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Abstract: In this paper, a hybrid optimization algorithm is proposed to solve multiobjective optimal
power flow problems (MO-OPF) in a power system. The hybrid algorithm, named DA-PSO, combines
the frameworks of the dragonfly algorithm (DA) and particle swarm optimization (PSO) to find
the optimized solutions for the power system. The hybrid algorithm adopts the exploration and
exploitation phases of the DA and PSO algorithms, respectively, and was implemented to solve the
MO-OPF problem. The objective functions of the OPF were minimization of fuel cost, emissions, and
transmission losses. The standard IEEE 30-bus and 57-bus systems were employed to investigate
the performance of the proposed algorithm. The simulation results were compared with those in the
literature to show the superiority of the proposed algorithm over several other algorithms; however,
the time computation of DA-PSO is slower than DA and PSO due to the sequential computation of
DA and PSO.

Keywords: dragonfly algorithm; metaheuristic; optimal power flow; particle swarm optimization

1. Introduction

For the past few decades, the optimal power flow (OPF) problem has played an essential role
in studying the economy terms of power systems [1,2]. The OPF problem is a nonlinear, nonconvex,
large-scale, and static programming problem [3] that optimizes selected objective functions while
satisfying a set of equality and inequality constraints. The power balance equations are the equality
constraints, and the limits of state and control variables are the inequality constraints of the OPF
problem. The state variables consist of slack bus active power generation, load bus voltages, reactive
power generation, and apparent power flow. The control variables involve active power generation
except at slack bus, generator bus voltages, tap ratios of transformers, and reactive powers of shunt
compensation capacitors. In recent years, because of the rise in fuel cost, which increases generation
cost, fuel cost has become the objective function to be optimized in the OPF problem. Moreover, due to
the release of emissions from thermal power plants into the atmosphere, emissions are yet another
concern for power system operation and planning [4]. At the same time, because the demand for
electricity has outpaced the expansion of transmission capacity, the inadequate reactive power sources
of power systems have increased losses in transmission lines. Thus, emissions and transmission losses
must also be considered as part of the objective functions of the OPF problem.
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To solve the OPF problem, several traditional optimization techniques, such as nonlinear
programming [5], quadratic programming [6], and the interior point method [7], have been successfully
applied. However, these algorithms’ nonlinear characteristics make them impractical to use in
practical systems. The nonlinear characteristics may cause the obtained solutions to be trapped
in local optima, and these algorithms require an enormous amount of computational effort and time.
Therefore, many optimization methods need to be improved to overcome these shortcomings [8,9].
Recently, several population-based optimization algorithms, including the OPF problem, have been
employed to solve a complex constrained optimization problem in the field of power systems. Some
of the other proposed techniques include the genetic algorithm (GA) [10], tabu search (TS) [11],
differential evolution (DE) [12], evolutionary programming (EP) [13], probabilistic optimal power-flow
(P-OPF) [14], preventive security-constrained power flow optimization [15], ant colony optimization
(ACO) [16], grey wolf optimizer (GWO) [17], artificial bee colony (ABC) [18], particle swarm
optimization (PSO) [19], and the dragonfly algorithm (DA) [20]. Even with the successful optimization
of single-objective population-based optimization techniques, minimizing only one objective function
is not sufficient in the power system because there are many problems, such as fuel cost, emissions, and
transmission losses, which also need to be minimized. Consequently, many objective functions should
be considered because this is a multi objective optimization problem. Since there are three independent
objective functions in this study (i.e., fuel cost, emissions, and transmission losses), the number of
incompatible optimal solutions between the objective functions is infinite, and these optimal solutions
are called Pareto optimal solutions [21].

Several optimization algorithms have been proposed and applied to solve the multiobjective
OPF (MO-OPF) problem by many researchers. One of these methods was carried out by converting
the multiobjective problem into a single-objective problem and then solving the problem by using
a single-objective optimizer. However, this method has some drawbacks, such as the limitation of the
available choices, the need for weights for each objective, and the requirement of multiple optimizer
runs. To overcome these weaknesses, many researchers have proposed multiobjective evolutionary
algorithms, such as the improved strength Pareto evolutionary algorithm (ISPEA2) [22], hybrid
modified particle swarm optimization-shuffle frog leaping algorithms (HMPSO-SFLA) [23], modified
teaching–learning-based optimization (MTLBO) [24], GWO [17], DE [17], multiobjective modified
imperialist competitive algorithm (MOMICA) [25], differential search algorithm (DSA) [26], modified
shuffle frog leaping algorithm (MSFLA) [27], modified Gaussian bare-bones multiobjective imperialist
competitive algorithm (MGBICA) [28], multiobjective harmony search (MOHS) [29], adaptive
real coded biogeography-based optimization (ARCBBO) [30], multiobjective differential evolution
algorithm (MO-DEA) [31], hybrid modified imperialist competitive algorithm and teaching–learning
algorithm (MICA-TLA) [32], etc., to successfully solve the OPF problem. In the past few decades,
various well-proposed multiobjective evolutionary algorithms have been successfully applied and
improved in many applications; however, most of them have not been extensively investigated in
the OPF problem. Moreover, improving the search performance of the multiobjective evolutionary
algorithm for solving the OPF problem is also important. In this paper, a hybrid DA-PSO algorithm is
proposed to deal with the MO-OPF problem. The concept of the hybrid algorithm is the combination of
the exploration and exploitation phases of the DA and PSO algorithms, respectively. The performance
of the proposed algorithm was evaluated on the standard IEEE 30-bus and IEEE 57-bus power systems.
Three different objective functions—fuel cost, emissions, and transmission losses—were individually
and simultaneously considered as parts of the objective function in the OPF problem. The obtained
results were compared with other evolutionary algorithms and the traditional DA and PSO.

