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Abstract: Electricity load forecasting is an important task for enhancing energy efficiency and
operation reliability of the power system. Forecasting the hourly electricity load of the next day
assists in optimizing the resources and minimizing the energy wastage. The main motivation of this
study was to improve the robustness of short-term load forecasting (STLF) by utilizing long short-
term memory (LSTM) and genetic algorithm (GA). The proposed method is novel: LSTM networks
are designed to avoid the problem of long-term dependencies, and GA is used to obtain the optimal
LSTM’s parameters, which are then applied to predict the hourly electricity load for the next day.
The proposed method was trained using actual load and weather data, and the performance results
showed that it yielded small mean absolute percentage error on the test data.

Keywords: long short term memory (LSTM); genetic algorithm (GA); short term load forecasting
(STLF); electricity load forecasting; multivariate time series

1. Introduction

Electricity load forecasting is a mandatory procedure in the capacity planning process of the power
industry. Three types of load forecasting are categorized with different time scales. Medium-term
and long-term load forecastings predict the weekly, monthly, or yearly electricity load, and both are
necessary for system planning, resource investment, and budget allocation. Short-term load forecasting
(STLF), the focus of this study, predicts hourly or daily electricity load one hour to one week ahead,
which is crucial for resource planning and load balancing in power system management [1–3].

Imprecise load forecasting increases operating cost. For example, an increase of only 1% in
forecast error caused an increase of 10 million pounds in operating cost per year for an electric
utility company in the United Kingdom [4–6]. Due to the economic and the environmental concerns,
electricity load forecasting has drawn considerable attention from both the academic and industrial field.
Many approaches have been proposed to solve the STLF problem. For example, many conventional
approaches for time series prediction, such as statistical analysis, regression methods [7], smoothing
techniques, stochastic process and autoregressive moving average (ARMA) models [8], have been
applied to the STLF problem. In last few decades, many data mining approaches have achieved good
performance on tackling the uncertainties in STLF, including artificial neural networks (ANN) [9,10],
fuzzy inference systems, neuro-fuzzy systems [11], support vector machines, and artificial immune
systems [12], etc. Among these data mining approaches, ANN is one of the most popular methods.
ANN is suitable for nonlinear problems, has excellent learning ability, and is robust to noise in data.

For time series prediction problems, as in the case of STLF, a special type of ANN called recurrent
neural network (RNN) is often used to handle the time-dependency property in time series data. RNN
greatly reduces the number of nodes (and consequently, the number of parameters to be learned) in
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the neural network, but it suffers from the vanishing gradient and long-term dependency problems.
To overcome the drawbacks of the traditional RNN, Hochreiter et al. [13] proposed long short-term
memory (LSTM) RNN, which added more controls to the traditional RNN to retain both short-term
and long-term memory in the network. Since then, LSTM-based networks have become one of the
most promising technologies for deep learning, and have been successfully applied in many research
areas such as natural language translation [14], image captioning [15–17], speech recognition [18], and
handwriting recognition [19].

With LSTM, the initial weighting of each link in the neural network must be determined before
the training iterations start. However, poorly chosen initial weightings could sometimes lead to a
bad performance. The motivation of this study was to propose a method such that LSTM could start
with a set of properly chosen initial weightings to reduce the forecasting error of the STLF problem.
Specifically, the proposed method integrated the searching capability of genetic algorithm (GA) and
the learning capability of LSTM. GA is responsible for searching the optimal initial weightings through
its population-based bio-inspired evolution operations [20] and LSTM is responsible for learning and
memorization intelligence from power usage data and weather data. Overall, the proposed method
and the underlying STLF problem can be summarized as follows:

• Input: Weather data such as temperature and humidity are closely related to electricity
consumption. Thus, this study used hourly weather data and electricity load for the past
24 h as input in the training process.

• Output: The objective of this study was to produce the hourly electricity load for the next day.
• Methodology framework: The proposed method integrated GA and LSTM. GA was implemented

to optimize the parameters of LSTM; LSTM was employed to learn from the past data to yield a
better prediction.

The rest of the paper is organized as follows: Section 2 surveys the literature on STLF, and Section 3
describes LSTM for STLF. Section 4 presents our proposed approach. Sections 5 and 6 describe the
settings and the results of the performance study, respectively. Section 7 concludes this paper, and
gives direction for future research.

2. Related Works on Short-Term Load Forecasting

The problem of load forecasting has attracted much attention since the mid-1960s [21,22]. This
section focuses the techniques for STLF. STLF is essentially a time series problem, and thus many
traditional time series prediction techniques have been used to solve this problem, e.g., ARMA [23],
ARIMA [24], and a hybrid of ARIMA and SVM [25]. Under normal conditions, these statistical
techniques deliver good prediction results. However, sudden changes of the weather conditions can
dramatically affect the short-term power usage patterns, and consequently, render these statistical
techniques failing to provide accurate prediction.

