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Abstract: In this study, we used artificial neural networks (ANN) to estimate static Young’s modulus
(Estatic) for sandstone formation from conventional well logs. ANN design parameters were optimized
using the self-adaptive differential evolution optimization algorithm. The ANN model was trained
to predict Estatic from conventional well logs of the bulk density, compressional time, and shear
time. The ANN model was trained on 409 data points from one well. The extracted weights
and biases of the optimized ANN model was used to develop an empirical relationship for Estatic

estimation based on well logs. This empirical correlation was tested on 183 unseen data points from
the same training well and validated using data from three different wells. The optimized ANN
model estimated Estatic for the training dataset with a very low average absolute percentage error
(AAPE) of 0.98%, a very high correlation coefficient (R) of 0.999 and a coefficient of determination
(R2) of 0.9978. The developed ANN-based correlation estimated Estatic for the testing dataset with a
very high accuracy as indicated by the low AAPE of 1.46% and a very high R and R2 of 0.998 and
0.9951, respectively. In addition, the visual comparison of the core-tested and predicted Estatic of the
validation dataset confirmed the high accuracy of the developed ANN-based empirical correlation.
The ANN-based correlation overperformed four of the previously developed Estatic correlations in
estimating Estatic for the validation data, Estatic for the validation data was predicted with an AAPE of
3.8% by using the ANN-based correlation compared to AAPE’s of more than 36.0% for the previously
developed correlations.

Keywords: static young’s modulus; artificial neural networks; self-adaptive differential evolution
algorithm; sandstone reservoirs

1. Introduction

Young’s modulus is a measure of the sample stiffness against being subjected to a uniaxial load [1].
Static Young’s modulus (Estatic) is an essential parameter required to develop the geomechanical earth
model [2] which is required for fracture mapping and designing [3]. A complete description of the
in-situ stresses which requires assessment of different petrophysical and mechanical parameters is
also needed during the drilling operations to ensure wellbore stability [4]. Several previous studies
confirmed the impact of the Estatic on both fracture design and wellbore stability [1,5].

Lithology is one of the main factors affecting the Estatic. According to Howard and Fast [6] and
Fjaer et al. [1], Estatic for shale ranges from 0.1–1.0 MPsi; for sandstone it is between 2 and 10 MPsi;
and for limestone it is between 8 and 12 MPsi [6]. These ranges confirm the very large variation in
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Estatic in different formations, as well as the wide range for same lithology type. These facts indicate
the necessity to estimate Estatic along the different sections of the drilled well.

Currently, two methods are available for assessing the rocks elastic parameters, these are, namely,
(1) laboratory measurements, and (2) through applying empirical correlations. The elastic properties
of a rock sample could be measured in the laboratory using either dynamic or static method. The
dynamic method involves estimating the modulus from measurements of density, compressional and
shear waves velocities while the static method directly measures the deformation in the rock caused by
subjecting a sample to uniaxial or triaxial load [7]. In oil and gas fields, the shear and compressional
wave velocities measured by the wireline logging [8]. The determined acoustic velocities are then used
to calculate the dynamic Young’s modulus (Edynamic), Equation (1):

Edynamic =
ρVS

2
(
3VP

2
− 4VS

2
)

VP
2 −VS

2 (1)

where ρ represents the bulk formation density in g/cm3, VS and VP denote the shear and compressional
wave’s velocities in km/s, and Edynamic is the dynamic Young’s modulus in GPa.

For the same rock, usually the laboratory-measured Edynamic is significantly greater than
Estatic [9–11]. Edynamic could be 1.5–3 times greater than Estatic [12,13], and in some cases Edynamic

could be up to ten times larger than Estatic [14–16]. The difference is attributed to the strain amplitude
between the two testing techniques, and it decreases with the increase in the strength of the rock [17].

The reservoir in situ stress-strain conditions are truly represented by the static elastic
parameters [18], determination of these parameters requires retrieval of real core samples along
the reservoir section which is a costly and time-consuming process [13,19]. To minimize the high cost
of retrieving the core samples and performing laboratory tests; usually few cores samples are collected
from the targeted (reservoir) interval, the laboratory evaluated properties of these core samples are
used to develop empirical correlations based on the well log data, to evaluate the required core-derived
properties. Dynamic elastic modulus could then be calibrated using these log-based correlations
to predict the static modulus throughout the reservoir depths [3]. The applicability of log-derived
correlations will be restricted to the formations used to develop these correlations, thus, because
of the complexity of the heterogeneous formations, the log-derived correlations will not be able to
capture the trend of the static parameters changes. To overcome this limitation different empirical
correlations were developed to estimate Estatic from the Edynamic, every correlation is restricted for a
specific formation type.