The rest of the article is classified into five sections as follows. Section 2 introduces the formulation
and constraints of the multiobjective optimization. In Section 3, the traditional DA and PSO are
explained, and Section 4 depicts the concept of the proposed algorithm. Section 5 presents the
optimization results and the comparisons between the solutions from the proposed algorithm and the



Energies 2018, 11, 2270 3 of 21

solution from other algorithms based on IEEE 30-bus and IEEE 57-bus systems. Finally, in Section 6,
the conclusions of the simulation results of the proposed algorithm are described.

2. Problem Formulation and Constraints for Multi Objective Optimization for OPF

Multi-objective optimization is a model that optimizes more than one objective function to
find optimal control variables while simultaneously satisfying equality and inequality constraints.
The compromised solutions, nondominated solutions, which have more than one optimal solution
between each objective, are the optimal solutions referred to as the Pareto front. The multiobjective
problem is mathematically formulated as follows:

min f =
{

f1(x, u), f2(x, u), . . . , fNobj
(x, u)

}
(1)

subject to
g(x, u) = 0 (2)

h(x, u) ≤ 0 (3)

where f is a vector of objective functions to be optimized, Nobj is the number of objective functions,
g(x,u) are the equality constraints, and h(x,u) are the inequality constraints.

x is a vector of state variables including slack bus active power, load bus voltages, generator
reactive powers, and apparent power flows, expressed as follows:

x = [Pgslack, VL1, . . . , VLNL , Qg1 . . . QgNgen , Sl1 . . . SlNl
] (4)

where Pgslack is the active power generation at slack bus, VLi is the load voltage at bus i, NL is number
of load buses, Qgi is the reactive power generation at bus i, Ngen is the number of total generators,
Sli is the apparent power flow at branch i, and Nl is the number of transmission lines.

u is a vector of control variables consisting of active power generations except at slack bus,
generator bus voltages, transformer tap ratios, and reactive powers of shunt compensation capacitors,
expressed as:

u = [Pgi;i∈PVbus . . . PgNgen , Vg1, . . . , VgNgen , T1 . . . TNtran , Qc1 . . . QcNcap ] (5)

where Pgi is the active power generation at bus i, PVbus is the set of generator buses except at slack
bus, Vgi is the generator bus voltage at bus i, Ti is the transformer tap ratio at bus i, Ntran is the
number of transformer taps, Qci is the shunt compensation capacitor at bus i, and Ncap is the number
of compensation capacitors.

2.1. Objective Functions

In this study, the objective functions of the OPF, consisting of fuel cost, emissions, and transmission
line losses, are considered as shown below.

2.1.1. Fuel Cost

The total fuel cost of the generators is considered to be minimized and is given as follows:

fC(x, u) =
Ngen

∑
i=1

(aiP2
gi + biPgi + ci) (6)

where fC is the total fuel cost of generators function ($/h), and ai, bi and ci are the fuel cost coefficients
of the ith generator units.
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2.1.2. Emissions

The emissions function can be represented as the sum of all considered emission types,
such as sulphur oxides (SOx), nitrogen oxides (NOx), thermal emission, etc. However, in the present
study, two important emission types, NOx and SOx, are taken into account, as expressed below:

fE(x, u) =
Ngen

∑
i=1

(γiP2
gi + βiPgi + αi + ξi exp(λiPgi)) (7)

where fE is the total emission generations function (ton/h), and γi, βi, αi, ζi and λi are emission
coefficients of the ith generator units.

2.1.3. Transmission Line Losses

The system active power loss in the transmission line is formulated as follows:

fL(x, u) =
Nl

∑
k=1

gk(V2
i + V2

j − 2ViVj cos(θij)) (8)

where f L is the total transmission loss function (MW), gk is the conductance of the kth line, Vi is the
voltage at bus i, Vj is the voltage at bus j, and θij is the voltage phase angle difference between buses
i and j.

2.2. Constraints

2.2.1. Equality Constraints

The OPF equality constraints are the active and reactive power balance constraints, as follows:

Pgi − Pdi =
Nbus

∑
j=1

ViVj(Gij cos(θij) + Bij sin(θij)) (9)

Qgi −Qdi =
Nbus

∑
j=1

ViVj(Gij sin(θij)− Bij cos(θij)) (10)

where Pdi is the active power demand at bus i, Nbus is the number of buses, Gij is the transfer
conductance between buses i and j, Bij is the transfer susceptance between buses i and j, and Qdi
is the reactive power demand at bus i.

2.2.2. Inequality Constraints

Pgimin ≤ Pgi ≤ Pgimax i = 1, 2, . . . , Ngen (11)

Qgimin ≤ Qgi ≤ Qgimax i = 1, 2, . . . , Ngen (12)

Vgimin ≤ Vgi ≤ Vgimax i = 1, 2, . . . , Ngen (13)

|Sli| ≤ Slimax (14)

VLimin ≤ VLi ≤ VLimax i = 1, 2, . . . , NL (15)

Qcimin ≤ Qci ≤ Qcimax i = 1, 2, . . . , Ncap (16)

Timin ≤ Ti ≤ Timax i = 1, 2, . . . , Ntran (17)

where Pgimin and Pgimax are the minimum and maximum active power generations at bus i, respectively,
Qgimin and Qgimax are the minimum and maximum reactive power generations at bus i, respectively,
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Vgimin, Vgimax are the minimum and maximum generator voltage at bus i, respectively, Slimax is the
maximum apparent power flow at branch i, VLimin, VLimax are the minimum and maximum load
voltage at bus i, respectively, Qcimin and Qcimax are the minimum and maximum shunt compensation
capacitor at bus i, respectively, Timin, Timax are the minimum and maximum transformer tap-ratio at
bus i, respectively.

