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Abstract: The combination of architectural membranes such as ethylene tetrafluoroethylene (ETFE)
foils and organic photovoltaic (OPV) cells offers a wide range of possibilities for building integration
applications. This is due to their flexibility, free-shape, variable color and semitransparency,
light weight, cost-effectivity, and low environmental impact. In addition, electrical generation
is provided. Four configurations of ETFE foils designed to be integrated onto a south façade glazing
element were studied for two representative European locations with different climatic conditions:
Barcelona and Paris. These configurations comprise a reference one based on a double ETFE foil
with a 10 mm air gap in between, and the other three incorporate on the inner ETFE foil either
OPV cells covering 50% or 100% of its surface or a shading pattern printed on it covering 50% of its
surface. Results show that, in terms of energy, the configuration with higher OPV coverage area is
the one achieving the lowest net energy consumption in both locations. However, when looking at
the illumination comfort this option results in insufficient illumination levels. Therefore, a tradeoff

strategy balancing energy performance and illumination comfort conditions is necessary. Based on
that, the best solution found for both cities is the configuration integrating OPV cells covering 50% of
the glazing area and for a window to wall ratio of 0.45.

Keywords: ethylene tetrafluoroethylene (ETFE); organic photovoltaics (OPV); daylighting; thermal
performance; energetic simulation; building integrated photovoltaics (BIPV)

1. Introduction

It is widely known that the building sector is the largest energy consumer in the world. In the
European Union (EU), buildings are responsible for approximately 40% of energy consumption and 36%
of carbon dioxide emissions. These figures are explained by the simple fact that 75% of the buildings
in Europe are energy inefficient [1]. In addition, energy demand in buildings keeps on rising because
of an improved access to energy in developing countries, a more intense use of energy-consuming
devices, and a rapid growth in floor area in buildings (around 3% per year) [2].

With the aim of alleviating and then reversing this trend, the European Union defined a
series of policies. The last Directive of the European Parliament is the 2018/844, which amends
Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy
efficiency. This new Directive extends the so-called ”20-20-20” goals (20% increase in energy efficiency,
20% reduction of CO2 emissions from 1990 levels, and 20% of energy production from renewables)
to be reached by 2020, to more demanding ones to be fulfilled by 2030. The new targets set that
energy efficiency should be improved by 32.5%, greenhouse gas emissions should be decreased by
40%, and 32% of energy production should be from renewables [3].
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In order to meet these requirements for buildings, a smart solution is to integrate photovoltaic
systems into buildings. Using a combination of insulating and glazing elements for shading control,
building integrated photovoltaics (BIPV) not only provides electrical power, but also fulfills an
architectural function. With the functions that add to electrical power generation, BIPV is a promising
and strategic technology which is able to address simultaneously the requirements of higher renewable
energy share and better energy efficiency. In recent years, different approaches have been used for
developing BIPV. The most common approach is to use glass-based structures [4]. Nonetheless,
a growing percentage of architectural designs makes use of lighter transparent structures which offer
larger flexibility for shapes and functionalities in comparison to the glass-based structures [5]. Polymeric
foils and membranes have emerged as a potential candidate to properly cover those characteristics
of flexibility and lightness. Among the available polymer materials, ethylene tetrafluoroethylene
(ETFE) is one of the most accepted since it possesses the highly adequate characteristics for being
integrated into buildings: Light, flexible, transparent, self-cleaning, mechanically adequate, stable,
thermally insulating, and environmentally friendly [6]. In particular, several articles point out that the
environmental impact of ETFE is less than that of glass [6,7].

Concerning the photovoltaic technologies that are best suited for integration into buildings,
organic photovoltaic (OPV) cells are attractive thanks to several characteristics: Light, semitransparent,
free-form, flexible, cost-effective, performant under low-light and diffuse light illuminations, and one
of the most eco-friendly photovoltaic (PV) technologies [8,9]. A drawback of OPV, yet to be fully solved,
is the degradation of performance over time. However, the commercial OPV cells manufactured
by Heliatek are sold with a 5-year product warranty and a 20-year performance warranty, with an
efficiency of 6% for 30% transparency cells [10].

