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Abstract: Development of modern technology in microelectronics and power engineering necessitates
the creation of effective cooling systems. This is made possible by the use of the special fins
technology within the cavity or special heat transfer liquids in order to intensify the heat removal
from the heat-generating elements. The present work is devoted to the mathematical modeling of
thermogravitational convection of a non-Newtonian fluid in a closed square cavity with a local source
of internal volumetric heat generation. The behavior of the fluid is described by the Ostwald-de
Waele power law model. The defining Navier–Stokes equations written using the dimensionless
stream function, vorticity and temperature are solved using the finite difference method. The effects
of the Rayleigh number, power-law index, and thermal conductivity ratio on heat transfer and the
flow structure are studied. The obtained results are presented in the form of isolines of the stream
function and temperature, as well as the dependences of the average Nusselt number and average
temperature on the governing parameters.

Keywords: non-Newtonian fluid; natural convection; heat source of volumetric heat generation;
finite difference method

1. Introduction

The use of liquids in various technical applications is well known, but there is a greater special
interest of researchers in the study of non-Newtonian fluids because of the realization that they are
now very common in everyday life [1–3]. For example, most polymeric liquids, including melts and
solutions, foams, emulsions, suspensions, worm-like micelles, antifreezes, porcelain clay, sewage
sludge, pharmaceutical formulations, cosmetics and toiletries, paints and synthetic lubricants, biological
fluids (blood, synovial fluid, sage) and food products (butter, jams, jellies, soups, marmalade) show
non-Newtonian properties according to flow characteristics [4–8].

The main feature of non-Newtonian fluids is the nonlinear dependence of shear stress on shear
rate. Since dynamic viscosity changes with shear stress, the fluidity of such a fluid, and thus heat
transfer, becomes more complex. Therefore, the analysis of non-Newtonian fluids behavior warrants
special attention [1–9].

Many papers have been devoted to the analysis of non-Newtonian fluids flow in various
configurations. The peristaltic transport of non-Newtonian fluids in a diverging tube with various
forms of near-wall waves was studied by Hariharan et al. [10]. Comparison of ink exhibiting Newtonian
and non-Newtonian character for laser printing was carried out by Kalaitzis et al. [11]. The rheological
properties of the TiO2/ZnO/EG nanofluid were studied by Nafchi et al. [12]. Hundertmark-Zausková
and Lukácová-Medvid’ová [13] considered blood flow as a pseudoplastic fluid circulating inside
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elastic vessels. A three-dimensional simulation of the human cardiovascular system was performed by
Janela et al. [14], where the authors compared the Newtonian and non-Newtonian models for blood.

Along with the hydrodynamics of non-Newtonian fluid, the process of natural convection is being
actively studied, since it is the most common method of electronic components cooling. This technique
is of great interest due to its simplicity, minimal cost, low noise, smaller size and reliability [15].
In addition, cooling by natural convection in enclosures is very popular due to various areas of
applicability, such as cooling systems for electronic gadgets, high-performance insulation of buildings,
multi-layer structures, various furnaces, solar heat collectors, polymer processing, oil product recovery,
transportation of suspensions, production of chemical substances and fertilizers, medicine and food
industry, paper making, production and packaging of paints and emulsions, etc. [16,17]. The process
of natural convection is also considered in various cavities and with various heat exchange agents, for
example, natural convection cooling of a heat source by a nanofluid was studied by Aminossadati
and Ghasemi [18]. Heat transfer using natural convection during the melting of a material with a
phase transition in a closed rectangular cavity with three heaters on the left vertical wall was studied
by El Qarnia et al. [19]. Laminar natural convection in a square cavity heated through side walls at
small Prandtl numbers with large differences in density has been numerically studied by Pesso and
Piva [20]. Aly and Raizahan [21] proposed a hydrodynamic method for incompressible particles for
natural convection in a cavity filled with nanofluid, including numerous solid structures. Laminar
unsteady free convection in a closed region with a heat source of various shapes was numerically
studied by Gibanov and Sheremet [22]. A numerical study of natural convection in a closed cavity, in
the center of which a heat source is located, was carried out by Mahalakshmi et al. [23].