2.2.3. Constraints Handling

The inequality of dependent variables, including slack bus active power generation, load bus
voltage magnitudes, reactive power generations, and apparent power flows, are integrated into the
penalized objective function to maintain these variables within their limits and to refuse infeasible
solutions. The penalty function can be expressed as follows [27]:

J(x, u) = f(x, u) + KP(Pgslack − Plim
gslack)

2
+ KV

Nload
∑

i=1
(VLi −Vlim

Li )
2

+KQ
Nline
∑

i=1
(Qgi −Qlim

gi )2 + KS
Nline
∑

i=1
(SLi − Smax

Li )2
(18)

where J(x,u) is the penalized objective function, Kp, KQ, KV and Ks are the penalty factors, and xlim is
the limit value of the dependent variables, determined as follows:

xlim =


xmax

x
xmin

i f
i f
i f

x > xmax

xmin < x < xmax

x < xmin
(19)

3. Related Optimization Techniques

3.1. DA

DA is a metaheuristic algorithm which was inspired by the static and dynamic swarming
behaviors of dragonflies in nature [33]. Dragonflies swarm for two goals: Hunting (static swarm) and
migration (dynamic swarm). In the dynamic swarm, many dragonflies swarm when roaming over
long distances and different areas, which is the purpose of the exploration phase. In the static swarm,
dragonflies move in larger swarms and along one direction with local movements and sudden changes
in the flying path, which is suitable in the exploitation phase.

The behavior of dragonflies can be represented through five principles, which are separation,
alignment, cohesion, attraction to a food source, and distraction of an enemy. These five behaviors are
described and calculated as follows:

Separation, which is the avoidance of the static crashing of individuals into other individuals in
the neighborhood, is calculated by Equation (20).

Si = −
N

∑
j=1

X−Xj (20)

where Si is the separation of the ith individual, N is the number of neighboring individuals, X is the
position of the current individual, and Xj is the position of jth neighboring individual.

Alignment, which refers to the velocity matching of individuals to the velocity of others in the
neighborhood, is computed by Equation (21).

Ai =
∑N

j=1 Vj

N
(21)

where Ai is the alignment of the ith individual, and Vj is the velocity of jth neighboring individual.
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Cohesion, which is the propensity of individuals towards the center of mass of the neighborhood,
is formulated by Equation (22).

Ci =
∑N

j=1 Xj

N
−X (22)

where Ci is the cohesion of the ith individual
Attraction towards a food source computed by Equation (23), should be the main objective of any

swarm to survive.
Fi = X+ −X (23)

where Fi is the food source of the ith individual, and X+ is the position of the food source.
Distraction of an enemy, which is computed by Equation (24), is another survival objective of

the swarm.
Ei = X− + X (24)

where Ei is the position of enemy of the ith individual, and X− is the position of the enemy source.
To simulate the movement of artificial dragonflies and update their positions, step vector (∆X)

and position vector (X) are considered. The step vector represents the direction of the movement of
the artificial dragonflies and is formulated as follows:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + ωt∆Xt (25)

where ∆Xt + 1 is the step vector at iteration t + 1, ∆Xt is the step vector at iteration t, s, a, c, f and e are
the separation weight, alignment weight, cohesion weight, food factor and enemy factor, respectively,
and ωt is the inertia weight factor at iteration t and is calculated by Equation (26).

ωt = ωmax −
ωmax −ωmin

Itermax
× Iter (26)

where ωmax and ωmin are set to 0.9 and 0.4, respectively, Iter is the iteration, and Itermax is the
maximum iteration.

The position of the artificial dragonflies can be updated by the following equation:

Xt+1 = Xt + ∆Xt+1 (27)

where Xt + 1 is the position at iteration t + 1, and Xt is the position at iteration t.
When the search space does not have a neighboring solution, the artificial dragonflies need to

move around the search space by applying random walk (Levy flight) to improve their stochastic
behavior. So, in this case, the position of the dragonflies can be calculated by Equation (28).

Xt+1 = Xt + Levy(d)×Xt (28)

where d is the dimension of the position vectors, and the Levy is the Levy flight which is computed by
Equation (29).

Levy(d) = 0.01× r1 × σ

|r2|
1
β

(29)

where r1 and r2 are two uniform random values in a range of [0, 1], and σ is calculated by Equation (30).

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

1/β

(30)

where β is the constant (which is equal to 1.5 in this work), and Γ(x) = (x− 1)!.
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3.2. PSO

PSO is a population-based stochastic global optimization technique which was first introduced by
Eberhart and Kennedy [34]. The idea of PSO came from the flocking behavior of birds or the schooling
of fishes in their food hunting. In the PSO system, the population moves around a multidimensional
search space where each particle represents a possible solution. Each particle contains the information
of control variables and is associated with a fitness value that indicates its performance in the fitness
space. Each particle i consists of its position Xi = (xi,1, xi,2, . . . , xi,Nvar), where Nvar represents the
number of control variables, velocity V i = (vi,1, vi,2, . . . , vi,Nvar) and personal best experience Xpbesti =
(xpbesti,1, xpbesti,2, . . . , xpbesti,Nvar), and a swarm has a global best experience Xgbest = (xgbest1, xgbest2, . . . ,
xgbestNvar). During each iteration, each particle moves in the direction of its own personal best position
provided so far as well as in the direction of the global best position obtained so far by particles in the
swarm. The particles are operated according to the equations expressed as follows:

Vt+1
i = ωt × Vt

i + C1 × rand1 × (Xt
pbesti

−Xt
i)+C2 × rand2 × (Xt

gbest −Xt
i) (31)

Xt+1
i = Xt

i + Vt+1
i (32)

where Vi
t + 1 is the velocity of particle i at iteration t + 1, Vi

t is the velocity of particle i at iteration t,
C1 and C2 are two positive acceleration constants, rand1 and rand2 are two uniform random values in
a range of [0, 1], Xt

pbesti is the personal best position of particle i at iteration t, Xi
t is the position of

particle i at iteration t, Xt
gbest is the global best position among all particles at iteration t, and Xi

t + 1 is
the position of particle i at iteration t + 1.