Based on the positive features described above for both ETFE and OPV, combining for BIPV
seems to be a logical step forward. In recent years, a few articles report on ETFE foils combined
with thin film PV modules, mostly made with amorphous silicon [11,12]. Similar to OPV, PV cells
made of amorphous silicon have low efficiency and stability issues. However, amorphous silicon PV
technology suffers from significantly higher greenhouse gas emissions and energy payback times than
OPV [9,13,14]. Nevertheless, since the technologies involved are relatively recent, very limited research
investigating configurations combining ETFE with OPV for integration into buildings is reported
in the literature. In 2018, a pioneering work analyzed the feasibility of printing OPV on ETFE [15].
Another article analyzed the mechanical robustness linked to the electrical performance of an OPV
structure printed on polyethylene terephthalate (PET, the most conventional substrate) and ETFE [16].
The study focused on analyzing the mechanical-electrical effects on the printed electrode layers made
of Ag and Ag/poly (3,4-ethylenedioxythiophene) -PEDOT-, depending on whether they are printed on
PET or ETFE. The mechanical analysis is crucial since most of the ETFE configurations are built as
multilayer inflated cushions. The results revealed that ETFE-printed electrodes are less brittle and
sensitive to tensile strain and that the use of Ag/PEDOT layering can double the tensile strain threshold.
Finally, it was stated that further research is needed to investigate the properties of direct-printed
full OPV on ETFE. In spite of the fact that more research is needed, in a previous publication the
authors indicate that although OPV can be integrated in ETFE membranes either by lamination or
mechanical fixing, research on OPV directly printed onto architectural membranes such as ETFE is
imperative since this configuration is the one achieving the most promising market prospect due to:
High throughput and low cost production processes, and high applicability in modern architectural
context [17]. In the same direction, Hu et al. [18] assessed the electrical-thermal-mechanical properties
of OPV/ETFE foils. They observed that under normal operating conditions electrical properties
are relatively not affected by thermal and mechanical changes. However, a direct relation between
mechanical and thermal properties (stress curves at different temperatures) is observed. It should be
noted that specimens analyzed are mechanically fixed onto ETFE and not printed. Menéndez et al. [4]
designed, fabricated, and tested a novel planar multifunctional ETFE module comprising LEDs, OPVs,
and flexible electronics. OPV cells, manufactured by OPVIUS GmbH, are integrated into the ETFE foils
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by lamination. Performance was monitored for different pressure and temperature conditions. Based
on the results, an optimized lamination process was stated to ensure proper performance. Almost
one-year outdoor monitoring was conducted with positive feedback, that led to a step forward for
developing the final demonstrator (1.5 m by 6 m façade screen).

It can be noticed that there are a limited number of studies describing performances of OPV
combined with ETFE. Among them, only one study conducts experiments outdoors but in a free-rack
module. Therefore, bearing in mind that OPV/ETFE is mainly developed for building integration
applications, more research is needed for analyzing the behavior of the OPV/ETFE glazing in a building
integrated environment. In order to fill in this gap, the present research deals with the full modelling
of a planar OPV/ETFE system integrated in a south façade (northern hemisphere), determining the
effect on the illumination of the interior space, the thermal demands and electrical power generation.
These performances are analyzed for different configurations defined as a function of the percentage of
OPV cells in the glazing and the coverage area of the glazing in the façade. As a result, the paper aims
at demonstrating the suitability of such a configuration for building integration.

The contents of the paper are organized as follows. In Section 2 the methods utilized for the
different characterizations are described. Spectral transmittance and reflectance values were measured
in the laboratory whilst OPVs electrical performance was monitored outdoors. Section 3 explains the
model and the main parameters and assumptions involved. The model, fed with the experimental
results, is utilized to simulate the performance of the OPV/ETFE system integrated in an office building
and to conduct a sensitivity analysis. Once the model is introduced, the main results are discussed in
Section 4 and the main conclusions of the study are provided.

