT) which takes into account of the coverage of the intermediate
species that depend upon the amount of hydration.

• The free energy of Pt oxidation, ∆Gelec: This is calculated from the local potential based on
transition state theory (TST) as ∆Gelec = −2αPtF∆χ, where αPt is the symmetry factor of the
Pt dissolution reaction and ∆χ is the local potential at the catalyst surface (calculated by the
EDMOND model [26]).

• The free energy of Pt2+ desorption, ∆Gdes: This is calculated as, ∆Gdes = −βEGT(rPt) from β,
the transfer coefficient and EGT(rPt), the Gibbs Thomson energy [35] which depends of the particle
radius and is given by:

EGT(rPt) = 2γPt
MPt

ρPtrPt
, (6)

with γPt as the surface energy of Pt[111], MPt the molar mass of Pt, ρPt the mass density of Pt,
and rPt the Pt particle radius. The dependence of the EGT on the reciprocal of platinum radius rPt

shows that small particles are dissolved faster than the larger particles.
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Table 3 contains the values of the parameters used in the Pt dissolution model. Overall, the kinetic
rate of the Pt dissolution, vdiss is given by [26]:

vdiss = ke−
∆G
RT = ke

1
RT (−∆Gs+2αF∆χ+βEGT), (7)

where, k is a kinetic constant. ∆χ is the local electrode potential calculated by the EDMOND model
(see below) from the local cell voltage that is provided by the computational fluid dynamics (CFD)
model [36]. Moreover, the other depending parameters are the temperature and the oxygen and water
mole fraction as illustrated in Figure 4. Finally, the rate of change in Pt particle radius is calculated as:

drPt

dt
= −vdiss

MPt

ρPt
. (8)

Table 3. Parameter values for the Pt dissolution model from Robin et al. [26].

Parameters Value

Pt dissolution rate constant, k 2.2× 10−6 mol/
(
m2s

)
Free energy for Pt extraction, ∆Gs 75, 000 J

Surface energy of Pt, γPt 2.4 J/m2

Symmetry factor, αPt 0.5
Molar mass of Pt, MPt 0.1951 kg/mol

Density of Pt, ρPt 21, 470 kg/m3

The Pt dissolution module is implemented in the EDMOND code [26]. EDMOND is a 1D double
layer model. The model calculates the ∆χ as well as the coverage of the various reaction intermediates,
based on a dynamic coupling between the local operating conditions, that is, the cathode potential Vc,
the local temperature T, the local water vapor fraction xH2O, the local oxygen fraction xO2 , the particle
radius rPt, and the kinetics of the intermediate reaction steps of Pt dissolution [37]. Both the surface
potential and the coverage are involved in the mechanistic model. The Pt dissolution model used in
this paper has been partially validated on 2000 h of durability tests [26]. With the help of EDMOND
coupled with the Pt dissolution model, a look-up table was calculated, describing the evolution of the
particle radius as a function of the local operating conditions (cf. Figure 4).
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Thus our coupling of the mechanistic degradation model with the cell performance model at the
macroscale relies on the use of a look-up table generated at the nanoscale as shown above. To generate
the look-up table more than 2500 simulations have been computed. Several look-up tables can be used
in parallel with different initial Pt particle radius, to take into account an initial size distribution.

In this catalyst degradation model, we have not considered the effect of voltage cycling on Pt
degradation as observed previously [38–40]. Consequently, the effect of the magnitude of cathodic
scans [40–43] (increasing potential or braking the vehicle), or anodic scans (decreasing potential or
accelerating the vehicle) is also not considered. However, in the present driving loads, the breaking
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and acceleration do not contain a significant part of driving time and are very fast (equivalent to fast
voltage scanning). The present degradation model also does not consider the particle growth due
to redeposition (Ostwald ripening) [27,44] effect of Pt particle size distribution, and the effect of Pt
loading on the cell durability. As it is known that at low ECSA the voltage loss is also influenced by
transport and the structure of the CL [32,45], such an effect is not considered in this work. However,
the degradation framework is presented here is flexible to include the mentioned degradation models,
which will be a part of future investigations.