4. Proposed Hybrid DA-PSO Optimization Algorithm for MO-OPF Problem

Many optimization algorithms have been proposed to overcome the optimization problem of
being trapped in the local optima while the algorithms try to find the best solution. PSO has been
proven in several works from the literature to find the optimal solution in various problems [35–38].
Because of its equations in finding the optimal solution by using the best experience of the particles,
PSO could quickly converge on the optimal solution, i.e., it is good at exploitation. However,
PSO is sometimes still trapped in the local optima because it converges on the optimal solution
too quickly. In other words, PSO is poor at exploration, which is an important task of the optimization
process. In DA, it applies the Levy flight to improve the randomness and stochastic behavior when
there is no neighboring dragonfly. This could significantly improve the exploration process of the
algorithm. However, the best experience, which is the personal best, of dragonflies is not applied
during the operation. This causes the DA to converge on the optimal solution very slowly and can
sometimes cause it to be trapped in the local optima. To overcome these problems, a new algorithm
is proposed which combines the prominent points of the DA and PSO algorithms, which are the
exploration of DA and the exploitation of PSO. At first, the dragonflies in DA are initialized to explore
the search space to find the area of the global solution. Then, the best position of DA is obtained.
The obtained best position from DA is then substituted as the global best position in the PSO equation
(Equation (31)). After that, the PSO algorithm, which is the exploitation phase, operates by using the
global best position from DA, allowing it to provide the expected optimal solution. The velocity and
position equations of PSO can be modified as follows:

Vt+1
i = ωt × Vt

i + C1 × rand1 × (Xt
pbesti

−Xt
i)+C2 × rand2 × (Xt+1

DA −Xt
i) (33)

Xt+1
i = Xt

i + Vt+1
i (34)

where Xt+1
DA is the best position obtained from DA at iteration t + 1.

The application of the proposed DA-PSO algorithm for solving the MO-OPF problem can be
described as follows:
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Step 1. Clarify the system data comprising the fuel cost coefficients of the generators, emission
coefficients of the generators, initial values of generator active powers, initial values of
generator bus voltages, initial values of transformer tap ratios, initial values of shunt
compensation capacitors, upper limit of Sli, lower and upper limits of Pgi, Qgi, Vgi, VLi, Qci,
and Ti, the parameters of DA and PSO, the number of dragonflies and particles, the number
of iterations, and the archive size.

Step 2. Generate the initial population of dragonflies and particles.
Step 3. Convert the constrained multi objective problem to an unconstrained one by using

Equation (18).
Step 4. Perform the power flow and calculate the objective functions for the initial population

of dragonflies.
Step 5. Find the nondominated solutions and save them to the initial archive.
Step 6. Set the fitness value of the initial population as the food source.
Step 7. Calculate the parameters of DA (s, a, c, f, and e).
Step 8. Update the food source and enemy of DA.
Step 9. Calculate the S, A, C, F, and E by Equations (20)–(24).
Step 10. Check if a dragonfly has at least one neighboring dragonfly, then update step vector (∆X) and

the position of dragonfly (XDA) by Equations (25) and (27), respectively, and if each dragonfly
has no neighboring dragonfly, then update XDA by Equation (28) and set ∆X to be zero.

Step 11. If any component of each population breaks its limit, then ∆X or XDA of that population is
moved into its minimum/maximum limit.

Step 12. Set the best position obtained from DA as the global best of PSO (Xgbest).
Step 13. Update the velocity of the particle (V) and the position of the particle (XPSO) by

Equations (33) and (34), respectively.
Step 14. If any component of each population breaks its limit, then V or XPSO of that population is

moved into its minimum/maximum limit.
Step 15. Calculate the objective functions of the new produced population.
Step 16. Employ the Pareto front method to save the nondominated solutions to the archive and

update the archive.
Step 17. If the maximum number of iterations is reached, the algorithm is stopped; otherwise,

go to step 7.

The flowchart of the DA-PSO algorithm for the MO-OPF problem is shown in Figure 1.
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5. Simulation Results

To investigate the performance of the proposed algorithm, the IEEE 30-bus and IEEE 57-bus
test systems were employed. The proposed algorithm operated for 30 independent runs for
each test system. To validate the superiority of the proposed algorithm for solving the economic
dispatch optimization problem, the results provided by the proposed algorithm were compared
with those of other metaheuristic algorithms from the literature. In order to investigate both the
single-objective optimization and multiobjective optimization, the simulation was divided into two
cases. Single-objective optimization was evaluated in the first case. In the second case, multiobjective
optimization to solve the MO-OPF by using the proposed DA-PSO algorithm was evaluated.

5.1. IEEE 30-Bus Test System

The proposed DA-PSO algorithm was applied to the IEEE 30-bus system to evaluate its
performance. The IEEE 30-bus test system was composed of 6 generators at buses 1, 2, 5, 8, 11,
and 13, 4 transformers between buses 6 and 9, buses 6 and 10, buses 4 and 12, and buses 27 and 28,
and 41 transmission lines. The total system demand was 283.4 MW and 126.6 MVAR. The bus and
branch data is given in [39]. The population number and the size of the Pareto archive were set to be
100 and 100, respectively.

5.1.1. Single-Objective OPF

To evaluate the performance of the proposed algorithm for solving the single-objective
optimization, three different objective functions consisting of fuel cost, emissions, and transmission
loss minimizations were individually considered as part of the objective function. The obtained
results by the traditional DA, PSO, and the proposed DA-PSO algorithm for three individual
objective functions are shown in Table 1. In Table 2, the best fuel cost of generators provided by
the DA-PSO algorithm are compared with other algorithms in the literature, including TS [11],
EP [13], ACO [16], SFLA [27], MSFLA [27], improved evolutionary programming (IEP) [40], modified
differential evolution optimal power flow (MDE-OPF) [41], stochastic genetic algorithm (SGA) [42],
evolutionary-programming-based optimal power flow (EP-OPF) [43], honey bee mating optimization
(HBMO) [44], PSO, and DA. The comparison of the best emission values of the DA-PSO algorithm with
various algorithms in the literature, including ACO [16], HMPSO-SFLA [23], TLBO [24], MTLBO [24],
DSA [26], MSFLA [27], SFLA [27], GA [27], GBICA [28], improved particle swarm optimization
(IPSO) [45], PSO, and DA, is shown in Table 3. In Table 4, the best transmission losses provided by
DA-PSO algorithm are compared with other algorithms in the literature, including GWO [17], DE [17],
MOHS [29], enhanced genetic algorithm with decoupled quadratic load flow (EGA-DQLF) [46],
efficient evolutionary algorithm (EEA) [47], enhanced genetic algorithm (EGA) [47], PSO, and DA.
It can be seen that the proposed DA-PSO provided better results compared with those of other
algorithms for all three objective functions, which can be confirmed by the results in Tables 1–4.
However, the computation time of the proposed DA-PSO is much slower than other algorithms in the
literature because the proposed algorithm consumed the sequential computation time of DA and PSO
as presented in Tables 2–4.