2. Characterization of ETFE Foils and OPV Cells

Three different ETFE foils were analyzed in this study: Two ETFE clear foils with different
thicknesses (150 and 250 µm) and the same 250 µm-thick ETFE clear foil but with silver prints
resulting in a 28% opacity. Printing allows for reduced light transmission and provides an effective
shading element.

Commercially available OPV cells were selected for this study. They are considered to be
representative of the wide variety of organic technologies.

2.1. Optical Properties

The spectral transmittance and reflectance of the ETFE foils and the OPV cells were determined
from 0.35 to 50 µm with a Fourier-transform spectrometer Bruker Optics—IFS 66 v/S equipped with an
integrating sphere. This spectral range covers both the solar range and almost the full range of thermal
emission (>96% for 25 ◦C) in the mid-infrared for common operational temperatures. Using Kirchhoff’s
law, the absorptance can be derived from the experimental measurements as follows:

τ + ρ + α = 1 (1)

The ETFE clear foils behave similarly regardless of their thickness with high transmittances over
the solar range (~90%) whereas the printed ETFE reflects 30% of the incoming solar light and transmits
only ~40% of it. In the IR, ETFE foils start to absorb more with some transmission peaks that can reach
values higher than 50% (Figure 1).
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Figure 1. Experimental transmittance and reflectance of the three ethylene tetrafluoroethylene (ETFE)
foils and the organic photovoltaic (OPV) cells.

2.2. Luminous and Solar Characteristics

The methods to determine luminous and solar characteristics of glazing in buildings from spectral
reflectance and transmittance measurements are detailed in EN 410:2011 [19]. These properties are taken
as inputs to evaluate performances in terms of lighting conditions, and heating and cooling demands.
In addition, a comparison between different foils can be performed based on their performances.

The main parameters derived from the spectral measurements are the solar transmittance (τe),
the solar reflectance (ρe), the visible transmittance (τv), the visible reflectance (ρv), the transmission
factor of solar energy (g), and the shading coefficient (SC). Other parameters that can be obtained
from experimental measurements are the correlated color temperature (CCT) that is defined as the
absolute temperature of a blackbody whose chromaticity most nearly resembles that of the light source.
This parameter is key for interior spaces since it is related to human perception. It was calculated using
McCamy’s equation [20]:

CCT = 449 n3 + 3525 n2 + 6823.3 n + 5520.33 (2)

where n is calculated using the x, y coordinates from CIE 1931 [21] as:

n =
(x− 0.3320)
(0.1858− y)

(3)

Another useful parameter is the color rendering index (CRI), also known as general index of
color reproduction (Ra) (UNE-EN 410). A summary of the values obtained for all the studied foils is
provided in Table 1.

Table 1. Summary of luminous and solar characteristics.

Foil τe ρe τv ρv g SC CRI (%) CCT (K)

ETFE 250 µm 0.910 0.074 0.907 0.77 0.917 1.051 99.09 6377.4
ETFE 150 µm 0.926 0.064 0.923 0.067 0.932 1.068 99.09 6377.4

ETFE-Silver 250 µm 0.283 0.396 0.284 0.401 0.350 0.437 99.09 6377.4
OPV 0.165 0.232 0.100 0.114 0.296 0.405 76.36 9083.9



Energies 2019, 12, 1870 5 of 16

2.3. Thermal Characteristics

In order to assess the performances of the ETFE window integrated into a building, its thermal
properties have to be determined. The level of insulation is given by the thermal transmittance
(U-value) which is obtained by computing the heat flow through the element for a known temperature
difference between its two faces.

In the EU and associated countries, the procedure to calculate the U-value is reported in the
UNE-EN 673 [22]. The algorithm was substantially simplified compared to the ISO 15099 [23]
algorithm, which is used in North America to predict the thermal and optical performances of windows.
The thermal properties of glazing systems are calculated based on a comprehensive heat transfer
model, analyzing conductive, convective, and radiative heat transfer.

