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Abstract: Employing partial power processing (PPP) technique for quasi Z-source converter (QZSC)
a new structure of the converter is presented. Using PPP technique although eliminates electrical
insolation, but permits reducing voltage and current stress at the semiconductors, if compared with
full power proposals. In this work, two PPP structures are discussed: A first one, similar to the basic
topology, where the output voltage of the power converter is in series with the input voltage; and a
second one, where the output is in series with the capacitor of the QZSC. This minor modification,
which requires no extra elements, improves the power rating, voltage gain, and requires a lower
transformation ratio. An experimental prototype of the proposed converter has been tested and the
results are compared with other implementations, permitting to validate the theoretical analysis as
well as the advantages that this proposal provides.
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1. Introduction

As one of the main backbones of the power electronics industry an uncountable number of
research works have been devoted to the study and design of high efficiency, low power rating, and
low cost DC/DC converters for different applications such as: PV, electrical equipment, electrical
vehicles, energy storage, and communication systems. Furthermore, many researches have been made
to improve the performance of conventional converters. One recent technique that is giving rise to
good results is based on partial power processing (PPP) [1,2]. The basic principle of this technique is
based on providing part of the input power directly to the output, meanwhile the rest is processed
by the converter [1–13]. The main advantage of this technique is to level down the power rating of
the elements as less power is handled by the converter. This is achieved without requiring to add or
remove any element.

The main feature of the PPP technique is found in the connection between the source and the
load [1]. The layout available in Figure 1 shows the two main topologies. The first type (Figure 1a),
which is appropriate for boosting, has an output voltage equals to the sum of the source voltage and
the output voltage of the converter [1,3–7]. The second one, shown in Figure 1b, is appropriate for
buck application, and builds the output voltage taking the difference between system and converter
input voltages [8,9].

Isolation is a big challenge in PPP applications [1,2,10]. However non-isolated converters can be
considered in some cases [3–5]. For instance, in [11] a simple and commercially available non-isolated
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partial power (PP) boost converter for PV systems was integrated. Based on [12], the performance of
this converter does not follow the PP method and acts like a full power converter (FPC). As described
in [1,3,4], if the average current passing through the direct power path is zero, the system’s performance
is similar to a full power processing converter. A dual input non-isolated partial power converter
(PPC) was introduced in [13–15], which employs two similar PPC.
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Figure 1. Basic structure of partial power processing (PPP system): (a) Input parallel output series,
(b) Input series output parallel.

On the other hand, impedance network converters are widely investigated for low voltage
renewable energy source applications. The main advantage of these converters lays on the fact that
they can provide a high voltage step up; and the other merit is short circuit immunity [16–25]. The PPP
technique can be applied to these types of converters in order to improve their performance. Z-source
converter (ZSC) which is the first proposed structure of impedance network converters, includes an
inductor and a capacitor that handle the charge and discharge cycles to provide the maximum power
conversion ability during the shoot through time interval [19]. However, quasi ZSC (QZSC) which has
been chosen in this paper, provides some advantages compared to ZSC, including continuous input
current and wider boosting range [20,25].

After defining the topology different types of switching methods can be implemented such as:
Using only one switch to shoot through switching, using two or three leg H-Bridge switching topology,
and push-pull switching topology [21] (Figure 2). In this case reducing the number of switches and
implementing a simple control using push-pull switching, have been prioritized in the selection of the
proposed converter [22].
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Figure 2. Equivalent circuits of the converters: (a) Full power quasi Z-source converter (QZSC), (b) 

Basic PPP QZSC, (c) Proposed PPP QZSC. 
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Figure 2. Equivalent circuits of the converters: (a) Full power quasi Z-source converter (QZSC),
(b) Basic PPP QZSC, (c) Proposed PPP QZSC.

In this paper the isolated QZSC has been used with push pull switching method in the middle,
as shown in Figure 2a. Two structures of PPC for this converter are presented: PP-QZSC (Figure 2b)
and modified PP-QZSC (Figure 2c). The first type is based on the basic structure of PPP technique
(as depicted in Figure 1a), while the structure is revised in the second one and this provides reduced
voltage stress and higher voltage gain.