3.2. Integration of Pt Dissolution into Degradation Library

In this study, the reduction in the exchange current density due to the loss in ECSA is accounted by
i0 = fdeg,Ci0,init, where i0,init is the performance function that depends upon the operating conditions
via iPt as:

i0,init = sPtwPtuPtiPt, (9)

where, iPt is the Pt specific current density in A/cm2, sPt = 1100 cm2/mg is the specific area of Pt,
wPt = 0.15 mg/cm2 is the Pt loading in the catalyst layer, and uPt = 0.9 is the utilization of Pt in a
Pt/C catalyst. The Pt specific current density (iPt) represents the ORR kinetics at the Pt surface and is a
function of the operating temperature and reactant concentrations given as [38]:

iPt = iPt,353e
Eact

R ( 1
T−

1
353 )

(
pcxO2

RTcref

)(1−αORR)/2
a1−2αORR
+ , (10)

where, iPt,353 is a fitting parameter, pc is the cathode pressure, xO2 is the mole fraction of oxygen, cref
is the bulk concentration of reacting species, R is the universal gas constant, T is the cell operating
temperature, a+ is the protonic activity, and αORR is ORR symmetry factor modeled by Bao et al. [28].
The catalyst degradation factor ( fdeg,C) is defined as:

fdeg,C =
ECSA

ECSAinit
=

sPtwPtuPt

sPt,initwPt,inituPt,init
, (11)

Our present degradation mechanism does not account for transport of dissolved Pt ions within
or away from the catalyst layer. Hence, the Pt loading (wPt) of the catalyst layer is considered to be
constant. Moreover, although catalyst utilization has been observed to change with changes in specific
activity of Pt [46], for simplicity, we have assumed constant catalyst utilization while using the changes
in sPt to reflect the total changes in ECSA. Further, we have assumed spherical Pt particles represent
Pt surface as a function of the radius. So, under the present set of assumptions, Equation (11) can be
reduced to:

fdeg,C =
sPt

sPt,init
=

r2

r2
init

. (12)

Further, we have assumed a fixed Pt radius that will help us focus on the operating condition
induced Pt loss across the catalyst layer. Although, using a distribution of particle size families might
be realistic, it might scale up the complexity of the study. Further, it is difficult to find reliable data on
Pt particle size distribution in catalyst layer as a function of Pt loading or ECSA in the literature.

As discussed above, the Pt dissolution model provides a look-up table of the rate of change of Pt
particle radius as a function of cathode potential, temperature, oxygen mole fraction, local humidity,
and current Pt radius. So we can re-write the Equation (8) as a look-up table (LUT) interface with the
mentioned inputs as:

drPt

dt
= LUT

(
Vc, Tcell, xO2 , xH2O, rPt

)
. (13)

The LUT is a 5D table that gives the rate of Pt dissolution as a function of parameters with their
range as, cell temperature in {343, 348, 353, 358, 363} K, cathode voltage in {0.3, 0.4, 0.5, 0.6, 0.7, 0.9} V,
oxygen mole fraction in {0.1, 0.15, 0.21}, water mole fraction in {0.3, 0.5, 0.7, 0.99}, and Pt radius in
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{0.5, 0.75, 1.0, 1.5, 2.0, 3} nm. The intermediate values were interpolated and the values out of the range
were extrapolated linearly. The Pt dissolution model uses cathode voltage, oxygen mole fraction, water
mole fraction and cell temperature (constant) from the CFD model and shown in Equation (13).

The rate of change of Pt radius is integrated over the solver time-step to calculate the change in
the current Pt radius. The Pt radius is then updated and used to calculate the current state of catalyst
degradation factor. The new exchange current density is modified using this degradation factor as
mentioned above.