Despite the active use of various nanofluids, water and air in such processes, non-Newtonian
power law fluids are also assigned a significant role. For example, Sasmal et al. [24] studied the laminar
natural convection of a non-Newtonian fluid in a closed square cavity with an isothermal rotating
cylinder. Kiyasatfar [25] performed the analysis of convective heat exchange of a sliding flow of
non-Newtonian fluid through a parallel plate and round microchannels. A numerical study of the
natural convection of power law fluids in a vertical open finite channel was carried out by Zhou and
Bayazitoglu [26]. Double-diffusive natural convection of a Bingham fluid was studied by Kefayati [27]
taking into account the Soret and Dufour effects. Laminar natural convection in a closed trapezoidal
cavity filled with a non-Newtonian nanofluid was studied numerically by Alsabery et al. [28]. Kefayati
and Tang [29] investigated the natural convection of a non-Newtonian nanofluid in a cavity with
a uniform magnetic field. An experimental study of the convective heat transfer of a stream of a
non-Newtonian solution of Xanthan gum in a micropipe was carried out by Shojaeian et al. [30].

Based on the review of literature, it can be concluded that natural convection of a non-Newtonian
fluid in a closed cavity has a great deal of significance in modern research. In this regard, the aim of
the present work is the mathematical modeling of the natural convection of a power-law fluid in a
closed square cavity with a heat-generating and heat-conducting element.

2. Governing Equations and Numerical Technique

In this paper, we study the process of thermogravitational convection in a closed square cavity
as shown in Figure 1. Horizontal walls are heat insulated. Vertical walls are maintained at low
temperature Tc. The energy source is located in the center of the bottom wall and this source has a
constant internal volumetric heat generation Q. Gravity force is directed vertically down.

The cavity under investigation is filled with a non-Newtonian fluid that follows the Ostwald-de
Waele power law model:

τi j = 2µe f f Di j = 2K(2DklDkl)
n−1

2 Di j (1)

Here τij-is the shear stress, µe f f -is the effective viscosity, Di j-is the component of the strain rate
tensor, K-is the flow consistency index, n-is the power law index.
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The heat conduction equation for the local heater is

(ρc)
∂T
∂t

= khs

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Q (6)

For ease of calculation, the problem was reduced to a transformed dimensionless form. The
non-primitive variables such as the stream function u =

∂ψ
∂y , v = −

∂ψ
∂x and vorticityω = ∂v

∂x −
∂u
∂y were

introduced. Further, dimensionless variables were included into the equations using the following
parameters L is the length of the cavity; X = x/L, Y = y/L are the coordinates; τ = t

√
gβ∆T/L is the

dimensionless time; Ψ = ψ/
√

gβ∆TL3 is the dimensionless stream function; Ω = ω/
√

L/gβ∆T is
the dimensionless vorticity; Θ = (T − Tc)/∆T is the dimensionless temperature; ∆T = QL2/khs is
the temperature difference.

The basic equations in non-dimensional form using the stream function, vorticity and temperature
variables take a new form (7)–(10):

∂2Ψ
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In the case of internal heat-generating element we have the following heat conduction equation

∂Θhs
∂τ

=
Ar

√
Ra · Pr

(
∂2Θhs

∂X2 +
∂2Θhs

∂Y2 + 1
)

(10)

Here M̃ =
[
4
(
∂2Ψ
∂X∂Y

)2
+

(
∂2Ψ
∂Y2 −

∂2Ψ
∂X2

)2] n−1
2

, SΩ = 2
[
∂2M̃
∂X2

∂2Ψ
∂Y2 + ∂2M̃

∂Y2
∂2Ψ
∂X2 − 2 ∂2M̃

∂X∂Y
∂2Ψ
∂X∂Y

]
, Pr = ν̃

α

is the Prandtl number; Ra =
gβ∆TL3

ν̃α
is the Rayleigh number, ν̃ =

(
K
ρ

) 1
2−n L

2(1−n)
2−n is the effective

kinematic viscosity.
Initial conditions for the considered problem are Ω = Ψ = Θ = 0.
Boundary conditions:

X = 0 and X = 1, 0 ≤ Y ≤ 1, Ψ = 0, ∂Ψ
∂X = 0, Θ = 0;

Y = 0 and Y = 1, 0 ≤ X ≤ 1, Ψ = 0, ∂Ψ
∂Y = 0, ∂Θ

∂Y = 0;

at the heat source surface: Ψ = 0, Ω = −∂
2Ψ
∂n2 ,

 Θhs = Θ f
khs
k f

∂Θhs
∂n =

∂Θ f
∂n

.