Eissa and Kazi [20] developed a generalized empirical equation to predict the Estatic as a function
of both Edynamic and formation density. The authors developed this correlation (Equation (2)) based
on the regression analysis of 76 tests, with data collected from different sources, and they found that
considering the formation density improved the predictability of the Estatic considerably:

log10 Estatic = 0.02 + 0.77 log10

(
γEdynamic

)
(2)

where Estatic and Edynamic are in Gpa, and γ is the formation density in g/cm3.
Canady [21] developed another generalized empirical correlation (Equation (3)) which could

also be used effectively to estimate the Estatic for any rock type. This correlation enabled prediction
of the Estatic where only Edynamic is known, the results of the Estatic predicted with (Equation (3)) was
compared to previously available correlations and it found to be well correlated to these models:

Estatic =
ln

(
Edynamic + 1

)
×

(
Edynamic − 2

)
4.5

(3)

where Estatic and Edynamic are in GPa.
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Najibi et al [22] developed another simple correlation (Equation (4)) to evaluate the Estatic for
Sarvak and Asmari limestone based on only the compressional velocity (Vp). This model is very useful
when the shear velocity (Vs) is not available:

Estatic = 0.169 × VP
3.24 (4)

where Estatic is in Gpa, and Vp is in km/s.
Recently, Fei et al. [23] developed an empirical correlation to predict Estatic from Edynamic especially

for sandstone formation. The developed equation (Equation (5)) is based on the triaxial tests conducted
on 22 sandstone core samples:

Estatic =
(
0.564 Edynamic

)
− 3.4941 (5)

Estatic and Edynamic are in GPa.
Mahmoud et al. [24] developed empirical correlations for Estatic estimation for different rock types.

The developed correlations do not require the knowledge of Edynamic and they directly evaluated Estatic

based on the bulk density, shear, and compressional time data.
It is clear from the literature that obtaining the Estatic required retrieve cores from specific depth of

the well which is costly and time consuming which required to perform the laboratory analysis. In
addition, the analysis will be performed for specific well which cannot easily generalized through the
entire field while using the developed empirical correlations had their own limitations such as core
type, data range and accuracy. The main objective of this study is to develop an ANN model to predict
Estatic from the well logs using a real field data (592 core and log data points) which were collected from
the whole sandstone field. Furthermore, a new empirical correlation will be developed for estimating
Estatic for sandstone reservoirs; the correlation is developed based on the extracted weights and biases
of the optimized ANN model.

2. Uses of Artificial Intelligence in Estimating Rock Mechanical Parameters

The use of artificial intelligence (AI) techniques in many scientific fields, including the petroleum
industry, started in the early 1990s. Since then many publications have treated various areas of
petroleum engineering, including the prediction of the bubble point pressure, evaluation of drilling
mud, interpretation of the well log data, reservoir characterization, recovery factor estimation,
optimization of rate of penetration, and many more.

Recent publications (2016–2018) reported several studies that used AI in estimating rock mechanical
parameters. These studies used various AI techniques to: predict failure parameter for carbonates [25];
compare ANN, ANFIS, and SVM in predicting static Poisson’s ratio [26]; develop empirical correlation
for static Young’s modulus [27]; develop an ANN-based correlation to predict sonic transit time [28];
estimation of the unconfined compressive strength (UCS) based on the ANN [29]; and use ANN in
estimating Young’s modulus, Poisson’s ratio, and UCS from log data [30].

3. Methodology

An artificial neural network (ANN) is an artificial intelligence technique developed to enable
estimation, classification, identification, decision making by a machine program in various conditions
or situations. Different ANN structures are currently available; the simplest ANN structure is called
the multi-layered perceptron (MLP) which is used in this study. The MLP consists of a single input
layer, one or several hidden layers (mid-layers) and one output layer.

The performance of the ANN depends on many design parameters, such as the training/testing
dataset ratio, number of the hidden (training) layers, the number of neurons in each training layer, and
the training and transferring functions. The optimization of different combinations of these design
parameters requires a long computational time.
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Differential evolution (DE) is an accurate, reliable, fast, and robust optimization technique, which
has been used to solve effectively different numerical optimization problems. The main limitation
for the DE is the need to set the values of the DE control parameters which is problem-dependent,
thus, parameter tuning is time-consuming. Omran et al. [31] developed the self-adaptive differential
evolution (SaDE) algorithm, which does not require parameter tuning.

In this study, the SaDE optimization algorithm will be used to speed up the optimization process to
select the different design parameters of the ANN model to predict Estatic. A new empirical correlation
for estimating Estatic for sandstone reservoirs will be developed based on the extracted weights and
biases of the optimized ANN model.