3.3. Fuel Cell Durability Estimation under Pt Dissolution

Here, the time upscaling methodology mentioned above is used for estimating the ECSA loss over
time through the loss is Pt radius. The upscaled loss in Pt radius at the end of ‘n’ cycles is subtracted
from the Pt radius at the beginning of the cycle simulation to obtain the Pt radius at the end of ‘n’
driving cycles:

rPt(t + n·tDC) = rPt(t)− n·
∫ t+tDC

t

drPt

dt
dt, (14)

where, n is taken to be 100, which for NEDC corresponds to 33 h and for WLTC corresponds to 50 h.
It is further refined to 15 towards the EOL for a better estimation of the cell behavior as it reaches the
EOL. It has to be noted that the unrefined upscaling jump corresponds to the real simulation time of
each driving cycle.

4. Results and Discussion

4.1. Pt Dissolution Model

The physically based Pt dissolution model has been qualitatively validated with good agreement
with the Pt dissolution sensitivities on local conditions (voltage, temperature, humidity, etc.) by
Robin et al. [26]. Figure 5 shows the variation of the rate of Pt dissolution with cathode potential and for
a Pt particle of radius 3 nm and keeping air humidity in cathode, RHc at 100%. Figure 5a shows that the
rate of Pt dissolution increases strongly for cathode potentials >0.8 V. This increase in the Pt dissolution
rate for Vc > 0.8 V is in good agreement with experimental values presented by Ahluwalia et al. [4].
Figure 5b shows that the rate of Pt dissolution decreases with the temperature. Although, increasing
the temperature enhances the reaction kinetics of Pt dissolution, but at a constant humidity it also
increases the water vapor in the air. This leads to a reduction in the oxygen content in the catalyst
layer. Consequently, the magnitude of equilibrium cathode voltage is reduced, which increases the
overpotential, leading to a decrease in the rate of Pt degradation.
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4.2. Single-Cell Performance

It is well known that single-cell performance depends strongly on the cell operating conditions.
In order to do a consistent analysis of the cell performance under the two different load cycles, we have
considered a standard set of operating conditions, that is, a pressure of 250 kPa, temperature of
85 ◦C, and 100% relative humidity. Figure 6 shows the single-cell performance under these operating
conditions, where cell performance at different spatial locations along the channel is demonstrated.
The cell performance shows a variable spatial dispersion, which is weaker at low current densities
(<1 A/m2) and stronger at high current densities (>1 A/m2). The IV curve is obtained by polarizing the
cell to the presented range of voltage and simulating the current response of the cell. Since our model is
a lambda-controlled flow model, the reactant flow rate is proportional to the current demand from the
cell. At high current densities, a high reactant flow rate is generated in the gas channels, causing large
pressure gradients the flow direction. Hence, a spatial gradient in the reactant concentration is created,
which further leads to spatially varying current density response. The maximum cell performance in
the current model is observed close to the air inlet (y = 0.93 m) because it has the maximum partial
pressure of oxygen. Moreover, under the given set of operating conditions, the cell can deliver a
maximum average power density of 0.8 W/cm2. Under the car and stack parameters considered in
Table 1, the maximum single cell power density requirement by NEDC is 0.48 W/cm2 and by WLTC is
0.57 W/cm2. Hence, our single cell model can provide enough power for running both driving cycles.

A requirement for a fuel cell to be an efficient and robust alternative over the concurrent
technologies in an automotive application is fast response to the transient power demand and high
power density. To that end, we have explored the cell performance under the loading requirements
of two transient automotive drive cycles. The fuel cell performance was studied under two separate
driving cycles to observe the role of driver’s (controlled) behavior on the eventual durability of a fuel
cell-driven car. Figure 7 shows that the transient operation of a driving cycle creates a transient power
demand and consequently the fuel cell stack catering to this power demand has a transient variation
in the state variables, too. If we look at the characteristics of the driving cycles (cf. Table 2), we can
observe that NEDC has more idling time over the total duration (23.7%) whereas, WLTC has less of
that (13.3%), so we can expect more open-circuit voltage (OCV) operations in NEDC as compared
to WLTC, which suggests that a cell under WLTC load will last longer than that under NEDC cycle.
One can also observe that WLTC has faster and more frequent transients leading to faster voltage
cycling. The range of voltage cycling in NEDC is 1.04–0.65 V while in WLTC is 1.04–0.56 V.
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Apart from cell voltage and current cycling that we can measure in situ very easily, the advantage
of a 2D model is that it helps to identify the spatially resolved cell behavior under transient loadings,
non-intrusively. A spatially resolved transient plot helps us to correlate the nature of changes in the
cell state variable with different drive cycle conditions such as acceleration, deceleration, cruising and
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start/stop. Due to the presence of multiple complex interdependent physico-chemical phenomena
(electrochemistry, fluid transport in open and porous media, etc.) with multiple time constants, a cell
exposed to cyclic loading also undergoes cycling of other state variables such as pressure, humidity,
or persistent excess or depletion of reactants, etc.