The thermal conductivity, the specific heat and the density of ETFE were obtained from the
manufacturer data sheet (Table 2) and allowed to compute conductive and convective calculations [24]:

Table 2. Summary of thermal characteristics.

Thermal Characteristic Value Units

λETFE 20 ◦C 0.24 W/mK
CpETFE 20 ◦C 1172 J/Kg·K
ρETFE 20 ◦C 1700 Kg/m3

The normal emissivity (εn) is crucial to calculate the radiative heat flux and therefore the U-value.
Antretter et al. evaluated the heat flux through an EFTE cushion and concluded that 30% of it was
due to convection and 70% due to radiation, thus stressing the importance of an appropriate radiative
modeling [25]. The normal emissivity can be calculated following the procedure reported in the
UNE-EN 12898 [26]. This standard uses as an input the optical measurements previously provided.
In the next table (Table 3), the resulting values are provided:

Table 3. Summary of normal emissivity.

Foil εn

ETFE 250 µm 0.894
ETFE 150 µm 0.897

ETFE-Silver 250 µm 0.774
OPV 0.712

2.4. OPV Cells Characterization

The OPV power density output was characterized over a period of five months (July–November)
under real conditions. The OPVs were placed vertically on a south-oriented testing unit at 1.5 m height
to avoid albedo effects. The irradiance was measured using a pyranometer (CMP6) located at the same
position as the OPVs. Temperatures were monitored using T-type thermocouples attached at the rear
part of the OPV cells, which were connected to a maximum power point tracker (MPPT). Figure 2
shows the power density as a function of irradiance for the entire time period. The average, minimum,
and maximum module back temperatures together with the standard deviation can be seen in Table 4.

Table 4. Summary of thermal characteristics.

Tmean (◦C) Standard Deviation (◦C) Tmin (◦C) Tmax (◦C)

31.36 8.79 4.8 48.9

The power density dependence with temperature is very week. Therefore, a linear regression
relating power and irradiance obtained from the experimental campaign was applied while neglecting
the temperature dependence.
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3. Model Description

3.1. Studied Configurations

ETFE foils may be configured in different ways depending on the application in which they are
expected to be used and its associated requirements (illumination control, high thermal insulation, etc.).
Four different configurations were analyzed in this study, all of them composed of two flat films and an
intermediate layer of air (10 mm). Figure 3 shows the selected configurations: (a) a panel composed of
two clear 250 µm-thick ETFE layers; (b) a panel comprised of a clear 250 µm-thick EFTE layer and OPV
cells attached onto a clear 150 µm-thick ETFE layer and covering 100% of its area; (c) a panel composed
of a clear 250 µm-thick EFTE layer and OPV cells attached onto a clear 150 µm-thick ETFE layer and
covering 50% of its area; (d) a panel comprising a clear 250 µm-thick EFTE layer and another clear
250 µm-thick EFTE layer with 50% of its area silver printed. The studied configurations are plotted in
Figure 3 and are identified using the nomenclature introduced in Table 5.

Table 5. ID of configurations.

ID Configuration

REF ETFE 250 µm/air gap/ETFE 250 µm
C1 ETFE 250 µm/air gap/OPV(100%)/ETFE 150 µm
C2 ETFE 250 µm/air gap/OPV(50%)/ETFE 150 µm
C3 ETFE 250 µm/air gap/ETFE-SILVER(50%) 250 µm

The luminous, solar, and thermal characteristics of every configuration are provided in Table 6.
It can be appreciated that the reference configuration is the one achieving the highest transmittance
and solar factor, but as a consequence the higher shading coefficient and thermal transmittance values.
The U-value was calculated following the simplified UNE procedure and the ISO one, noticing that
those calculated by UNE exceed the ISO ones. The configuration 1, C1, results in the lower transmittance
and solar factor values by far with respect to the other configurations. However, regarding the U-values,
a small variation can be observed. Differences in the two standard calculations for the U-value are
noticeable for this case since for the U-value referred to ISO, C1 gets a value slightly higher than C3,
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but referring to UNE C1 has the lowest U-value. In the case of configurations C3 and C4, similar values
are reported for the tabulated parameters.Energies 2019, 12, x FOR PEER REVIEW 7 of 17 
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Table 6. Summary of luminous, solar, and thermal characteristics of the configurations.