3.1. Data Preparation

In this study, the ANN model was trained using well log data of bulk density, compressional time,
and shear time as inputs to predict the core-derived Estatic as an output. The input well log data has
been selected based on their correlation coefficient with Estatic, the importance of the input parameters
considered in this study in estimating Estatic is reported by several previous studies. Eissa and Kazi [20]
confirmed the ability of improving Estatic prediction by incorporating the formation density, and the
necessity of Edynamic, which is dependent on the compressional and shear transit times as reported by
several previous studies [21–24].

Data collected in this study are from four wells: 598 data points from Well-A; 34 data points from
Well-B; six data points from Well-C; and 11 data points from Well-D. The majority of the data belongs to
Well-A, therefore, it will be used to build and test the ANN model which will then be used to develop
an ANN-based correlation. The rest of the unseen data which was collected from Well -B, Well-C, and
Well-D will be used to validate the developed ANN-based correlation. All the study data are collected
from sandstone formations in the Middle East.

Data preparation and preprocessing are the most important steps to ensure a highly accurate
prediction of the objective property using any of the AI techniques [32]. As stated earlier the input
variables are log-derived, which will be used to predict a core-derived output. Thus, the first step in
this study is to perform a depth matching between the core-derived Estatic and the log data, gamma ray
log was considered to perform the data matching. Then, statistical analysis was performed on the
input and output parameters to remove data outliers. For the purpose of outlier removal, all parameter
values without a range of ±3.0 standard deviation are considered an outlier and not considered to
develop the ANN model. Six data points (outliers) from Well-A were removed in this process.

3.2. Training the ANN Model

The 592 data points of Well-A, log data, and their corresponding core-derived Estatic were
considered as valid data to build the ANN model. Sixty-nine percent (409 data points) of Well-A data,
were randomly selected to train the ANN model.

Table 1 summarizes the statistical analysis of the training dataset. The analysis shows that the
bulk density (ρb) for the input dataset ranges from 2.312–2.968 g/cm3; the compressional time (∆TC)
ranges between 44.3 and 77.8 µsec/ft; the shear time (∆TS) is between 73.2 and 136.1 µsec/ft; and Estatic

ranges from 7.5–92.8 GPa.
The relative importance of the input parameters is shown in Figure 1. The bulk density and

compressional time are strong functions on Estatic with correlation coefficients of 0.724 and−0.815, respectively,
while the Estatic dependence on the shear time is moderate with a correlation coefficient of 0.439.

Design parameters of the ANN model were optimized using the SaDE algorithm, the best
combination of design parameters is the one that enables prediction of the Estatic with the lowest
average absolute percentage error (AAPE), as well as highest correlation coefficient (R) and coefficient of
determination (R2). During the optimization process, we evaluated the performance of different training
functions such as Levenberg–Marquardt backpropagation (trainlm), gradient descent with momentum
backpropagation (traingdm), Gradient descent with adaptive learning rate backpropagation (traingda),
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Bayesian regularization backpropagation (trainbr), and conjugate gradient (traincgf); different transfer
functions such as tan-sigmoid (tansig), log-sigmoid (logsig), and pure line (purelin); number of hidden
layers from 1–3; and the number of neurons per each hidden layer from 5 to 30 on estimating the Estatic.

Table 1. Statistics of the training dataset.

Statistical
Parameter ρb, g/cm3 ∆TC, µsec/ft ∆TS, µsec/ft Estatic, Gpa

Minimum 2.312 44.3 73.2 7.5
Maximum 2.968 77.8 136.1 92.8

Range 0.656 33.4 62.9 85.3
Standard Deviation 0.106 4.69 8.39 13.93

Sample Variance 0.011 22.0 70.3 194.0
Kurtosis 0.569 4.262 1.673 0.167

Skewness 0.011 1.569 0.564 0.186Energies 2019, 12, x FOR PEER REVIEW 5 of 15 
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The SaDE algorithm was applied using MATLAB software developed by MathWorks (Natick,
Massachusetts, U.S.A.) to select the optimum combinations of the ANN design parameters. Based
on the optimization process, the combination of the parameters summarized in Table 2 was found to
optimize the ANN performance for Estatic prediction. As listed in Table 2, trainbr is the best training
function that optimizes the Estatic predictability of the ANN model. trainbr is a network training
function that updates the weight and bias values of for the ANN model based on Levenberg–Marquardt
optimization, and it determines the correct output variable after minimizing a combination of weights
and squared errors in a process called Bayesian regularization [33]. logsig is the optimum transfer
function. The use of a single hidden (training) function (i.e., a single layer) with 20 neurons also
optimized predictability of the ANN model for Estatic. Figure 2 shows the structure of the suggested
ANN model for Estatic prediction.