Table 1. Comparison of the simulation results from particle swarm optimization (PSO), dragonfly
algorithm (DA), and DA-PSO for IEEE 30-bus system.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Pg1 (MW) 176.2376 176.5128 176.1861 64.1678 64.3407 64.0997 51.6974 51.5987 51.5893
Pg2 (MW) 48.8432 48.6955 48.8318 67.6692 67.5383 67.6295 80.0000 80.0000 80.0000
Pg3 (MW) 21.5184 21.4431 21.5119 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
Pg4 (MW) 22.1257 22.0995 22.0737 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000
Pg5 (MW) 12.2000 12.0673 12.2005 30.0000 30.0000 30.0000 30.0000 40.0000 30.0000
Pg6 (MW) 12.0000 12.0091 12.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000
Vg1 (p.u.) 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
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Table 1. Cont.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Vg2 (p.u.) 1.0381 1.0379 1.0379 1.0459 1.0472 1.0459 1.0477 1.0476 1.0476
Vg3 (p.u.) 1.0110 1.0117 1.0109 1.0274 1.0309 1.0277 1.0292 1.0283 1.0292
Vg4 (p.u.) 1.0194 1.0197 1.0187 1.0353 1.0377 1.0350 1.0366 1.0342 1.0363
Vg5 (p.u.) 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.0387 1.1000
Vg6 (p.u.) 1.0999 1.0842 1.0828 1.0852 1.0140 1.0713 1.0850 1.0606 1.0712
T6-9 (p.u.) 0.9973 1.0318 1.0166 1.0136 1.0017 1.0490 1.0153 1.1000 1.0482
T6-10 (p.u.) 0.9000 0.9004 0.9210 0.9000 1.1000 0.9000 0.9000 0.9000 0.9000
T4-12 (p.u.) 1.0157 0.9995 0.9980 1.0097 1.0003 0.9954 1.0105 0.9740 0.9962
T27-28 (p.u.) 0.9403 0.9501 0.9478 0.9518 1.0136 0.9609 0.9529 0.9647 0.9618
Qc10 (MVar) 28.6430 7.0219 10.0521 0.0000 0.0030 5.7174 7.0753 30.0000 5.2416
Qc24 (MVar) 0.0000 11.0974 10.6433 30.0000 16.6605 10.6333 17.0085 9.9534 10.6499

Fuel Cost ($/h) 802.5449 802.1299 802.1241 945.0484 944.9387 944.7159 968.1335 967.8979 967.8756
Emission (ton/h) 0.363619 0.364411 0.363494 0.204886 0.204861 0.204853 0.207294 0.207280 0.207279

PLoss (MW) 9.5249 9.4272 9.4041 3.4370 3.4790 3.3292 3.2974 3.1987 3.1893

Table 2. Comparison of the results from DA-PSO and other algorithms when considering only fuel
cost as part of the objective function for IEEE 30-bus system.

Algorithms Pg1
(MW)

Pg2
(MW)

Pg3
(MW)

Pg4
(MW)

Pg5
(MW)

Pg6
(MW)

Emission
(ton/h)

Loss
(MW) Cost ($/h) Time (s)

TS [11] 176.0400 48.7600 21.5600 22.0500 12.4400 12.0000 0.363004 9.4500 802.2900 -
EP [13] 173.8480 49.9980 21.3860 22.6300 12.9280 12.0000 0.357217 9.3900 802.6200 51.40

ACO [16] 181.9450 47.0010 21.4596 21.4460 13.2070 12.0134 0.382000 9.8520 802.5780 -
SFLA [27] 179.0337 49.2580 20.3183 21.3269 11.5420 11.6655 0.372000 9.7444 802.5092 -

MSFLA [27] 179.1929 48.9804 20.4517 20.9264 11.5897 11.9579 0.372300 9.6991 802.2870 -
IEP [40] 176.2358 49.0093 21.5023 21.8115 12.3387 12.0129 0.363610 10.8700 802.4650 99.01

MDE-OPF [41] 175.9740 48.8840 21.5100 22.2400 12.2510 12.0000 0.362900 9.4590 802.3760 23.25
SGA [42] 179.3670 44.2400 24.6100 19.9000 10.7100 14.0900 0.371129 9.5177 803.6990 -

EP-OPF [43] 175.0297 48.9522 21.4200 22.7020 12.9040 12.1035 0.360125 9.7114 803.5710 -
HBMO [44] 178.4646 46.2740 21.4596 21.4460 13.2070 12.0134 0.369212 9.4662 802.2110 28.56

PSO 176.2376 48.8432 21.5184 22.1257 12.2000 12.0000 0.363619 9.5249 802.5449 92.18
DA 176.5128 48.6955 21.4431 22.0995 12.0673 12.0091 0.364411 9.4272 802.1299 103.06

DA-PSO 176.1861 48.8318 21.5119 22.0737 12.2005 12.0000 0.363494 9.4041 802.1241 287.13

Table 3. Comparison of the results from DA-PSO and other algorithms when considering only
emissions as part of the objective function for IEEE 30-bus system.