ID τe ρe τv ρv g SC UISO (W/m2K) UUNE-EN (W/m2K)

REF 0.834 0.135 0.827 0.151 0.84 0.97 2.81 2.91
C1 0.147 0.306 0.065 0.21 0.27 0.593 2.68 2.78
C2 0.474 0.238 0.435 0.197 0.57 0.756 2.75 2.85
C3 0.554 0.272 0.550 0.277 0.60 0.746 2.64 2.81

3.2. Building Model Parameters and Assumptions

A 3D model of an office building was created in SketchUp and imported from Trnsys [27] (Figure 4).
The building has a floor area of 25 m2 (5 m by 5 m) with a height of 3 m, resulting in a total volume of
75 m3. The different ETFE window configurations proposed in this study were integrated in the south
façade (selected locations are in the northern hemisphere) with different window wall ratios (WWR)
ranging from 25% to 95% in 10% steps. Window wall ratio is defined as the percentage of glazed area
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with respect to the total wall area where the glazing is placed. The simulations allowed evaluating the
lighting conditions, and the thermal and electrical behaviors.
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Figure 4. Building model description.

The thermal characteristics under standard conditions (20 ◦C and 1 atm) of the selected building
are selected based on the minimum required values of each country regulations [28,29] given in Table 7.

Table 7. Envelope thermal characteristics.

Elements
U-Value (W/m2K)

Barcelona Paris

Walls 0.75 0.36
Roof 0.5 0.20

Ground Floor 0.75 0.20

Nonetheless, the thermal transmittance depends on the different temperatures across the system
and also some of the parameters involved are angle dependent. Therefore, the U-value is calculated
at each time step considering the specific conditions by means of the LBL Window Program [30],
which generates a DOE-2 file format that is subsequently read by Trnsys.

Glazing temperatures are calculated considering the transmittance, reflectance, and absorptance of
each specific system to incoming direct and diffuse solar radiations and also to diffuse short-wavelength
radiation reflected through the multilayered system. Also, convective, conductive, and long-wave
radiative heat transfer calculations are performed between individual layers and inner and
outer environments.

The internal heat gains generated by occupancy, lighting, and appliances have been considered
and calculated according to standard EN16798-1 [31]. This norm also indicates the values for ventilation
rates including infiltration, which for the present case takes a value of 0.8 l s−1 m−2 (office building with
normal level of expectation). The space heating and cooling demands are calculated to maintain an
interior temperature of 20 ◦C in winter and 26 ◦C in summer (latent control not applied). The heating
season is considered to start on 16 October and to finish on 15 May, and the cooling season from 16
May to 15 October.

The heating demand is covered by a reversible heat pump with a coefficient of performance (COP)
of 3.38 for heating and an energy efficiency ratio (EER) of 3.35 for cooling. These values were set
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according to the requirements established by the European Commission in the rule n◦ 206/2012 and
by the standard UNE-EN 14511-1 [32]. The heat pump operation time was set to 11 hours per day
(7:00 h–18:00 h) from Monday to Friday.

The main parameters and assumptions for these calculations are summed up in Table 8.

Table 8. Assumptions.

Description Value Units

Set point in heating period 20 ◦C
Set point in cooling period 26 ◦C

Occupation rate [31] 10 m2/per.
Heat gains per person (sensible) [31] 5 W/m2

Heat gains per person (latent) [31] 3.3 W/m2

Ventilation including infiltration [31] 0.8 s−1
·m−2

Light heat gains Daylighting in Trnsys model W
Appliances heat gain [31] 12 W/m2

Lighting, illuminance in working areas [31] 500 lux

3.3. Climate Conditions

The ETFE windows performance was assessed in Barcelona (Spain, Latitude: 41.4◦, Longitude:
2.15◦) and Paris (France, Latitude: 48.4◦, Longitude: 2.3◦). In this study, typical meteorological year
weather data from the Meteonorm Trnsys database was used. This data is hourly based and represents
long-term statistical trends and patterns.