The main numerical technique used to solve the considered problem is the finite difference method.
The differential Equation (7) for the stream function was discretized using the central differences and the
obtained difference equation was solved by the successive over-relaxation method [31,32]. The optimal
value of the relaxation parameter was selected on the basis of numerical experiments. The convective
terms in parabolic Equations (8) and (9) were approximated using the “donor cell” difference scheme.
It should be noted that this scheme is known also as the second upstream scheme. This scheme is
based on one-sided differences in spatial variables and has the property of transport and conservatism.
The point is that when the velocities are positive, the difference is used backwards, and vice versa.
The diffusion terms were discretized by central differences. The numerical solution of parabolic
Equations (8)–(10) was performed using the locally one-dimensional Samarskii scheme [31,32]. This
scheme allows transformation of a two-dimensional problem to a one-dimensional problem. The
obtained linear algebraic equations were solved by the Thomas algorithm [31,32].

The developed algorithm for solving the problem was implemented by a computational code
using the C++ programming language. Before carrying out the basic calculations, the developed
in-house code was tested in detail using some problems for verification. The first benchmark problem
was the natural convection of a non-Newtonian fluid in a differentially heated cavity. The horizontal
walls were heat insulated. The vertical left wall was maintained at a constant temperature Th, while the
vertical right wall had a constant temperature Tc (Th > Tc). The diagram of the test problem solution
area is shown in Figure 2.

Figure 3 shows the comparison of streamlines at Ra = 105, Pr = 100, n = 1.0 and 1.4, obtained using
the developed in-house computational code and numerical data of Khezzar et al. [33]. As a result of
this validation study, an analysis was obtained for the values of the average Nusselt number at the
left isothermal wall of the cavity in comparison with the results [33,34]. Table 1 shows the obtained
comparison for the average Nusselt number. Thus, the results of testing the computational code
showed that the data obtained are in good agreement with the data of other authors. The numerical
algorithm and developed computational code are operable and may be applicable in further studies.

In the case of thermogravitational convection of a power law fluid in a cavity with an energy
source, preliminary estimation of the influence of the grid parameters and the time step on the process
under study was carried out. Figure 4 shows the time dependences of the average Nusselt number
(a) and average heater temperature (b). Dependencies are plotted at n = 0.6, Ra = 105, k = khs/kf = 1,
Pr = 102 with the following grid parameters: 50 × 50, 100 × 100, 150 × 150.
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Table 1. The value of the average Nusselt number depending on the power law index.

n Nuavg in This Work Nuavg in [33] Nuavg in [34]

0.6 7.3823 6.9345 7.020

0.8 5.6201 5.5127 –

1.0 4.7662 4.6993 4.741

1.2 4.2227 4.1709 –

1.4 3.8464 3.7869 3.770

Based on this dependence, we chose a grid of 100 × 100 nodes, since it does not lead to strong
discrepancies and it does not affect the process under study. In addition, in the course of the study it
was revealed that the final value of dimensionless time τ = 200 is not enough, so the calculations were
carried out at τ = 2000.
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3. Results