One of the main contributions of this paper is the use of the PPP technique for improving the
voltage gain of the full power QZSC (FP-QZSC). The proposed method permits achieving a voltage
gain 20% higher than basic PPP system.
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In order to evaluate the performance of the modified PP-QZSC, its performance will be compared
to traditional FP-QZSC and basic PP-QZSC in terms of efficiency, voltage and current stress, and
voltage gain in continuous conduction mode (CCM) of operation.

2. Operation Principles and Topology Analysis of the Proposed Converter

The modified PP-QZSC in Figure 2c follows the switching sequence shown in Figure 3.
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It should point out that in order to guarantee a good operation of the proposed converter,
the duty cycle Dt should be within 50% < Dt< 75% and hence the shoot-through duty cycle Ds is
Ds = 2Dt − 1. As by short circuiting the transformer magnetically the shoot through situation happens,
the transformer design should be very accurate [22]. In this study the transformer magnetizing
inductance LM, is neglected.

Considering the sequence described in the figure, three modes of operation can be defined for
modified PP-QZSC (Figure 2c). The equivalent circuits corresponding to these modes are shown
in Figure 4. In the proposed converter the output voltage is the sum of the voltages at C1 and C4.
Therefore, the output voltage can be determined as follows:

Vout = VC1 + VC4 (1)

VC1 =
1−Ds

1− 2Ds
Vin (2)

VC4 =
2n

1− 2Ds
Vin (3)

where, Vout and Vin is the output and input voltages and Ds stands for shoot through duty cycle.
Substituting (1) and (2) into (3) and based on Dt or Ds, the converter voltage gain can be expressed as:

Vout

Vin
=

2n + 1−Ds

1− 2Ds
=

2(n + 1−Dt)

3− 4Dt
(4)
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where, n is the transformer turns ratio and Dt is the duty cycle of switches. The same analysis can be
considered for basic PP-QZSC and FP- QZSC which is given by (5) and (6) respectively.

Vout

Vin
=

2n + 3− 4Dt

3− 4Dt
(5)

Vout

Vin
=

2n
3− 4Dt

(6)

Figure 5 shows the voltage gain versus duty cycle for similar transformer turn ratio, n = 1.
As it can be realized, the proposed converter with a slight difference, provides a higher voltage gain.
This is translated into a lower voltage stress for all the elements, specifically for the voltage stress in
the semiconductors. Moreover, the proposed converter is compared to other PP topologies such as:
Boost, Full Bridge, and Flyback PPC. This figure shows the merit of PPP technique for impedance
network converters.

The QZS network part of the circuit only processes two modes of operation: Shoot-through mode
and non-Shoot-through mode. So, the inductor currents in steady state can be derived based on the
following two modes of operation:

Shoot-through mode: In this stage the diode D1 is turned off and the DC link terminals are
magnetically short circuited, therefore the following equations referring to Figure 4a can be written:

iC1 = −iL2 − iout

iC2 = −iL1 = −iin
(7)

where iin, iout, iC, and iL are input, output, capacitor, and inductor currents respectively.
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Non-shoot-through mode: Based on Figure 4b or Figure 4c, the diode D1 is turned on and
inductors currents are induced to DC link terminals, so;{

iC1 = iD1 − iL2 − iout

iC2 = iD1 − iin
(8)

where iD1 is the D1 current. According to the capacitor Amp-second balance law and shoot through
duty cycle, the inductor’s steady state current can be calculated as: IL1 = Iin = 2n+1−Ds

1−2Ds
·

Vout
Rout

=
2(n+1−Dt)

3−4Dt
·

Vout
Rout

IL2 = Iin − Iout =
2n+Ds
1−2Ds

·
Vout
Rout

= 2n+2Dt−1
3−4Dt

·
Vout
Rout

(9)

3. Comparison and Evaluation of Topologies

In the following, three discussed converters are compared regarding several criteria in steady
state operation. The averaged model of QZSC and PP-QZSC is discussed in [26].