Figure 8 shows the temporal variations in mole fraction of oxygen along the cathode catalyst layer.
It can be clearly observed that the time instants during the higher current densities (higher power
demand) show more spatial variation in the cell state variables as compared to time instants with low
current densities (low power demands). Moreover, the high mole fraction of oxygen at the air inlet
(y = 0.93 m) suggests maximum current density at the location and minimum current density at the
air outlet (y = 0 m). This in turn suggests that the cathodic potential (cell voltage corrected by ohmic
losses, cf. the following section) is higher at the air outlet as compared to the air inlet. Further, high
power demand corresponding to car acceleration leads to a sharp decline in oxygen concentration
(hence, sharp change in local pressure) over a larger part of the cell. Similarly, constant cruising at
a high speed leads to a longer exposure of a large part of the cell to oxygen depletion. All these
phenomena can be detrimental to the performance of various components, including the Pt catalyst,
which will be quantified below.
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4.3. ECSA Loss under Automotive Drive Cycle

During catalyst degradation, the Pt dissolution leads to a net reduction in the ECSA in the
catalyst layer. This leads to a reduction in the exchange current density and consequently increases
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the activation losses. Pt dissolution, hence, has an adverse effect on the performance of the fuel cell
as the maximum power density provided by the cell decreases. The Pt dissolution mechanism as
considered in this study has a functional dependence on the local cathode potential, temperature,
humidity, and partial pressure of oxygen. Generally, the electrode consists of catalyst deposition on a
carbon-based backing with a varying degree of porosity for reactant gas, so they do not contribute
significantly to the ohmic losses. In our model the local cathode voltage, which is the driver for Pt
dissolution, can be estimated from the cell potential by compensating it for the ohmic losses. Thus,
the iR-corrected cathode potential is obtained by removing the ohmic losses from the cell voltage as:

Vc = Vcell + icellRmem (15)

where, icell is the local cell current density, and Rmem = lmem
σmem Acell

is the membrane resistance calculated
from membrane thickness (lmem), conductivity (σmem), and surface area (Acell). Due to local variations
in the cell current density and membrane conductivity, the iR-corrected cathode potential has a spatial
variation. This consequently leads to a spatially varying Pt dissolution rate.

Figure 9 shows the iR-corrected cathode potential variation and the rate of Pt radius loss during
the two driving cycles. The Pt dissolution rate is observed to be highest for near OCV operations.
Further, in order to demonstrate the effect of spatial variation in the cell state variables on the rate of
Pt radius loss, we show them at the two extremities in our cell geometry, namely, near the air outlet
(y = 0 m) and near the air inlet (y = 0.93 m). For persistent low cell voltages (high speed cruising),
some difference in rate of Pt radius loss is observed at the air inlet and outlet. For the rest of the
situations such as low speed cruising, acceleration and deceleration, we do not observe any noticeable
spatial variation in the rate of Pt radius loss.
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Figure 10 shows that the time-averaged (over one driving cycle) spatial distributions of
iR-corrected cathode potential and rate of Pt dissolution for both driving cycles. One can observe small
potential gradients near the air outlet over the duration of a driving cycle. This is due to significant
changes in reactant concentration near the outlet over the highly fluctuating current demand during
the driving cycle. Consequently, the rate of Pt dissolution also shows spatial gradients near the outlet.
Further, one can also observe that the two driving cycles have different effects on the mean degradation
rate at a given location. The NEDC with higher idling time leads to more near OCV operations
as compared to the WLTC, and hence has a higher mean voltage and consequently, higher rate of
Pt dissolution.
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4.4. Durability Estimation