As a result of numerical simulation of thermogravitational convection of a non-Newtonian power
law fluid in a closed square cavity with a heat source, an analysis was made to understand the effects
of governing parameters on the process. The Rayleigh number Ra is varied in the range 104–105, the
power law index n is changed from 0.8 to 1.4, the thermal conductivity ratio is k = 1, 10, 102, 103. The
Prandtl number was fixed at Pr = 102. Streamlines, isotherms and distributions of the average Nusselt
number and mean temperature within the heater are shown in Figures 5–10.
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Figure 5 shows the effect of the Rayleigh number on the distribution of streamlines Ψ (a) and
isotherms Θ (b) for n = 0.8, Pr = 102, k = 102. In Figure 5a, the distribution of the streamlines shows
that with the increasing of the Rayleigh number, the flow structure does not change. Namely, two
convective cells are formed in the cavity, and these cells are symmetrical to each other relative to the
central axis. The shape of the cells varies slightly from elliptical to more rectangular with a pronounced
flow around the source. Moreover, the convective cells cores are displaced to the central vertical axis
and the streamlines density increases in this central part. Such behavior can be explained by a growth
of convective flow intensity due to high values of the buoyancy force magnitude and as a result, the
thickness of the central thermal plume decreases that reflects intensive liquid motion in this narrow
zone. The temperature field in Figure 5b with Ra = 104 indicates the predominance of the conductive
mechanism of heat transfer in the cavity, since the isotherms are located almost parallel to the cooling
walls. Consequently, the heat transfer in the cavity is very weak. With an increase in Ra, the convective
heat exchange is enhanced, which corresponds to the formation of a two-dimensional heat plume
above the heat source. It is seen that an upward flow is formed above the source due to the temperature
difference between the heater and the liquid near this element. The hot ascending flow reaches the
upper adiabatic wall. After that, this flow separates and descends along the cooling vertical walls,



Energies 2019, 12, 2149 9 of 12

which corresponds to the expansion of the thermal plume cap and an appearance of cold temperature
wave in the bottom part of the cavity from the left and right sides of the heater. Similar relationship
between streamlines and isotherms can be observed for all considered cases.

Figure 6 shows the time dependence of the average Nusselt number Nuavg (a) and mean
heater temperature Θavg (b) for different Rayleigh numbers. Dependencies are plotted for n = 0.8,
Pr = 102, k = 102. The average Nusselt number at the heat source surface was calculated as follows

Nuavg = 1
0.6

0.6∫
0

(
−
∂Θ
∂n

)
dς. Figure 6a shows that as the Rayleigh number increases, the average Nusselt

number also rises. This suggests that convective heat transfer is enhanced in the cavity. In addition, it
can be seen that the considered modes are unsteady, because Nuavg continues to change with time. It is
worth noting that for Ra = 104 the mean Nusselt number decreases during the conduction regime and
increases during the weak convective regime, while for Ra = 105 and 106 Nuavg reduces. Figure 6b
shows the dependence of the average temperature within the source on the time and Rayleigh number.
One can see that this dependence fully corresponds to the dependence of the average Nusselt number
on the Rayleigh number, namely, the mean temperature decreases with time for Ra = 105 and 106, while
it increases with time for Ra = 104.

An analysis of the effect of the power law index on the liquid circulation and thermal transmission
can be observed in Figures 7 and 8. It should be noted that n describes the character of the relationship
between the components of the stress tensor and the strain rate tensor. The case n < 1 describes a
pseudoplastic fluid, whose viscosity reduces with increasing strain rate. The case n = 1 describes a
Newtonian fluid. The case n > 1 characterizes the behavior of the dilatant fluid, the viscosity of which
rises with increasing strain rate.

The weakening of the convective heat transfer is well reflected with the distribution of streamlines
and isotherms, shown in Figure 7a,b, respectively. It should be noted that with an increase in the
power law index, the number of streamlines decreases, which also corresponds to a slowdown of the
convective flow. The structure of the distribution of streamlines does not tolerate changes. One can
find also a growth of the dynamic boundary layer thickness near the vertical walls.

The distribution of isotherms is also not subject to significant changes (see Figure 7b). The
two-dimensional heat plume is located above the heat source, which reflects the formation of
temperature stratification zones to the left and right of the energy source. As a result, it is possible
to conclude that a growth of the power law index characterizes less intensive cooling of the cavity
from the vertical cooled walls. Therefore, the temperature gradient within the cavity diminishes with
increasing n and liquid circulation becomes weaker.