3.1. Voltage and Current Stress Analysis

The voltage and current stress of the semiconductor devices are shown in Table 1. Current
stress equations of the converters are identically except for D1 current stress, so overall the modified
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PP-QZSC has lower current stress compared to others. Also the voltage stress of the modified PP-QZSC
is reduced compared to FP-QZSC and basic PP-QZSC. Both the basic and the modified PP-QZSC
have less current and voltage stresses compared to FP-QZSC. Figure 6 illustrates a comparison of
the switch’s voltage stress as a ratio of input voltage based on the converter voltage gain. From this
figure it can be concluded that having less voltage stress in the switches results in lower switch built in
conducting resistance. Also, the voltage stress of other elements such as diodes are reduced. Lower
voltage stress results in lower power rating of the elements, for instance low power rated passive
element like capacitor. Generally, reduced voltage and current stress of the elements, specifically active
elements, can be effective for enhancing the converter’s cost.
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3.2. Element Design

The full bridge, half bridge, and push-pull switching topologies help the voltage and current
stress to be reduced compared to single switching topologies [21]. The steady state analysis of
inductors current ripples and capacitors voltage ripples indicates the size of passive elements of the
converters, therefore;  L1 =

2(2Dt−1)(1−Dt)
4n fs

·
Vout
∆IL1

L2 =
2(2Dt−1)(1−Dt)

4n fs
·

Vout
∆IL2

(10)



C1 =
(n+1−Dt)(2Dt−1)
(3−4Dt) fsRout

·
Vout

∆VC1

C2 =
(n+1−Dt)(2Dt−1)
(3−4Dt) fsRout

·
Vout

∆VC2

C3 = 4n+1
2n fsRout

·
Vout

∆VC3

C4 = Dt
2 fsRout

·
Vout

∆VC4

(11)

where, ∆iL is the inductor current ripple, ∆VC is the capacitor voltage ripple and fs is the switching
frequency. The output voltage ripple for FP-QZSC and basic PP-QZSC are ∆VC4 but for the modified
PP-QZSC is the summation of ∆VC1 and ∆VC4 .
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Table 1. Voltage and current stress comparison.

Converter Voltage Stress Current Stress

Switches
Full Power QZSC [22] 1

n ·Vout
2n

1−2Ds
·
Vout
Rout

Basic PPP QZSC 2
2n−1−2Ds1

Vout
2n

1−2Ds1
·
Vout
Rout

Proposed PPP QZSC 2
2n+1−Ds2

Vout
4n+1

2(1−Ds2 )
·
Vout
Rout

Diode D1

Full Power QZSC 1
2n ·Vout

2nVout
(1−2D s)(1−Ds)Rout

Basic PPP QZSC 1
2n+1−2Ds1

Vout
2nVout

(1−2D s1
)(1−Ds1 )Rout

Proposed PPP QZSC 1
2n+1−Ds1

Vout
(2n+1−Ds2 )Vout

(1−2Ds2 )(1−Ds2 )Rout

Diode D2 & D3

Full Power QZSC Vout
2

1−2Ds
·
Vout
Rout

Basic PPP QZSC 2n
2n+2−2Ds1

Vout
2

1−2Ds1
·
Vout
Rout

Proposed PPP QZSC 2n
2n+1−Ds2

Vout
2n+Ds2

n(1−2Ds2 )
·
Vout
Rout

Converter Inductor L1 Inductor L2

Current Stress
Full Power QZSC 2

1−2Ds
·
Vout
Rout

2
1−2Ds

·
Vout
Rout

Basic PPP QZSC 2
1−2Ds1

·
Vout
Rout

2
1−2Ds1

·
Vout
Rout

Proposed PPP QZSC 2n+1−Ds2
1−2Ds2

·
Vout
Rout

2n+Ds2
1−2Ds2

·
Vout
Rout

3.3. Comparison

In terms of comparison, some parameters have been considered such as voltage gain, voltage and
current stress, voltage ripple of capacitors, current ripple of inductors, power losses, transformer turn
ratio, number of used elements, and efficiency. Therefore, some non-idealities of elements such as:
Inductor resistance, transformer resistance, switch built in conducting resistance, and diode conducting
voltage drop are considered. Also, converter no-load power loss which is caused by transformer or
inductor core loss has been considered as a constant factor of output power. Other non-idealities such
as capacitor equivalent series resistance (ESR) or diode resistance are neglected. Table 2 shows the
converters specifications and the amount of non-ideal elements which has been considered in terms of
simulation comparison.

Table 2. Prototype and Simulation parameters.

Parameters Symbols Value/Part no.