Due to the impact of weather on short-term power usage, many studies have factored into the
weather conditions for STLF. Reference [26] applied fuzzy logic [27] to find rules to handle similar
weather conditions. Reference [28] used wavelet transform to decompose the electrical load data into
components of various frequencies, and then built a SVM model based on the temperature data and
the low-frequency components of the electricity load data. Reference [29] built two regression models
to respectively predict daily and hourly loads based on the weather data and the electrical load data.
Reference [30] applied ANN for long-term load forecasting, and their results showed that ANN is
superior to linear regression and SVM.

ANN is a widely used technique for learning nonlinear patterns. Because STLF is a nonlinear
problem, many previous works have utilized ANN for STLF, e.g., Reference [31] applied a feed-forward
backpropagation ANN for STLF. Hybrids of ANN and other techniques are also common for STLF, e.g.,
regression tree model [32], time series analysis [33], genetic algorithm [34], chaos genetic algorithm
and simulated annealing [35].
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With the advance of computing power, deep neural network (DNN) has gained much popularity
and been applied to STLF in recent years [36]. LSTM is a special type of DNN that is suitable for time
series prediction due to its capability of remembering both the short-term and the long-term behavior
in time series data. In Reference [37], two types of LSTM were compared against other deep learning
techniques for predicting electricity load of every hour or every minute. Their results showed that
LSTM outperformed the other techniques. However, all of the neural network approaches above
require setting up the initial weightings of the links in the network, but poorly chosen weightings
could lead the searching process trapped in the local optimum. A hybrid of LSTM and GA is proposed
in Section 4 to resolve this problem.

3. Long Short-Term Memory for Short-term Load Forecasting

Prior to presenting our approach in Section 4, this section gives a detailed description of LSTM.
LSTM is an augmented recurrent neural network model. It learns sequential information with long
term dependencies, and preserves information for a long period of time. Traditional recurrent neural
network suffers from the vanishing gradient problem. That is, as the number of layers using the same
activation function increases, the gradients of the loss function approaches zero, making it difficult
to train the network through backpropagation of errors. To prevent the vanishing gradient problem,
LSTM utilizes memory cells, where each cell maintains a cell state and a hidden cell state, and uses
three gates (namely, input gate, output gate, and forget gate) to control the flow of information into or
out of the cell. A formal explanation of the LSTM model is given below.

LSTM is for time series modeling, which maps an input sequence x = {x1, x2, . . . , xn} to an
output sequence y =

{
y1, y2, . . . , yn

}
. For the STLF problem under study, each xi represents the hourly

electricity load and the weather data of day i, and each yi represents the hourly electricity load of day
i + 1, indicating a look-ahead parameter of value one. The LSTM contains layers of memory cells,
where the interaction between the LSTM layers is shown in Figure 1, and the architecture of a LSTM
cell is shown in Figure 2.
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For ease of exploration, cell t refers to the LSTM cell at the t-th layer in the network. As shown in
Figure 2, the input for cell t included xt, ht−1 and ct−1, where xt was from the input sequence x, and ht−1

and ct−1 were from the output of cell t − 1. Directed weighted links connected various components
within a LSTM cell or between two adjacent LSTM cells.

The input gate (it) of cell t used the Logistic sigmoid function σ(·) to decide whether to store the
current input xt and the new cell state in the memory, as shown in Equation (1), where Wix, Wih and
Wic were the weights of the incoming links associated with the input gate, and bi was the bias input of
the input gate.

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (1)

Similarly, the forget gate ( ft) of cell t used the Logistic sigmoid function to decide whether to
remove the previous cell state (ct−1) from the memory, as shown in Equation (2), where W f x, W f h and
W f c were the weights of the incoming links associated with the forget gate, and b f was the bias input
of the forget gate.

ft = σ
(
W f xxt + W f hht−1 + W f cct−1 + b f

)
(2)

The new cell state (ct) was determined by the amount of old cell state to forget (i.e., ft ◦ ct−1) and
the amount of new information to include (i.e., it ◦ tanh(Wcxxt + Wchht−1 + bc)), as shown in Equation
(3), where Wcx and Wch were the weights of the incoming links associated with the cell state, bc was the
bias input of the cell state, and ◦ represented the hadamard product.

ct = ft ◦ ct−1 + it ◦ tanh(Wcxxt + Wchht−1 + bc) (3)

The output gate (ot) used the Logistic sigmoid function to filter information from the current input
xt, previous cell state ct−1, and previous hidden state ht−1, and as shown in Equation (4), where Wox,
Woh and Woc were the weights of the incoming links associated with the output gate, and bo was the
bias input of the output gate.

ot = σ(Woxxt + Wohht−1 + Wocct−1 + bo) (4)

The new hidden state (ht) was calculated as the hadamard product between the output gate
values ot and the tan h function value of the current state ct, as shown in Equation (5).

ht = ot ◦ tanh(ct) (5)

Finally, the output of the memory cell (i.e., the predicted value of yt) was calculated from the
hidden state cell state ht, as shown in Equation (6), where Wyh were the weights of the incoming links
associated with the hidden state and by was the bias input of the hidden state.