Table 2. Combination of the design parameters.

Parameter Value

Learning function trainbr
Transfer function logsig

Number of hidden layers 1
Number of neurons 20
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3.3. Evaluation and Validation of the Developed ANN-Based Empirical Correlation

The remaining 31% of the Well-A dataset, which comprises 183 data points, are considered for
evaluating the developed ANN-based empirical correlation. Model validation is important step that is
preferably performed on unseen data. The three wells (Well-B: 38 data points, Well-C: six data points,
and Well-D: 11 data points) are used in model validation. All testing and validation data are within
the range of the training data which used to develop the model to ensure high accuracy in predicting
Estatic. The ability of the developed ANN-based empirical correlation in evaluating the Estatic for the
validation data collected from Well-B will be compared with four of the available correlations, namely,
Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23] correlations are presented earlier
by Equations (2)–(5).

3.4. Evaluation Criterion

The predictive power of the developed ANN-based empirical correlation in estimating Estatic will
be evaluated based on the AAPE, R2, R, and visualization check.

4. Results and Discussion

4.1. Training the ANN Model

The ANN model was trained using 409 randomly selected data points of bulk density,
compressional time, and shear time as inputs, and core-derived Estatic as output. The training
data were collected from Well-A. The optimization process was conducted using the SaDE algorithm.
The optimized design parameters of ANN model are summarized in Table 2. Figure 3 shows the
well log data and their depth corresponding core-derived and predicted Estatic values for the training
dataset. As shown in Figure 3 the ANN model predicted the Estatic with very high accuracy where the
AAPE is only 0.98% and R equals 0.999. A visual check of the plot confirms the excellent matching
between the core-derived and the predicted Estatic.
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4.2. Developing the ANN-Based Empirical Correlation

The proposed ANN-based empirical model is given in Equations (6)–(10):

Esn =
N∑

i = 1

w2i

1

1 + e−(w1i,1ρbn+w1i,2 ∆Tcn+w1i,3 ∆Tsn+b1i )
+ b2 (6)

where Esn is the normalized Estatic, N represents the number of neurons in the hidden layer
(N = 20 neurons), i is the index of each neuron in hidden layer, w1i denotes the weight associated with
input and hidden layers for each input parameter, b1i is the bias associated with hidden and input
layers, w2i represents the weight associated with hidden and output layers, b2 is the bias associated
with hidden and output layers (b2 = −1.0767). All weights and biases associated with the hidden and
output layers are summarized in Table 3.

Table 3. The extracted weight and biases of the hidden layer of the optimized ANN model.

i w1i,1 w1i,2 w1i,3 b1i w2i

1 −4.368 20.303 −14.485 −3.638 5.437
2 −0.216 1.507 2.017 4.178 −2.494
3 1.792 −2.322 −21.160 −3.877 −4.132
4 0.269 0.057 −0.949 1.777 6.325
5 1.498 −19.164 3.620 6.726 9.261
6 13.802 12.907 −0.662 2.170 0.640
7 3.466 8.897 1.549 −3.110 4.174
8 −4.369 −0.142 17.692 1.732 5.813
9 −1.604 21.932 −1.059 −9.030 5.608
10 10.803 −12.301 24.520 16.752 9.748
11 14.298 13.932 0.070 0.895 −5.642
12 −49.173 −25.972 −1.332 15.768 9.929
13 −3.062 15.989 −11.554 −3.115 −4.766
14 −18.124 −17.674 0.206 −1.307 −3.944
15 40.409 23.746 0.690 −14.273 −11.118
16 6.280 3.526 −8.930 2.199 −0.945
17 7.010 3.251 −11.579 1.502 1.544
18 19.888 7.137 0.149 −8.787 −1.596
19 −32.100 −16.426 −1.400 11.426 −23.697
20 −3.053 1.125 19.499 2.853 −9.194

In Equation (6) the values of ρbn , ∆Tcn , and ∆Tsn are the normalized input parameters calculated
from Equations (7), (8), and (9) respectively:

ρbn = 2.994(ρb − 2.312) − 1 (7)

∆Tcn = 0.0578(∆Tc − 44.341) − 1 (8)

∆Tsn = 0.0318(∆Ts − 73.187) − 1 (9)

The computed value of Esn in Equation (6) is in the normalized form and should be converted to
real value by using Equation (10):

Es =
Esn + 1
0.0234

+ 7.4987 (10)