Algorithms Pg1
(MW)

Pg2
(MW)

Pg3
(MW)

Pg4
(MW)

Pg5
(MW)

Pg6
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h) Time (s)

ACO [16] 64.3720 72.1604 49.5438 32.9099 28.6113 39.7390 945.5870 3.9368 0.221000 -
HMPSO-SFLA

[23] 64.8148 68.0692 50.0000 34.9999 30.0000 40.0000 948.3052 4.4839 0.205200 -

TLBO [24] 63.5221 68.7345 49.9931 34.9894 29.9824 39.9801 947.4392 3.8016 0.205030 -
MTLBO [24] 64.2924 67.6250 50.0000 35.0000 30.0000 40.0000 945.1965 3.5174 0.204930 -

DSA [26] 64.0725 67.5711 50.0000 35.0000 30.0000 40.0000 944.4086 3.2437 0.205826 -
MSFLA [27] 65.7798 68.2688 50.0000 34.9999 29.9982 39.9970 951.5106 5.6437 0.205600 -
SFLA [27] 64.4840 71.3807 49.8573 35.0000 30.0000 39.9729 960.1911 7.2949 0.206300 -
GA [27] 78.2885 68.1602 46.7848 33.4909 30.0000 36.3713 936.6152 9.6957 0.211700 -

GBICA [28] 64.3125 67.4938 50.0000 35.0000 29.9924 40.0000 944.6516 3.3987 0.204900 -
IPSO [45] 67.0400 68.1400 50.0000 35.0000 30.0000 40.0000 954.2480 5.3620 0.205800 -

PSO 64.1678 67.6692 50.0000 35.0000 30.0000 40.0000 945.0484 3.4370 0.204886 91.84
DA 64.0667 67.6897 50.0000 35.0000 30.0000 40.0000 944.8819 3.3564 0.204861 103.20

DA-PSO 64.0997 67.6295 50.0000 35.0000 30.0000 40.0000 944.7159 3.3292 0.204853 290.01

Table 4. Comparison of the results from DA-PSO and other algorithms when considering only losses
as part of the objective function for IEEE 30-bus system.

Algorithms Pg1
(MW)

Pg2
(MW)

Pg3
(MW)

Pg4
(MW)

Pg5
(MW)

Pg6
(MW)

Cost
($/h)

Emission
(ton/h)

Loss
(MW) Time (s)

GWO [17] 51.8100 80.0000 50.0000 35.0000 30.0000 40.0000 968.3800 0.207310 3.4100 15.90
DE [17] 51.8200 79.9900 49.9900 35.0000 29.9800 40.0000 968.2300 0.207311 3.3800 16.50

MOHS [29] 66.2759 79.6413 46.8835 34.8880 29.1213 30.0558 928.5099 0.212890 3.5165 -
EGA-DQLF [46] 51.6008 80.0000 50.0000 35.0000 30.0000 40.0000 967.8600 0.207281 3.2008 -

EEA [47] 59.3216 74.8132 49.8547 34.9084 28.1099 39.7538 952.3785 0.206735 3.2823 5.72
EGA [47] 51.6740 79.9700 50.0000 35.0000 30.0000 40.0000 967.9300 0.207275 3.2440 29.71

PSO 51.6974 80.0000 50.0000 35.0000 30.0000 40.0000 968.1335 0.207294 3.2974 93.36
DA 51.5941 80.0000 50.0000 35.0000 40.0000 40.0000 967.8869 0.207280 3.1941 102.81

DA-PSO 51.5893 80.0000 50.0000 35.0000 30.0000 40.0000 967.8756 0.207279 3.1893 292.33
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5.1.2. MO-OPF

In this subsection, the proposed algorithm is investigated as a multiobjective optimization
problem, while every two and three objective functions are optimized simultaneously. The best
two-dimensional Pareto fronts obtained from the DA, PSO, and DA-PSO algorithms for the IEEE
30-bus system are shown in Figures 2–4. However, DA could not provide the convergent Pareto
front when simultaneously considering the emissions and losses as parts of the objective function.
This shows that DA is suitable for some objective functions, but that it is not suitable for every
objective function for finding optimal solutions. In Figure 5, the Pareto front provided by the DA-PSO
algorithm for the three-dimensional Pareto front is shown. For all figures in this system, most of the
nondominated solutions obtained by the DA-PSO algorithm are better than those from the DA and
PSO algorithms. For instance, at the same level of the fuel cost, the emissions provided by DA-PSO
are less than those of DA and PSO. This shows that the new proposed hybrid DA-PSO algorithm,
which adopts the exploration phase of the DA and the exploitation phase of the PSO, could improve
the performance of the original DA and PSO algorithms.
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5.2. IEEE 57-Bus Test System

The proposed hybrid DA-PSO was also tested on the IEEE 57-bus system to investigate its
performance. The system active and reactive power demands were 1250.8 MW and 336.4 MVAR,
respectively. It consisted of 7 generators located at buses 1, 2, 3, 6, 8, 9, and 12, 15 transformers, and
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80 transmission lines. The detail data were taken from [48]. The population number was 100 and the
size of the Pareto archive was 100.

5.2.1. Single-Objective OPF

To verify its performance for solving the single-objective OPF in a larger system, the proposed
algorithm was also applied to the IEEE 57-bus test system. Three different objective functions,
i.e., fuel cost, emissions, and transmission losses, were individually considered as part of the objective
function. The results provided by DA, PSO, and the proposed DA-PSO algorithm for the three
individual objectives are shown in Table 5. The best results from DA-PSO are compared with those
of: MTLBO [23], DSA [25], GBICA [27], MGBICA [27], ARCBBO [29], MO-DEA [30], MICA-TLA [31],
TLBO [48], Levy mutation teaching–learning-based optimization (LTLBO) [49], new particle swarm
optimization (NPSO) [50], fuzzy genetic algorithm (Fuzzy-GA) [51], differential evolution pattern
search (DE-PS) [52], ABC [53], particle swarm optimization algorithm with linearly decreasing inertia
weight (LDI-PSO) [53], evolving ant direction differential evolution (EADDE) [54], gravitational search
algorithm (GSA) [55], adaptive particle swarm optimization strategy (APSO) [56], PSO, and DA for
the fuel cost objective function; GBICA [27], MGBICA [27], PSO, and DA for the emission objective
function; and PSO and DA for the transmission loss objective function—all of which is summarized in
Tables 5–8. From these tables, it is obvious that the proposed algorithm could provide more optimized
results than the compared algorithms for all three objective functions.