Output Voltage Vout 90 V
Input Voltage Vin 20 V

Switching Frequency fs 40 kHz
Duty Cycle Dt 0.6

Transformer turn ratio n 1:1:1
Primary and secondary resistance Rwp, Rws 0.01 Ω

Inductance L1, L2 200 µH
Inductor resistance RL1 , RL2 0.01 Ω

Diode Forward Voltage Vd 0.98 V
capacitance C1, C2, C3, C4 100 µF

Switch on resistance Ron 0.18 Ω
Switch S1, S2 IRF640N

3.4. Voltage Gain Comparison

The effect of non-idealities is translated into power losses increase and reduction of the output
voltage that results in higher duty cycle for a determined value of input and output voltage. Figure 7
illustrates the output voltage comparison versus duty cycle while the input voltage is the same. As
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it can be seen, the required duty cycle for the proposed PPP converter at a specific output voltage is
lower than in other converters.
Energies 2019, 12, x FOR PEER REVIEW 10 of 18 

 

. 

Figure 7. The effect of non-idealities on output voltage waveform versus duty cycle for the three 

discussed converters. 

3.4. Losses Comparison 

Figure 8 shows the conducting dissipation power comparison between FP-QZSC, basic PP-

QZSC, and the modified PP-QZSC. Both presented PPCs have lower power losses compared to FP-

QZSC. 

Inductor Power Loss

Diode Power Loss

Switch Power Loss

Transformer Power Loss

. 

Figure 8. Power Loss Comparison: Left bar) Full power QZSC, Middle bar) Basic PPP QZSC, Right 

bar) Proposed PPP QZSC. 

The efficiency difference between the basic and the proposed PP structures is related to current 

difference passing through L1. The power losses difference between the basic PP-QZSC and the 

modified PP-QZSC, where the basic converter dissipates less power, as this parameter is highly 

dependent on the value of L1 and D1. These two parameters are the structural difference between the 

presented converters. In the QZSC network of the modified PP-QZSC, L1 and D1 currents are equal 

to Iin but in the basic PP-QZSC this value is lower, being Iin-Iout the overall current that go through the 

circuit. Other elements performances are almost similar in the basic PP-QZSC and the modified PP-

QZSC, because they handle Iin-Iout which give rise to similar power losses. Therefore, in proposed 

model these elements process the whole input power which in this case causes higher losses than in 

the basic converter. In terms of power losses, the switching losses are also considered. Based on 

parasitic elements, which are mentioned before and referring to Table I and II, the power losses of 

the inductors, diodes, switches, and transformer are given by (12), (13), (14), and(15) respectively. 

These equations are calculated based on switching duty cycle, Dt. In order to compute the losses, RMS 

values of each current are calculated. With a small approximation, diodes, switches, and transformer 

Figure 7. The effect of non-idealities on output voltage waveform versus duty cycle for the three
discussed converters.

3.5. Losses Comparison

Figure 8 shows the conducting dissipation power comparison between FP-QZSC, basic PP-QZSC,
and the modified PP-QZSC. Both presented PPCs have lower power losses compared to FP-QZSC.
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The efficiency difference between the basic and the proposed PP structures is related to current
difference passing through L1. The power losses difference between the basic PP-QZSC and the
modified PP-QZSC, where the basic converter dissipates less power, as this parameter is highly
dependent on the value of L1 and D1. These two parameters are the structural difference between the
presented converters. In the QZSC network of the modified PP-QZSC, L1 and D1 currents are equal
to Iin but in the basic PP-QZSC this value is lower, being Iin-Iout the overall current that go through
the circuit. Other elements performances are almost similar in the basic PP-QZSC and the modified
PP-QZSC, because they handle Iin-Iout which give rise to similar power losses. Therefore, in proposed
model these elements process the whole input power which in this case causes higher losses than in the
basic converter. In terms of power losses, the switching losses are also considered. Based on parasitic
elements, which are mentioned before and referring to Tables 1 and 2, the power losses of the inductors,
diodes, switches, and transformer are given by (12), (13), (14), and(15) respectively. These equations
are calculated based on switching duty cycle, Dt. In order to compute the losses, RMS values of each
current are calculated. With a small approximation, diodes, switches, and transformer current ripples
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are considered to be inductor current ripple. The inductors power losses value is based on their RMS
current, which is calculated as follows,

PL = RL1 IL1,rms
2 + RL2 IL2,rms

2
IL1,rms = IL1,avg

√
1 + 1

3

(
∆i

2IL1,avg

)
IL2,rms = IL2,avg

√
1 + 1

3

(
∆i

2IL2,avg

) (12)

where PL, IL1,rms, IL2,rms, and ∆i are the overall inductor’s losses, L1 and L2 the average current and
current ripple which can be obtained in (14), respectively. Also, diodes and switches power losses are
calculated based their current RMS values, so