4.3. Testing the Developed ANN-Based Empirical Correlation

The developed ANN-based empirical correlation, Equations (6)–(10), was tested using the
183 unseen, randomly selected, data points from Well-A. Figure 5 compares the core-derived Estatic and
the estimated Estatic. As shown in Figure 5, the ANN-based empirical correlation predicted the Estatic

for the unseen data with very high accuracy, where the AAPE is only 1.46% and R is 0.998. A visual



Energies 2019, 12, 2125 9 of 15

check of the plot in Figure 5 confirms the excellent matching between the core-derived and predicted
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4.4. Validation of the Developed ANN-Based Empirical Correlation

The developed ANN-based empirical correlation (Equations (6)–(10)) was finally verified using
38 data points from Well-B, six data points from Well-C, and 11 data points from Well-D. Figure 7
compares the core-derived Estatic of Well-B and the predicted Estatic that developed using ANN-based
empirical correlation.
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The plot in Figure 7 confirms the highly accurate predictive accuracy of the ANN-based empirical
correlation in estimating the Estatic; which is validated by the low AAPE of 3.8% and high R of 0.991 in
addition to the visual check of the plot. Similarly, the core-derived and the predicted Estatic values
for Well-C and Well-D were plotted in Figure 7. Due to the limited number of data points in Well-C
and Well-D, it was enough to check the predictive accuracy of the ANN-based empirical correlation
visually. In all three wells used in validation, the ANN-based empirical correlation was able to provide
a continuous profile of the predicted Estatic that conforms to the available core-derived values.

Figure 8 presents the cross-plot of the core-derived and the predicted Estatic of the 38 data points
of Well-B, which are used in validating the ANN-based empirical correlation. This plot affirms the
high accuracy of the developed ANN-based empirical correlation in estimating Estatic as confirmed by
the very high R2 of 0.9816.
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4.5. Comparing the Developed ANN-Based Empirical Correlation to the Available Correlations

Predictive accuracy of the ANN-based empirical correlation was compared with the accuracy of
four available developed correlations. Data collected from Well-B was used for the purpose of this
comparison. Figure 9 compares predictive accuracy of the ANN-based correlation with the accuracy
of Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23], correlations in estimating
Estatic for the validation dataset of Well-B. Eissa and Kazi [20], Canady [21], Najibi et al. [22], and
Fei et al. [23] correlations are presented earlier by Equations (2)–(5). As indicated in Figure 9, the
ANN-based correlation overperformed all the four correlations in evaluating = Estatic with an AAPE of
3.80% compared to an AAPE of 37.2%, 36.3%, 61.7%, and 68.5% for the Estatic values predicted using
Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23]. These results confirm the high
accuracy of the developed ANN-based empirical correlation for Estatic estimation.
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5. Conclusions

In this study, self-adaptive differential evolution (SaDE) was employed to optimize the ANN
design parameters to predict the static Young’s modulus (Estatic) for sandstone formations using well
log data of the bulk density, compressional time, and shear time. The ANN model was trained and
tested using real field measurements of 592 data points. Based on the results of this study, the following
points are concluded:

1. The developed ANN model was capable of estimating Estatic for the training dataset with very
high accuracy, as indicated by the low AAPE of 0.98%, very high R of 0.999, and R2 of 0.9978.
The ANN-based empirical correlation was able to predict Estatic for the testing dataset (unseen)
accurately; the Estatic values of the testing dataset were estimated with AAPE, R, and R2 values of
1.46%, 0.998, and 0.9951, respectively.

2. The developed empirical correlation was validated using a dataset composed of unseen 55
data points of three wells. Validating the developed correlation using the dataset of Well-B (38
points) revealed a highly accurate prediction of the developed correlation where AAPE, R and R2

valueswere 3.8, 0.991 and 0.9816 respectively.
3. The ANN-based empirical correlation is useful in predicting continuous profile of static Young’s

modulus for sandstone formation using conventional log data, bulk density, shear transit time
and compressional transit time when there are no available cores.

4. Comparing the predictive accuracy of the ANN-based correlation with four of the available
empirical equations confirmed the high accuracy of the ANN-based correlation which was able
to estimate the Estatic for the validation data of Well-B with an AAPE of 3.8% compared with an
AAPE of more than 36.0% for all available correlations.
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Nomenclature

AAPE Average absolute percentage error
ANN Artificial neural networks
∆TC Compressional transit time
∆TS Shear transit time
E Young’s modulus
Estatic Static Young’s modulus
Edynamic Dynamic Young’s modulus
logsig Log-sigmoid
R Correlation coefficient
R2 Coefficient of determination
ρb Bulk density
SaDE Self-adaptive differential evolution
trainbr Bayesian regularization backpropagation
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