ŷt =
(
Wyhht + by

)
(6)

For the STLF problem under study, yt and ŷt represented the actual and the predicted hourly
electricity load of a day, respectively. Thus, both yt and ŷt contained 24 values, one for each hour. The
predicted error (i.e., yt − ŷt) was calculated as the mean absolute percentage error (MAPE) of the 24
pairs of corresponding values in yt and ŷt. The predicted error at time step t was back propagated
to refine the weighting matrices in the LSTM. The objective of training the LSTM was to refine the
weighting matrices to minimize the predicted error.

Notably, the LSTM contained only one LSTM cell layer, and Figure 1 actually depicts how the cell
layer unfolds over time. That is, cell t refers to the status of the LSTM cell at time step t (or day t for
the STLF problem under study). Thus, LSTM only maintained a set of weighting matrices and a bias
vector for all gates and memory states.
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4. Integration of Long Short-Term Memory and Genetic Algorithm: The Proposed Method

As described earlier, the initial values of the weighting matrices could affect the performance of
the LSTM. Our proposed method used GA to assist searching the proper initial values for the weighting
matrices of the LSTM. GA is a population-based searching technique that employs a population of
chromosomes in the searching process. Each chromosome represents a feasible solution. For LSTM, a
feasible solution consists of the values of all the weighting matrices described in Section 3. Figure 3
shows the flow diagram of the proposed method. The main steps of the proposed method are described
in detail below.
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Step 1: Generate initial population of chromosomes.

A set of n chromosomes were randomly generated. Each chromosome W contained the values for
all the weighting matrices in LSTM, i.e., W = [Wix Wih W f x W f h Wcx Wch Wox Woh Wyh].
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Step 2: Calculate fitness for each chromosome via LSTM.

For each chromosome in the current population, its value was used to initialize the weighting
matrices in the LSTM. Then, training data was fed into the LSTM so that the LSTM could learn from the
data to adjust the value of W to minimize the mean absolute percentage error (MAPE) of the training
data, as is done in the traditional LSTM technique. The fitness of this chromosome was the final MAPE
value of the training data.

Step 3: Generate the new population via genetic operations.

This step generated a new population that contained the same number of chromosomes as the
current population. The chromosomes of the new population were generated by applying genetic
operations (i.e., reproduction, crossover, or mutation) on the chromosomes selected from the current
population. This study used the roulette wheel selection so that a chromosome with a higher fitness
value had a higher probability of being selected for genetic operations. In the new population, the
proportions of the chromosomes generated via the reproduction, crossover, and mutation operations
were referred to as the reproduction, crossover, and mutation ratios, respectively. GA usually adopts a
large crossover ratio, and a low mutation ratio.

The reproduction operation repeatedly selected a chromosome from the current population, and
added it to the new population, until the reproduction ratio was reached. This study applied an
elitism policy so that the best chromosome in the current chromosome was always added to the
new population.

The crossover operation repeatedly selected two chromosomes from the current population acting
as the parent chromosomes to generate and add two offspring chromosomes to the new population,
until the crossover ratio was reached. Uniform crossover was adopted in this study. With uniform
crossover, each value in the offspring chromosomes is independently chosen from the two values at
the same corresponding position in the two parent chromosomes, as shown in Figure 4.
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The mutation operation repeatedly selected a chromosome from the current population, modified
the selected chromosome to generate a new chromosome (referred to as a mutant), and added the
mutant to the new population, until the mutation ratio had reached. One-point mutation was adopted
in this study. With one-point mutation, a small random change is injected into the value of a randomly
selected position in the selected chromosome to generate the mutant, as shown in Figure 5. The
mutation operation introduced diversity to the population of chromosomes
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Step 4: Replace population and calculate fitness.

At this step, the current population could be abandoned, and the new population became the
current population. Similar to Step 2, each chromosome in the current population was used to initialize
the weighting matrices in a LSTM, and the training data was fed into the LSTM to yield the fitness
value of this chromosome.
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Step 5: Stop criterion

If the fitness value of the best chromosome did not improve for s continuous generations, then the
LSTM of the best chromosome was adopted, and the proposed method was terminated. Otherwise, go
to Step 3 to generate a new population. In this study, s was set to 50.