Table 5. Comparison of the simulation results from PSO, DA, and DA-PSO for IEEE 57-bus system.

Variables
Best Fuel Cost Best Emission Best PLoss

PSO DA DA-PSO PSO DA DA-PSO PSO DA DA-PSO

Pg1 (MW) 142.7472 154.8513 141.4617 236.4846 246.6610 236.4531 193.1342 269.9574 202.6688
Pg2 (MW) 88.8427 76.6227 87.7806 100.0000 44.6053 100.0000 8.8581 0.2047 0.0000
Pg3 (MW) 44.9025 49.4440 44.6638 139.9999 140.0000 140.0000 139.9731 60.2481 140.0000
Pg4 (MW) 70.8490 100.0000 73.6254 100.0000 78.0610 100.0000 100.0000 55.3529 100.0000
Pg5 (MW) 458.6003 438.7375 458.9904 292.5686 329.7090 292.1457 309.5411 377.9311 308.2507
Pg6 (MW) 100.0000 100.0000 97.4933 100.0000 82.5653 100.0000 100.0000 90.2309 100.0000
Pg7 (MW) 360.3487 347.6947 361.7228 298.6306 344.7194 298.4568 410.0000 410.0000 410.0000
Vg1 (p.u.) 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
Vg2 (p.u.) 1.0494 1.0453 1.0488 1.0513 1.0486 1.0506 1.0458 1.0351 1.0450
Vg3 (p.u.) 1.0479 1.0475 1.0455 1.0532 1.0550 1.0505 1.0528 1.0342 1.0520
Vg4 (p.u.) 1.0628 1.0755 1.0581 1.0518 1.0303 1.0493 1.0537 1.0454 1.0525
Vg5 (p.u.) 1.0792 1.0802 1.0745 1.0551 1.0142 1.0506 1.0603 1.0563 1.0566
Vg6 (p.u.) 1.0455 1.0568 1.0442 1.0266 1.0133 1.0267 1.0349 1.0240 1.0348
Vg7 (p.u.) 1.0410 1.0629 1.0394 1.0251 1.0556 1.0262 1.0392 1.0119 1.0384
T4–8 (p.u.) 0.9429 1.1000 1.0221 0.9629 1.1000 0.9691 0.9625 0.9763 0.9730
T4–18 (p.u.) 0.9916 1.0140 0.9953 0.9764 1.0682 0.9870 0.9865 1.0277 1.0275
T21–20 (p.u.) 1.0151 1.1000 1.0196 1.0233 1.0113 1.0228 1.0226 1.0286 1.0442
T24–25 (p.u.) 0.9000 0.9857 1.0212 0.9082 1.1000 1.1000 0.9111 1.0430 1.0140
T24–25 (p.u.) 0.9378 0.9812 0.9896 0.9000 0.9645 0.9609 0.9118 0.9948 1.0145
T24–26 (p.u.) 1.0219 1.1000 1.0175 1.0115 0.9981 1.0086 1.0130 1.0312 1.0111
T7–29 (p.u.) 0.9901 1.0253 0.9983 0.9791 0.9658 0.9904 0.9826 0.9816 0.9945
T34–32 (p.u.) 0.9277 1.0731 0.9582 0.9285 1.0069 0.9682 0.9217 0.9815 0.9577
T11–41 (p.u.) 0.9000 0.9879 0.9063 0.9000 0.9062 0.9000 0.9000 1.1000 0.9036
T15–45 (p.u.) 0.9667 0.9770 0.9714 0.9750 1.0178 0.9786 0.9779 0.9761 0.9807
T14–46 (p.u.) 0.9578 0.9807 0.9616 0.9636 0.9743 0.9569 0.9594 0.9373 0.9616
T10–51 (p.u.) 0.9748 0.9899 0.9766 0.9642 0.9824 0.9674 0.9710 0.9395 0.9707
T13–49 (p.u.) 0.9300 1.0153 0.9301 0.9257 0.9854 0.9274 0.9292 0.9850 0.9375
T11–43 (p.u.) 0.9785 0.9738 0.9756 0.9612 0.9707 0.9647 0.9704 0.9373 0.9767
T40–56 (p.u.) 0.9962 1.1000 1.0105 0.9715 0.9460 0.9710 0.9969 1.0457 0.9972
T39–57 (p.u.) 0.9692 1.1000 0.9621 0.9728 1.0799 0.9742 0.9629 0.9373 0.9645
T9–55 (p.u.) 0.9856 1.0732 0.9988 0.9676 0.9937 0.9810 0.9756 0.9747 0.9842

Qc18 (MVar) 18.7450 6.6751 13.2804 0.0000 15.6977 2.4493 10.9247 12.9734 4.5146
Qc25 (MVar) 13.8614 8.7220 12.6307 7.3042 22.1164 16.8169 28.7430 12.9949 14.5906
Qc53 (MVar) 12.0686 22.2015 13.9725 0.0249 9.3410 12.5551 19.7432 10.7143 12.9250

Fuel Cost ($/h) 41,698.37 41,828.45 41,674.62 45,671.22 45,449.13 45,648.67 44,951.80 43,464.17 45,039.05
Emission (ton/h) 1.9027 1.6883 1.9087 1.0814 1.3097 1.0799 1.3821 1.7562 1.4014

PLoss (MW) 15.4903 16.5502 14.9380 16.8837 15.5210 16.2556 10.7076 13.6430 10.1212
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Table 6. Comparison of the results from DA-PSO and other algorithms when considering only fuel
cost as part of the objective function for the IEEE 57-bus system.