Moreover, velocity field behavior is related to the temperature field considering the natural
convection problem where there is no any external dynamic influence. This relation can be described
as follows; the presence of the non-slip effect at solid walls characterizes an appearance of high velocity
gradients in these zones and as a result a growth of the power law index leads to a rise of the effective
viscosity. The latter illustrates the attenuation of convective flow circulation and a formation of heat
conduction dominated mode near the walls. Therefore, for high n one can find less intensive cooling of
the cavity from the vertical walls.

In Figure 8a, the average Nusselt number decreases slightly with increasing n at k = 100, Pr = 100,
Ra = 105. This suggests that convective heat transfer slows down with an increase in the power law
index, which corresponds to a growth in temperature inside the source, as illustrated in Figure 8b.
Moreover, the average Nusselt number reaches the constant value for high values of the power law
index, while low values require more time for reaching steady state. At the same time, the mean heater
temperature rises with n, which reflects less intensive heat removal from the heater for the case of
dilatant liquid, while in the case of the pseudoplastic liquid it is possible to intensify the heater cooling.

For the considered problem, a key parameter is the thermal conductivity ratio. Figures 9 and 10
demonstrate the impacts of the thermal conductivity ratio on the flow structures and heat transfer
patterns. Thus, streamlines and isotherms are presented in Figure 9 for n = 0.8, Pr = 102, Ra = 105.
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It should be noted that the considered thermal conductivity ratio is a relation between the thermal
conductivity of the heater material and liquid thermal conductivity. Therefore, growth of k illustrates an
increase in the heater material thermal conductivity. A growth of this parameter reflects more intensive
heating of the cavity and a growth of the circulation rate due to a formation of high temperature
gradient. It is worth noting that a growth of the heater material thermal conductivity illustrates more
intensive heating of this local element considering the internal volumetric heat generation and as a
result the liquid near the heater warms rapidly for high k. Therefore, high k illustrates less cooling,
while for low values of k heat conduction is a dominating heat transfer mechanism.

Figure 10 shows the average Nusselt number at the heater surface and the mean heater temperature
depending on the thermal conductivity ratio and dimensionless time. It follows that an increase in k
indicates a more heat-conducting material of the energy source or a less heat-conducting non-Newtonian
medium. Therefore, with a growth of k, the average temperature in the source increases, which leads
to a rise in the temperature gradient inside the cavity, and thus, one can find an augmentation of the
average Nusselt number. It should be noted that for k = 1 and 10 the considered time range is enough
for reaching the steady state, while for k ≥ 100 the time range should be increased for the steady state.
As a result, one can conclude that more cooling of the local heater can be organized by the passive
cooling system (from the cooled vertical walls) in the case of low values of the thermal conductivity
ratio k ≤ 100.

4. Conclusions

In the present work, the mathematical simulation of the thermogravitational convection of a
non-Newtonian fluid within a closed square cavity in the presence of a local heat-generating element
was carried out. Governing partial differential equations formulated using the non-primitive variables
and Ostwald-de Waele power law were solved by the finite difference method. An analysis of the
key parameters influence on the process under investigation was performed based on the obtained
distributions of streamlines and isotherms, as well as dependences of the average Nusselt number and
average temperature inside the energy source. Taking into account the obtained results the following
conclusions can be formulated:

- The influence of the Rayleigh number was considered in the range between 104 and 106. It has
been established that with increasing Ra the heat transport mechanism changes from conductive
to convective, and the average Nusselt number increases, which corresponds to the intensification
of heat removal from the heater surface. At the same time, a rise of Ra characterizes a growth
of time for reaching the steady state. Moreover, a rise of the Rayleigh number characterizes a
reduction of the thermal boundary layers thickness not only near the vertical walls but also for
the central formed thermal plume.

- The power law index is varied within the limits 0.8 and 1.4. It has been found that the growth of
n slows down the flow and heat transfer in the cavity, therefore, for a pseudoplastic fluid, heat
removal from the energy source occurs more intensively. It should be noted that at a large n faster
stationary mode is achieved.

- Analysis of the flow and heat transfer as a result of an increase in the thermal conductivity ratio
from 1 to 1000 showed that as the flow rate and time for reaching the steady state are increased,
the cavity warms up more intensively, and therefore the heat removal from the heater surface
is weakened.
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