It is known that the cell output power density diminishes under degradation. Figure 11 shows
the maximum power density that can be generated by the single cell modeled in this work, which is
the maximum of the P/i curve, at different amounts of ECSA loss (defined by the catalyst degradation
factor). It can be seen that there is a drastic non-linear reduction in the cell performance after the
cell loses approx. 30% of its ECSA. Since, the objective of our cell is to provide the power demanded
by a driving cycle, in order to completely execute a driving cycle test it must be able to provide the
maximum power required by the cycle. If the cell under increasing degradation is not able to provide
the power required, we can say that the cell has achieved its end-of-life. As discussed previously,
the maximum power demand by WLTC is 0.57 W/cm2 and NEDC is 0.48 W/cm2. It is observed from
the figure that the cell power density output fails to match the maximum power demands for WLTC
and NEDC below catalyst degradation factors of 0.24 and 0.13, respectively. In other words, with the
help of the figure, we can estimate that under the same set of operating conditions, a cell working
under WLTC will fail earlier than a cell working under NEDC.

One of the easily measurable indicators of cell health is cell voltage. Figure 12 shows the change
in (a) cell voltage corresponding to the maximum power density demanded by the driving cycle
(NEDC: 1116 s, WLTC: 1569 s) and (b) catalyst degradation factor with time under NEDC and WLTC.
It can be seen that the cell voltage decreases non-linearly and drops suddenly towards the end of life.
This demonstrates that our current approach of piece-wise linear upscaling of the catalyst degradation
factor allows to capture the nonlinearity of the cell degradation. Further, towards the end of life of the
cell, the number of interpolating driving cycles was refined from 100 to 15, to closely approach the cell
failure limit for both the driving cycles. In the simulation time scale, this corresponds to a reduction
of drive cycle interpolation time from 33 h to 5 h for NEDC and from 50 h to 7.5 h for WLTC. For the
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NEDC, the predicted end of life is ca. 436–441 h and for WLTC, it is ca. 508–515 h. The end of life is
proposed as a range, where the minimum value of the range corresponds to the time taken for the last
successfully completed driving cycle, and the maximum value of the time-range corresponds to the
linearly upscaled time through which the degradation factor fell below the minimum physical value
required for the numerical convergence of the model.
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Figure 13 shows the distribution of Pt radius towards the end of life of the fuel cell. For the NEDC,
the Pt radius at 436 h is 1.09 nm, which means that there is ~87% loss in Pt surface area after 872 NEDC
loads (one NEDC is 1180 s). For WTLC, the Pt radius at 500 h is 1.63 nm, which means that there
is ~70% loss in Pt surface area after 1000 WLTC loads (one WLTC is 1800 s). Figure 9a shows that
during one NEDC, 19 cell voltage plateaus are occurring corresponding to a cell voltage of 1.04 V.
We can compare these results to experimental data by Yang et al. [47], who use a square wave voltage
profile between 0.4–1.05 V and observed an ECSA loss of ca. 60% during 10,000 cycles. The NEDC
studied here could be, in a first-order abstraction, seen as a square wave voltage cycle behavior, where
19 square wave cycle equivalents between 0.62–1.04V are occurring during a single driving cycle.
Hence, over 872 NEDCs, we can observe 16,568 square wave equivalent cell voltage cycles, which is
in the same order of magnitude as the experiments by Yang et al. [47]. Considering the observation
that smaller Pt particles dissolve faster, one could estimate greater degradation of Pt upon increasing
the number of voltage cycles to 16,568 in the work by Yang. This demonstrates that the presented
framework provides a comparable first-order estimate of cell durability under driving cycle loads.Energies 2018, 10, x FOR PEER REVIEW 18 of 21 
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Further, we find that the predicted PEMFC durability is much less than that of the standard
requirement of 5000 h under an automotive dynamic load (including start and stop conditions).
Both standard driving cycles (NEDC and WLTC) that were used to generate the dynamic load for the
PEMFC model have a significant idling time, NEDC ~24% and WLTC ~14% (cf. Table 2). Since, our Pt
dissolution model has maximum Pt dissolution rate at near OCV operations (or zero current/vehicle
idling), these driving cycles induce “worst-case” environments for the CL. Note further that the
degradation mechanism was parameterized against experimental data [26], so that the simulated
ageing behavior represents that particular experiment. Given this, the study does provide an interesting
insight in the influence of operating parameters on the PEMFC durability. This can help to identify
appropriate mitigation strategies, such as, increasing the Pt loading, reducing the vehicle idling time
(near OCV operation) or increasing auxiliary power demand (lights, heating, air conditioning) from
the PEMFC so that near-OCV operating is avoided.