Figure 5 shows the monthly cumulated global horizontal irradiance (GHI) and the average ambient
temperatures. The annual cumulated GHI in Barcelona is 1536 kWh/m2 and the annual average
temperature is 15.3 ◦C whereas in Paris the GHI is 1044 kWh/m2 and the annual average temperature
is 9.83 ◦C. Regarding the global vertical irradiance over the south façade (Figure 6), Barcelona receives
1102 kWh/m2 and Paris 811 kWh/m2.Energies 2019, 12, x FOR PEER REVIEW 10 of 17 
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3.4. Simulation Criteria

The purpose of this document is to analyze the thermal, electrical, and lighting behaviors when
incorporating the different systems as a substitute for conventional windows. Concerning lighting,
daylight availability describes the light transmitted through a window system to an indoor space.
It can be defined by dynamic/climate-based metrics such as daylight autonomy (DA), useful daylight
illuminance (UDI), or annual light/sunlight exposure [33].

DA is a climate-based metric defined as the percentage of occupied hours in a year when a
minimum illuminance threshold (x lux) can be met by daylight alone. Illuminances of 300 lux (DA300
lux) and 500 lux (DA500 lux) are the most common target thresholds for offices, classrooms, and libraries.
For any given point in a building, daylight is considered sufficient if the daylight autonomy exceeds
50% of the occupied hours of the year (i.e., DA300 lux or 500 lux > 50%) [33].

UDI is a modification of daylight autonomy conceived by [34]. In contrast to measures of daylight
autonomy, the UDI paradigm gives significance to those daylight illuminances below a design threshold
or between two values. The UDI range is further subdivided into three ranges. The range UDI < 100
Lux indicates a low level of illumination in which artificial lighting will be necessary, the range UDI
100–2000 indicates levels of comfort lighting in which the majority of activities can be carried out,
and the range UDI > 2000 indicates that the lighting levels create a discomfort situation due to the high
level of illumination. Normally this last case happens in south orientations where the solar radiation
directly impacts the interior of the building.

In addition to the luminous performance, an analysis of the energetic demands for the different
configurations is conducted. The annual global consumption of energy (Qoverall) is determined by
subtracting the annual energy produced by the OPV cells (−EPV) (if installed) to the annual energy
consumed by the air conditioning equipment (Qheating + Qcooling).

Qoverall = Qcooling + Qheating − EPV (4)

Thus, small values of Qoverall indicate less energy demand in the building and more energy savings.
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4. Results

The annual energetic performance of the four system configurations integrated onto the south
façade with several WWR was evaluated for Barcelona and Paris. The space heating and cooling
demands, as well as the electrical production for the cases where OPV cells are used, were calculated.

The impact of the WWR is clearly illustrated in Figure 7. Increasing WWR brings higher cooling
demands and less heating demands due to the enhanced solar gain. Although the heat flux increases
with bigger windows (higher losses especially during the night), the demands are not impacted to
a great extent mainly due to the diurnal occupation for an office case-study. The criterion followed
to establish the WWR range is that the maximum WWR considered in the interval is the one where
the overall energy demand in both configurations including OPVs (50% and 100%) is the minimum.
Figure 7 includes also the subsequent WWR to illustrate that overall energy demands change in slope
and start to increase.
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In Barcelona, the impact of increasing the size of the windows can be directly related to a higher
cooling demand due to its hot and sunny summers and mild winter Mediterranean climate (Csa) [35].
WWRs vary from 25% to 65% since under the last WWR the net/overall energy demands for the
configurations including OPVs grow with respect to the previous WWR (55%). WWR of 55% is set
as the upper limit of the WWR interval. It is observed that configurations ETFE + OPV(100%)/ETFE
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(C1), ETFE + OPV(50%)/ETFE (C2), and ETFE + ETFE-SILVER(50%) (C3) bring energetic savings
with respect to the reference case ETFE + ETFE (REF) since they act as shading elements. On the
other hand, Paris has an oceanic semi-continental climate (Cfb) [35]. As a consequence, increasing
the WWR reduces the overall energy demand and equalizes the space heating and cooling demands.
Configurations with higher shading increase the heating demands due to the colder climate in Paris.
Due to this fact, the maximum WWR value considered is 85%. Under 95% WWR the overall energy
demand values increase.