PD =
(
ID1,avg + ID2,avg + ID3,avg

)
Vd (13)

PD is the sum of diodes conduction loss and is calculated based on the average current. Also,
ID1,rms, ID2,rms, and ID3,rms are:  ID1,avg = 2n+1−Ds

1−2Ds
. Vout

Rout

ID2,avg = ID3,avg
(1−Ds)(2n+Ds)

2n(1−2Ds)
. Vout

Rout

(14)

PS(cond) are the conduction losses in the switches (S1 and S2). IS,rms(Cond) is the RMS value of the
current at the switch and is calculated as:{

PS1(Cond) = PS2(Cond) =
1
2 PS(cond)

PS(cond) = 2RonIS,rms(Cond)
2 (15)

PS(cond) are the conduction losses of the switches (S1 and S2). Likewise, IS,rms is the RMS value of
the current at the switch and it can be calculated as:

Is,rms =

√
11− 2Dt

24
∆i2 + (2Dt − 1)I1

2 + (1−Dt)I22, (16)

where I1 and I2 are the DsTs and (Dt − Ds)Ts time intervals average currents, as it can be concluded
from Figure 3. The transformer’s primary and secondary windings losses are determined according to
the switches and diode D2 and D3 currents, respectively. According to Figure 4a,b the transformer
primary windings conduction is based on switches turn on time interval, DtTs and the secondary
winding is calculated in (1 − Ds)Ts. Therefore;

Pwinding = Pwind,pri1 + Pwind,pri2 + Pwind,sec{
Pwind,pri1 = Pwind,pri2 = RwIS,rms,(Cond)

2

Pwind,sec = RwID2,rms
2

(17)

Pwinding is the sum of the transformer primary and secondary power losses. The switching power
loss (PS(switching)) due to non-ideal turn-on and turn-off is illustrated by (18).{

PS(switching) = 2(αon + αo f f )(VswIsw) fsw

αon = αo f f = 0.5(τrise + τ f all)
(18)

αon and αo f f are turn on and turn off switching times respectively which can be found in the
datasheet. Also Vsw and Isw are the average voltage and current stress of the switches, which can be
obtained from Table 1. Figure 9 shows the MOSFET switches power loss comparison based on (17) and
(18), which the proposed converter has less switch power dissipation.
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Figure 9. Switch power loss versus output power for the three discussed converters.

3.6. Efficiency Comparison

Integrating PPP technique into any converter does not necessarily mean an improvement in the
efficiency [1]. In this case integrating PPP technique improved both basic proposed models compared
to full power converter. However, the proposed converter efficiency is lower than basic structure.
The structural difference between basic and proposed converters has been mentioned which results in
efficiency difference as well. Efficiency of the proposed model highly depends on operating points
and transformer turn ratio, which in some cases the modified PP-QZSC efficiency can be improved
compared to the basic model. The relationship between these three converters efficiencies which
have been listed in Table 3. Since the QZSC efficiency ηQ1 is always smaller than one, the overall
efficiencies of the basic PP-QZSC and the modified PP-QZSC are higher than the FP-QZSC. If the
individual converter efficiencies are similar, the relation of converters efficiencies are ηS3 > ηS2 > ηS1

which is shown in Figure 10. Moreover, the full power converter duty cycle is higher than the other
two converters. Also, Vout/VC4 ratio in the modified PP-QZSC is limited to a range between 1.25
and 1.5 because of switching duty cycle which is a range between 50% to 75%. Individual system
efficiency of the proposed PPP system, ηQ3 is dependent on this ratio. If Vout/VC4 gets larger, ηQ3 gets
lower, therefore ηS3 is always lower than one. Figure 11 shows the efficiency comparison based on the
output power.

Table 3. Efficiency comparison of Full power, basic PPP, and proposed PPP QZSC.