5. Experiment Settings

To evaluate the performance of the proposed method, a performance study was conducted on a
desktop computer with Intel Core2 Duo E7500@2.94 GHz CPU, 64-bit Windows 10 operating system
and 4 GB memory (RAM) using Python 3.6.6. The performance study used hourly electricity load
data obtained from the Australian Energy Market Operator, and hourly weather data of the Sydney
Observatory obtained from the Bureau of Meteorology (Australia). The timespan of the dataset was
from 1 January 2006 to 1 January 2011. The first three years of the dataset was used for training, and the
final year was used for testing purposes. The dataset was normalized before being used for training
and testing. Because the hourly electricity load patterns were quite different between the weekend and
weekday, this study focused only on weekday data.

Each record in the dataset contained the electricity load, dry bulb temperature, dew point
temperature, wet bulb temperature, and humidity for every hour within one day. Figure 6 shows that
the input of the LSTM network was a record (for day i), and the output was the hourly electricity load
part of the next record (for day i + 1). Thus, the LSTM network had 120 inputs and 24 outputs. The
parameter settings of the proposed method were as follows: The number of hidden layers in the LSTM
network = 50, the number of epochs for LSTM = 400, population size = 10, crossover ratio = 0.8, and
mutation ratio = 0.003.
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6. Experimental Results

In the experimental results, we compared the performance of the proposed method against the
LSTM. The forecast results for five randomly selected working days and one randomly selected week in
the testing data is plotted in Figure 7. The results showed that the prediction of the proposed methods
followed very close with the actual electricity load. LSTM also yielded good results, but it was less
stable and could sometimes incur large errors.
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Fri. 1.30 1.23 5.38 

Figure 7. Forecast results for (a) 29 March 2010, Monday; (b) 8 June 2010, Tuesday; (c) 24 November
2010, Wednesday; (d) 2 September 2010, Thursday; (e) 3 September 2010, Friday; (f) the week from
22 March (Monday) to 26 March (Friday) 2010.

Table 1 compares the MAPE of the LSTM and our proposed method for the week of 15 to 19 March
2010. The proposed method consistently performed better than the LSTM and reduced the MAPE of
the LSTM by 5.38% to 53.33%. Table 2 compares the MAPE of the LSTM and our proposed method
for five randomly chosen days. Similar to Table 1, our proposed method consistently outperformed
the LSTM.

The one-year testing data contained 250 records (or weekdays). Figure 8 shows the daily MAPE
for the testing data, where the horizontal axis is time, and the vertical axis is MAPE. The results showed
that the proposed method consistently improved the LSTM. Descriptive statistics of the 250 daily
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MAPEs is shown in Table 3. The proposed method yielded a smaller mean and standard deviation
than the LSTM, indicating that the proposed method was more accurate and stable than the LSTM.

Table 1. MAPE of LSTM and proposed method for the week of 15 to 19 March 2010.

Day of the Week Method

LSTM Proposed Method Improvement (%)

Mon. 2.94 1.96 33.33
Tue. 1.79 1.19 33.51
Wed. 1.80 0.84 53.33

Thurs. 1.62 1.19 26.54
Fri. 1.30 1.23 5.38

Table 2. MAPE of LSTM and proposed method for five randomly chosen days in the testing data.

Day Method

LSTM Proposed Method Improvement (%)

13 Dec. Mon. 2.88 1.84 36.11
8 July. Tue. 4.08 0.87 78.67

17 Feb. Wed. 1.52 1.20 21.05
13 May. Thurs. 3.59 0.86 76.04

27 Aug. Fri. 4.17 1.07 74.34
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Figure 8. Daily MAPE of the LSTM and the proposed methods for the 250 weekdays in the testing data.

Table 3. Statistics of the daily MAPE for the 250 weekdays in the testing data.

Method

LSTM Proposed Method

mean 4.8469 3.4889
stdev. 2.2116 2.1506
min 1.2258 0.7879
max 21.7188 19.8419

7. Conclusions

This study proposed a new method that integrated GA and the LSTM for STLF. Although the
traditional LSTM has a great learning capability for time series data, it sometimes suffers from the
poorly chosen values for its initialization parameters. The proposed method mitigated this problem by
applying GA to search suitable values for the initialization parameters of the LSTM. Our performance
study showed that the proposed method could effectively improve the prediction accuracy of the LSTM.

This study uses MAPE to measure the error between the predictions and the actual electricity
loads. This is based on the assumption that the damage or cost incurred by the error is linearly
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proportional to the magnitude of the error. However, there are situations that a large prediction error
causes a much larger cost or damage to the power companies. For those situations, mean squared
error or other more suitable measurements should be adopted, instead of using MAPE.

The electricity demand is easily influenced by many factors. In this study, the weather was used
to improve the prediction of the short-term electricity demand. Adding more related factors, e.g.,
economic conditions, could be of interest for further study. Other meta-heuristic searching techniques
and their impact on the execution time are also worthy of investigation for STLF.
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