The results of Figure 13 show no significant spatial variation in the Pt radius even at the end of
life of the fuel cell. This can be attributed to the observation that inhomogeneous ageing conditions are
significant mainly at high current demand (cf. Figure 9), which however in turn shows low absolute
degradation during the driving cycle. Further, even though some spatial gradient is observed for the
rate of Pt dissolution through the channel length (cf. Figure 10), due to its small order of magnitude,
no significant variation in Pt radius distribution is observed.

It has been observed in the literature that different amounts of Pt dissolution at inlet and outlet and
different distributions of Pt causes significant spatially-varying ECSA loss [33,47]. This indicates that,
in order to reliably model the spatially resolved cell degradation, other local degradation mechanisms
must be considered. Indeed, it is known that there are many other degradation mechanisms such as loss
of membrane conductivity [48–50], gas cross-over [51], loss of carbon in CL and GDL [52], modification
of micro-porous layer (MPL) properties [53], increase in contact resistance [54], etc., which might occur
either in parallel or dominate at certain times during a driving cycle. Considering such mechanisms
might improve the durability prediction of this model. Although, it is very difficult to isolate the effect
of individual degradation mechanism on the overall durability of the PEMFC, our study proposes
a framework that can be used to combine different physically based degradation mechanisms of
individual processes to improve the PEMFC durability prediction.

The present model does not spatially resolve the thickness of the CL, so an influence of local
(on the CL thickness scale) degradation cannot be studied. However, the model could be extended
using published approaches for microstructure and transport [55] which could be coupled with the
present degradation model. The addition of a model for particle size distribution and platinum
redistribution [35] would further enhance the model accuracy.

5. Conclusions

With the help of a multiscale coupling between a fuel cell car model and cell level catalyst
degradation model, we were able to estimate cell durability and provide insights into spatially resolved
cell performance. By analyzing the cell performance and degradation under two different kinds of
drive cycles, we presented a comparative overview of different driving characteristics (accelerating,
decelerating, cruising, and idling) on the behavior of local cell state variables. The role of transient
loading on the spatial variations in the cell state variables, especially, iR-corrected cathode potential,
the concentration of water and oxygen, and the spatial variations in the rate of Pt dissolution in the
cathode catalyst layer was discussed. We found that the rate of Pt dissolution is highest for low power
demand (vehicle idling) but the spatial dispersion in the rate of Pt dissolution is highest for high power
demand (acceleration and high speed cruising). Comparing between two well-known drive cycles
NEDC and WLTC, we observed that NEDC with longer near-OCV operation had earlier EOL than
WLTC. Moreover, under the considered operating conditions, the rate of Pt dissolution shows a highly
transient behavior during a driving cycle, but its spatial variation along the CCL was not so significant
to result in a localized ECSA loss.
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The study uses a computational time-upscaling methodology that allows for long-term (hundreds
to thousands of simulation time) prediction of the PEMFC behavior based on computationally
expensive multiphysics models. Overall, this study presents a flexible multiscale platform that enables
to estimate EOL for a fuel cell under a driving cycle load, and propose potential design strategies and
degradation mitigation techniques. Consequently, with the help of additional component degradation
models, this study can be extended for a better estimation of cell durability and localized degradation
under realistic loads such as in an automotive application.
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