Algorithms Cost ($/h)

MTLBO [23] 41,638.3822
DSA [25] 41,686.8200

GBICA [27] 41,740.2884
MGBICA [27] 41,715.7101
ARCBBO [29] 41,686.0000
MO-DEA [30] 41,683.0000

MICA-TLA [31] 41,675.0545
TLBO [48] 41,695.6629

LTLBO [49] 41,679.5451
NPSO [50] 41,699.5163

Fuzzy-GA [51] 41,716.2808
DE-PS [52] 41,685.2950
ABC [53] 41,693.9589

LDI-PSO [53] 41,815.5035
EADDE [54] 41,713.6200

GSA [55] 41,695.8717
APSO [56] 41,713.8868

PSO 41,698.3672
DA 41,828.4473

DA-PSO 41,674.6209

Table 7. Comparison of the results from DA-PSO and other algorithms when considering the only
emissions as part of the objective function for the IEEE 57-bus system.

Algorithms Emission (ton/h)

GBICA [27] 1.1881
MGBICA [27] 1.1724

PSO 1.0814
DA 1.3097

DA-PSO 1.0799

Table 8. Comparison of the results from DA-PSO and its traditional algorithms when considering only
transmission losses as part of the objective function for the IEEE 57-bus system.

Algorithms Loss (MW)

PSO 10.7076
DA 13.6430

DA-PSO 10.1212

5.2.2. MO-OPF

This case proposes a multiobjective optimization problem by using the proposed DA-PSO
algorithm to evaluate its performance for the IEEE 57-bus test system. The two-dimensional Pareto
fronts provided by the PSO and DA-PSO algorithms for this system are shown in Figures 6–8,
while DA could not provide the convergent Pareto fronts for any multiobjective functions in this
system. In Figure 9, the three-dimensional Pareto front obtained from DA-PSO is shown. From all
figures for this system, the fronts obtained from DA-PSO algorithm are superior to those from PSO,
while the fronts obtained from DA could not converge because the best experience of dragonflies in
DA is not applied during the operation and the obtained solutions are trapped in the local optima.
From the results, it can be seen that the proposed hybrid DA-PSO performs better than the original DA
and PSO algorithms once again.
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fronts provided by the PSO and DA-PSO algorithms for this system are shown in Figures 6–8, while 
DA could not provide the convergent Pareto fronts for any multiobjective functions in this system. 
In Figure 9, the three-dimensional Pareto front obtained from DA-PSO is shown. From all figures for 
this system, the fronts obtained from DA-PSO algorithm are superior to those from PSO, while the 
fronts obtained from DA could not converge because the best experience of dragonflies in DA is not 
applied during the operation and the obtained solutions are trapped in the local optima. From the 
results, it can be seen that the proposed hybrid DA-PSO performs better than the original DA and 
PSO algorithms once again. 
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6. Conclusions

In this paper, a hybrid DA-PSO algorithm is proposed to solve the MO-OPF problem in a power
system. As the DA is an algorithm that applies Levy flight to improve its randomness and stochastic
behavior, this could significantly develop the exploration phase of the algorithm in an optimization.
The PSO could quickly converge on the optimal solution because of its equations for finding optimal
solutions by using the best experience of the particles. This makes PSO perform well at the exploitation
phase in an optimization. The new hybrid DA-PSO algorithm combines the prominent points of
these two algorithms, which are the exploration phase of DA and the exploitation phase of the PSO,
to improve its performance for finding the optimal solution of the OPF problem. The proposed
algorithm was used to minimize fuel cost, emissions, and transmission losses, which are considered
to be parts of the objective function. The standard IEEE 30-bus and 57-bus systems were employed
to investigate the performance of the proposed algorithm to find the optimal settings of the control
variables. In order to investigate the single-objective and multiobjective optimizations, the simulation
was divided into two cases. First, the proposed algorithm was used to solve a single-objective function.
The results from the proposed algorithm show its superiority over other optimization algorithms in the
literature. For the other case, the DA-PSO was successfully employed to solve the MO-OPF problem
because the Pareto fronts generated by DA-PSO are better than those obtained by the original DA
and PSO algorithms. All simulation results support the applicability, potential, and effectiveness of
the proposed algorithm. However, the computation time of the DA-PSO is much slower than other
algorithms in the literature because of the sequential computation of DA and PSO.
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Abbreviations

ABC artificial bee colony
ACO ant colony optimization
APSO adaptive particle swarm optimization strategy
ARCBBO adaptive real coded biogeography-based optimization
DA dragonfly algorithm
DE differential evolution
DE-PS differential evolution pattern search
DSA differential search algorithm
EADDE evolving ant direction differential evolution
EEA efficient evolutionary algorithm
EGA enhanced genetic algorithm
EGA-DQLF enhanced genetic algorithm with decoupled quadratic load flow
EP evolutionary programming
EP-OPF evolutionary-programming-based optimal power flow
Fuzzy-GA fuzzy genetic algorithm
GA genetic algorithm
GSA gravitational search algorithm
GWO grey wolf optimizer
HBMO honey bee mating optimization
HMPSO-SFLA hybrid modified particle swarm optimization-shuffle frog leaping algorithms
IEP improved evolutionary programming
IPSO improved particle swarm optimization
ISPEA2 improved strength Pareto evolutionary algorithm
LDI-PSO particle swarm optimization algorithm with linearly decreasing inertia weight
LTLBO Levy mutation teaching–learning-based optimization
MDE-OPF modified differential evolution optimal power flow
MGBICA modified Gaussian bare-bones multiobjective imperialist competitive algorithm
MICA-TLA hybrid modified imperialist competitive algorithm and teaching–learning algorithm
MO-DEA multiobjective differential evolution algorithm
MOHS multiobjective harmony search
MOMICA multiobjective modified imperialist competitive algorithm
MO-OPF multiobjective optimal power flow
MSFLA modified shuffle frog leaping algorithm
MTLBO modified teaching–learning-based optimization
NPSO new particle swarm optimization
OPF optimal power flow
P-OPF probabilistic optimal power flow
PSO particle swarm optimization
SGA stochastic genetic algorithm
TS tabu search
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