In general, configurations C1 and C2 produce electrical energy and, as a consequence, reduce
the overall energy demand. An exception is configuration C1 in Paris when WWR is 0.25, where the
net energy does not improve since the small fraction of glazing in the south wall reduces solar gains.
Thus in the end the heating demand has become larger than the savings achieved due to the smaller
cooling demand in summer.

In Barcelona, configuration C1 brings a heating demand reduction spanning from 8.69% (WWR =

0.25) to 24.04% (WWR = 0.55) compared to the reference case. In addition, a fraction ranging from
46.00% to 71.05% of the consumption is covered by PV production. In Paris, also for C1, the heating
demand is increased (4.22%) for a WWR of 0.25. However, with higher WWR (0.35, 0.45, 0.55, 0.65, 0.75,
and 0.85) the heating demand drops (3.30%, 10.84%, 17.25%, 22.64%, 25.98%, and 26.85% respectively).
Interestingly, for WWR 0.35–0.85 the PV production is able to cover from 31.93% to 77.79% of the
total consumption.

Configuration C2 in Barcelona reduces the heating demand from 5.22% (WWR = 0.25) to 14.45%
(WWR = 0.55) and the PV production covers from 22.16% (WWR = 0.25) to 31.54% (WWR = 0.55) of
the energy consumption. Differently in Paris, the same system increases the heating demand for WWR
= 0.25 (2.31%). However, a larger WWR comes with a drop-in heating demand, from 2.77% (WWR =

0.35) to 16.83% (WWR = 0.85) and the PV production covers from 16.27% (WWR = 0.25) to 34.21%
(WWR = 0.85) of the total energy consumption. All the values reported above are compared to the
reference case.

Configuration C3 only acts as a shading element (there is no PV production) and its thermal
performance is similar to configuration C2. Nonetheless, configuration C2 reduces the heating demand
globally more than 2% compared to configuration C3.

In the end, in Barcelona, configuration C1 is the less energy consuming option, with the same
level independently of the WWR (up to 0.55). It is worth noticing that when WWR is the largest,
PV production is fortunately larger to compensate for the cooling needs. In Paris, large window areas
with the maximum coverage of OPV cells (configuration C1) is optimum for net energy consumption.
Thus luminous performance will be required for finding the optimum WWR in Barcelona and for
checking if configuration C1 remains attractive in both locations.

Regarding the luminous performance, DA and UDI were evaluated (Figure 8). The WWR
doesn’t impact on the DA at 300 lux (DA300). Therefore, a WWR of 0.25 would be sufficient for all
configurations except C1 (ETFE + OPV(100%)/ETFE). This configuration has a limited transmissivity of
solar light and therefore artificial illumination would be necessary during the vast majority of the day.
Higher WWRs than 0.55 are not included for the case of Paris since DA at 300 lux is not influenced.