Converter Individual Converter
Output Voltage

Individual
Converter Efficiency System Efficiency

Full power QZSC Vout ηQ1
ηS1= ηQ1

Basic PPP QZSC Vout −Vin ηQ1
ηS2 =

Vout
VC4+ηQ2 ·Vin

·ηQ2

Proposed PPP QZSC Vout −VC1 ηQ3
ηS3 =

Vout
VC4
·ηQ3

It should be noticed that, the experimental efficiency curve in 22, shows that maximum efficiency
of FP-QZSC can go beyond 97% which is different from our measurement. The efficiency curve of two
converters may be compared only if all the conditions are the same. The parameters which affect the
converter efficiency are: MOSFET conduction resistance and switching loss, diode forward voltage,
winding resistance, and converter operation points. In two prototypes of the converter, these values
may differ and therefore different efficiency values can be calculated.
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4. Simulation and Experimental Results and Discussion

The laboratory low power 200 W prototype of the proposed converter, shown in Figure 12,
has been built to validate the theoretical analysis and simulation results. The prototype component
values are shown in Table 2. In this section the simulation results and experimental results are shown
and compared.
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The switching gate signals for two switches are shown in Figure 13. In order to generate the
desired output voltage, the switching and shoot though duty cycles are adjusted to Dt = 0.6 and Ds = 0.2
(according to (4)). The switching frequency is 40 kHz. All the experimental tests were conducted
under CCM operation of the converter, as DCM does not represent a representative operating point.
Comparing simulation and experimental results it can be seen that both match quite well. On the other
hand, considering two separate shoot through time intervals (equals to 0.1Ts) during a switching cycle,
the voltage ripple of C1, and C2 have a frequency equals to 2fs (Figure 14c,d). The frequency voltage
ripple of C3 and C4 are the same as fs (Figure 14e,f). The experimental output voltage waveform is also
shown in Figure 14a. As mentioned before, the output voltage ripple is the sum of C1 and C4 voltage
ripples, which can be seen in Figure 14b.
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Figure 13. Switch gate signals S1 and S2 (Volt/div = 5 V, Time/div = 10 µs). Dt = 0.6 and Ds = 0.2.

The waveforms of IL1 and IL2 are shown in Figure 15. The small current ripples insure the CCM
operation of the converter. The only difference between the two current waveforms is that the IL2

is less than inductor IL1 as IL2 = IL1 − Iout. The experimental and simulation results for transformer
primary and secondary voltages are shown in Figure 16. The primary and secondary voltage during
shoot through mode is zero which shows the magnetically short circuit of the transformer. In order to
compare the performance of the three discussed converters, three converters are made and several
tests are done in different operating modes.
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Figure 14. Experimental and simulation result waveforms: (a) Input and output voltage (Volt/div = 50 V,
Time/div = 10 µs), (b) Input and output voltage (c) Capacitor C1 voltage, (d) Capacitor C2 voltage,
(e) Capacitor C3 voltage and (f) Capacitor C4 voltage.
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Figure 15. Simulation and experimental results for inductor currents: (a) experimental results for
IL1 (Amp/div = 1 A, Time/div = 10 µs), (b) simulation results for IL1 , (c) experimental results for IL2

(Amp/div = 1 A, Time/div = 10 µs) and (d) simulation results for IL2 .
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5. Conclusions 

Figure 16. Simulation and experimental results for inductor currents: (a) experimental results for
IL1 (Amp/div = 1 A, Time/div = 10 µs), (b) simulation results for IL1 , (c) experimental results for IL2

(Amp/div = 1 A, Time/div = 10 µs) and (d) simulation results for IL2 .

In Figure 17, the efficiency of the converters for different input voltages with constant switching
duty cycle of 0.6 are sketched also compared with simulation resulted efficiency. The result shows
higher efficiency of the basic PP-QZSC as predicted in Section 3. As discussed before, the semiconductor
loss is lower which result in a smaller cooling system and improves the reliability of the system.
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5. Conclusions

This paper presents a modified QZSC using PPP technique. Compared to full power converter,
partial power converter shows higher efficiency and lower voltage and current stress. Although
the modified PP-QZSC had a rather lower efficiency by 1%, but the voltage stress of the switches
decrease by 25%. High boost capability, lower voltage and current stress, improved efficiency and
lower cost considering small duty cycle, and small turn ratio of the transformer are the proposed and
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basic PPP converters features. Higher boosting mode and reduced voltage stress are the proposed
PPP QZSC advantages compared to basic PPP structure. The operating performance of the proposed
converter was simulated and experimentally tested to validate the theoretical analysis. Due to lower
power handled by the PPP converters, which is a remarkable feature, and considering the results and
performance obtained, the proposed converter is promising to be used in PV systems, as a partial
power inverter would give rise to a lower cost and size of the power processing stage.
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