The UDI of interest is from 100 to 2000 lux since it comprises the range 100–300 lux where only
additional illumination would be required and the 300–2000 lux range where luminous comfort is
achieved without having recourse to artificial light. For increasing values of WWR and considering
the reference case, UDI 100–2000 lux gets reduced by increasing UDI > 2000 lux. But this high level
of illumination causes discomfort. Figure 9 shows that the results are similar in both Barcelona and
Paris. Based on this indicator, for the case of Barcelona the best configuration is found to be a WWR of
0.45 and the configuration C2, achieving an illumination level from 100 lux to 2000 lux during 82.2%
of the annual hours. For the rest of the WWR analyzed, configuration C2 always performs the best,
except for a WWR of 0.25 where the glazing including the silver printed pattern (configuration C3)
slightly outperforms configuration C2. In the case of Paris, the best performances are when WWR is
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equal to 0.35 for configuration C2. Based on this result, larger WWRs than 55% are not included in
Figure 9. Similarly to the results obtained for Barcelona, with a WWR of 0.25 the combination including
a silver printed ETFE foil (C3) provides a better illumination than configuration C2.
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On the other hand, configurations with shading elements (either an OPV/ETFE or a silver printed
ETFE layer) achieve DA values around 80% in Barcelona and 70% in Paris (4% lower than the reference
case for both cities). The UDI indicator in the range 100–2000 lux is increased with higher WWR except
for large values (>0.5) where it starts to decay.

When combining the analyses on energy consumption and illumination performances, conclusions
can be drawn about optimum strategies for integrating OPV/ETFE windows in buildings as a function
of the local climate

5. Conclusions

OPV/ETFE building integrated windows are a promising alternative to conventional glass
windows. They have advantageous characteristics such as low environmental impact, flexibility,
light weight, color variability, free-shape, and more generally customization options. Transmittance
and reflectance spectral measurements of three different EFTE foils and a commercial OPV have
been performed. The main optical, thermal, and luminous properties have been calculated from this
experimental characterization to perform a dynamic simulation in Trnsys for a model office building.
The luminous and energetic performances have been evaluated for 4 different window configurations,
different WWRs and two locations (Barcelona and Paris). The four configurations comprise a reference
case (REF) which does not have any shading element, a case where a tinted layer is added (C3), and two
cases where OPV cells are added with area coverages of 50% (C2) and 100% (C1). Energy produced by
the OPV cells partly covers electrical demands of the reversible heat pump.

The main conclusions that can be drawn from this study are the following. Firstly, ETFE foils with
OPVs are able to provide reasonable shares of the total heating and cooling demands. Values higher
than 22% for Barcelona and 16% for Paris can be attained (WWR of 25%). The configuration that
best performs in terms of energy fraction covered, in both locations, is found to be C1 since it has the
higher PV area to generate electricity. On the other hand, configuration C1 in combination with the
various WWRs is different for the two locations. In the case of Barcelona, the net energy is almost
the same for WWR from 0.25 to 0.45. For a WWR of 0.55 the cooling demand increases in a bigger
proportion than the rise in electricity produced thanks to a larger area coverage, resulting in a net
energy consumption slightly smaller than for lower WWRs. In Paris the most effective WWR is 0.85
because the heating demand is predominant and the higher the glazing area the higher the energy flux
entering the interior space.

Secondly, a solar control system should be added to the reference system since high percentages
over the yearly daytime hours with levels of illumination higher than 2000 lux are registered, with the
associated discomfort.

Thirdly, configurations C1, C2, and C3, which have shading elements, are key to create luminous
comfort for climates and latitudes such as Barcelona. The cooling needs are reduced, and when
increasing WWR, the luminous comfort characterized by the UDI 100–2000 lux is enhanced. On the
other hand, adding shading elements in places like Paris increases the heating demands whilst
improving the luminous comfort. In both locations, configuration C2 under a WWR of 0.45 is the
combination providing the best UDI percentages of about 80% (80% of the daytime yearly hours are
under illumination comfort).

Finally, OPV cells in windows transform a passive system into an active one able to provide a
fraction of the total energy demands. In addition, OPV cells act as shading elements and therefore
change the thermal and luminous performances. The area of the window covered by the OPV cells is
key to achieve a satisfactory tradeoff between all the targets. High OPV coverage area in windows could
be a possibility for places like Barcelona characterized by hot temperatures during long periods over
the year. However, for places with colder climates such as Paris OPV cells can have more detrimental
impacts. Higher OPV coverage of the total area reduces the luminous comfort (UDI) and the useful
daylight (DA300) in both cities. Even though high OPV areas provide high coverage of building
demands, the luminous discomfort associated may lead to discarding this option.
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